Specifying Systems

Leslie Lamport

04 Mar 2002

Preliminary Draft

Copyright © 2002 by Leslie Lamport. You may download
an electronic version of this book and print one copy for
your own use only. You may not make additional copies
or send the electronic version to anyone else without the
express permission of the author.






iii

This whole book is but a draught—nay, but the draught of a draught.

Herman Melville



iv




Acknowledgments

I have spent more than two and a half decades learning how to specify and
reason about concurrent computer systems. Before that, I had already spent
many years learning how to use mathematics rigorously. I cannot begin to thank
everyone who helped me during all that time. But I would like to express my
gratitude to two men who, more than anyone else, influenced this book. Richard
Palais taught me how even the most complicated mathematics could be made
both rigorous and elegant. Martin Abadi influenced the development of TLA
and was my collaborator in developing the ideas behind Chapters 9 and 10.

Much of what I know about applying the mathematics of TLA to the engi-
neering problems of complex systems came from working with Mark Tuttle and
Yuan Yu. Yuan Yu also helped turn TLAT into a useful tool for engineers by
writing the TLC model checker, ignoring my warnings that it would never be
practical. While writing the first version of the Syntactic Analyzer, Jean-Charles
Grégoire helped me fine tune the TLA™ language.

The following people made helpful comments on earlier versions of this book.
Dominique Couturier, Douglas Frank, Vinod Grover, David Jefferson, Sara
Kalvala, and Wolfgang Schreiner all pointed out mistakes. Kazuhiro Ogata
read the manuscript with unusual care and found a number of mistakes. Kapila
Pahalawatta found an error in the ProtoReals module. Paddy Krishnan also
found an error in the ProtoReals module and suggested a way to improve the
presentation. And I wish to extend my special thanks to Martin Rudalics, who
read the manuscript with amazing thoroughness and caught very many errors.

Leslie Lamport
Palo Alto, California
4 March 2002



vi




Contents

Acknowledgments

Introduction

I Getting Started

1 A Little Simple Math
1.1 Propositional Logic . . . . . . ...
1.2 Sets . ... ... ... ... ..
1.3 Predicate Logic . . . . .. ... ..
1.4 Formulas and Language . . .. ..

2 Specifying a Simple Clock
2.1 Behaviors . ... ... .......
2.2 An Hour Clock . ... .......
2.3 A Closer Look at the Specification
2.4 The Specification in TLAT. . . . .
2.5 An Alternative Specification . . . .

3 An Asynchronous Interface
3.1 The First Specification . . . . . . .
3.2 Another Specification . . ... ..
3.3 Types: A Reminder . .. .....
3.4 Definitions. . . . .. ... ... ..
3.5 Comments . .. ...........

4 A FIFO

4.1 The Inner Specification . . . . ..
4.2 Instantiation Examined . . . . ..
4.2.1 Instantiation is Substitution
4.2.2 Parametrized Instantiation

11
12
14

15
15
15
18
19
21

23
24
28
30
31
32

35
35
37
37
39

vii



viii

CONTENTS

4.2.3 Implicit Substitutions . . . . .. ... ... ... .. ...
4.2.4 Instantiation Without Renaming . . . . . . .. ... ...
4.3 Hiding the Queue . . . . . . . ... Lo oL o
44 A Bounded FIFO . . . . . . . ... ... ... .. ...
4.5 What We’re Specifying . . . . . ... ... o oL
5 A Caching Memory
5.1 The Memory Interface . . . . . .. .. ... ... .. ... ...
5.2 Functions . . . . . . . .. L e
5.3 A Linearizable Memory . . . . ... ... .. ... ...
5.4 Tuples as Functions . . . . . .. .. ... ... ... .......
5.5 Recursive Function Definitions . . . . . .. ... ... ... ...
5.6 A Write-Through Cache . . . . . ... ... ... ... ......
5.7 Invariance . . . . . . . . ...
5.8 Proving Implementation . . . . .. ... ... ..o
6 Some More Math
6.1 Sets . . . ..
6.2 Silly Expressions . . . . ... ... oo
6.3 Recursion Revisited . . . . . ... .. ... ... 0.
6.4 Functions versus Operators . . . . ... .. ... ... ......
6.5 Using Functions . . . . . . . .. ... ... L o .
6.6 Choose . . . . . . . . e
7 Writing a Specification: Some Advice
7.1 Why Specify . . . ...
7.2 What to Specify . . . . . . ... ...
7.3 The Grain of Atomicity . . . . . . ... ... .. ... ......
7.4 The Data Structures . . . . . ... ... ... ...
7.5 Writing the Specification . . . . . .. ... ... o0
7.6 Some Further Hints. . . . . . . .. ... ... ... .......
7.7 When and How to Specify . . . . .. ... ... ... .. .....

II More Advanced Topics

8 Liveness and Fairness

8.1
8.2
8.3
8.4
8.5

Temporal Formulas . . . . . ... ... ... ... .........
Temporal Tautologies . . . . . ... . ... ... .. .......
Temporal Proof Rules . . . . .. ... ... ... ... .....
Weak Fairness . . . . . . . . .. .
The Memory Specification . . . . . . . ... ... ... ... ...
8.5.1 The Liveness Requirement . . . . . . . . ... ... ....
8.5.2  Another Way to Write It . . . . . . . ... ... ... ..

40
40
41
42
43

45
45
48
o1
53
o4
o4
61
62

65
65
67
67
69
72
73

75
(0]
76
76
78
79
79
82



CONTENTS

ix

8.6
8.7
8.8
8.9

8.5.3 A Generalization . . . . . .. ... ... ... ...
Strong Fairness . . . . . . . ... Lo L
The Write-Through Cache . . . . ... ... ... ... .....
Quantification . . . . . .. ...
Temporal Logic Examined . . . . . . . ... ... .. .......
8.9.1 AReview . . .. . . ...
8.9.2 Machine Closure . . . . . ... .. .. ... ........
8.9.3 Machine Closure and Possibility . . . .. ... ... ...
8.9.4 Refinement Mappings and Fairness . . . . . . . ... ...
8.9.5 The Unimportance of Liveness . . . ... ... ... ...
8.9.6 Temporal Logic Considered Confusing . . . .. ... ...

9 Real Time

9.1
9.2
9.3
9.4
9.5
9.6

The Hour Clock Revisited . . . . . ... ... ... ... .....
Real-Time Specifications in General . . . .. ... ... .....
A Real-Time Caching Memory . . . . .. ... ... ... ....
Zeno Specifications . . . . . . . ... oo
Hybrid System Specifications . . . . . . ... ... ... .. ...
Remarks on Real Time . . . . . . ... ... ... .. .......

10 Composing Specifications

10.1
10.2
10.3
10.4

10.5

10.6

10.7
10.8

10.9

Composing Two Specifications . . . . . .. ... ... ... ...
Composing Many Specifications . . . . . .. ... ... ... ...
The FIFO . . . . . . . . e
Composition with Shared State . . . . .. ... ... .. .....
10.4.1 Explicit State Changes . . . . . . . . ... ... ... ...
10.4.2 Composition with Joint Actions. . . . . . . .. .. .. ..
A Brief Review . . . . . . . ... ...
10.5.1 A Taxonomy of Composition . . . . ... ... ... ...
10.5.2 Interleaving Reconsidered . . . . . . .. ... ... ....
10.5.3 Joint Actions Reconsidered . . . . . .. .. .. ... ...
Liveness and Hiding . . . . . . .. .. .. ... ... .. .....
10.6.1 Liveness and Machine Closure . . . . . . . ... ... ...
10.6.2 Hiding . . . . . . . . ...
Open-System Specifications . . . . . . . . ... ... ... ....
Interface Refinement . . . . . . ... ... ... L.
10.8.1 A Binary Hour Clock . . . ... ... ... ... .....
10.8.2 Refining a Channel . . . . . . .. .. ... ... ... ...
10.8.3 Interface Refinement in General . . . . . . . ... ... ..
10.8.4 Open-System Specifications . . . . . . .. ... ... ...
Should You Compose? . . . . . . . .. . .. ... ... ...,



CONTENTS

11 Advanced Examples

11.1

11.2

Specifying Data Structures . . . . . . ... ... ... ... ...
11.1.1 Local Definitions . . . . . . . .. .. ... ... ... ...
11.1.2 Graphs . . . . . . . .
11.1.3 Solving Differential Equations . . . . . . . ... ... ...
11.1.4 BNF Grammars . . . . . . . . . . . . ...
Other Memory Specifications . . . . . . . ... ... ... ....
11.2.1 The Interface . . . . . . . . . .. ... .
11.2.2 The Correctness Condition . . . . . ... ... ... ...
11.2.3 A Serial Memory . . . . . .. ... ... L.
11.2.4 A Sequentially Consistent Memory . . . . . ... ... ..
11.2.5 The Memory Specifications Considered . . . . . . . . . ..

IIT The Tools

12 The

13 The
13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8

14 The
14.1
14.2

14.3

14.4

Syntactic Analyzer

TLATEX Typesetter

Introduction . . . . . . ...
Comment Shading . . . . . .. .. ... .. o
How It Typesets the Specification . . . . . . ... ... ... ...
How It Typesets Comments . . . . . . .. ... ... .......
Adjusting the Output Format . . . . . . ... ... ... .. ...
Output Files . . . . . . . .. .
Trouble-Shooting . . . . . . . .. ... oo
Using BTEX Commands . . . . . . . ... ... ... ... ....

TLC Model Checker

Introduction to TLC . . . . . . ... ...
What TLC Can Cope With . . . . . ... ... ... .......
14.2.1 TLC Values . . . . . . . . . . ... ... ... .....
14.2.2 How TLC Evaluates Expressions . . . . .. ... .. ...
14.2.3 Assignment and Replacement . . . . ... ... ... ...
14.2.4 Evaluating Temporal Formulas . . . . . . ... ... ...
14.2.5 Overriding Modules . . . . . .. ... ... ... ... ..
14.2.6 How TLC Computes States . . . . . . . . ... ... ...
How TLC Checks Properties . . . . ... ... ... .......
14.3.1 Model-Checking Mode . . . . . ... ... ... .. ....
14.3.2 Simulation Mode . . . . . . . .. ... oo L.
14.3.3 Views and Fingerprints . . . . . .. ... ... ... ...
14.3.4 Taking Advantage of Symmetry . . . . . . . ... ... ..
14.3.5 Limitations of Liveness Checking . . . . . . ... ... ..
The TLC Module . . . . . . ... ... ... ... .....

169
170
170
172
174
179
183
183
185
188
195
200



CONTENTS

14.5 How to Use TLC . . . . . . . . . . ... . .. ... .. ...... 251
14.5.1 Running TLC . . . . . ... ... .. .. 251
14.5.2 Debugging a Specification . . . . . .. ... ... .. 253
14.5.3 Hints on Using TLC Effectively . . . . . .. ... ... .. 257

14.6 What TLC Doesn’t Do. . . . . . .. .. .. ... ... ...... 262

14.7 The Fine Print . . . . . . . . . . . . . . . . . 262
14.7.1 The Grammar of the Configuration File . . . . . . .. .. 262
14.7.2 Comparable TLC Values. . . . . . . ... ... ... ... 264

IV The TLA" Language 265
15 The Syntax of TLA™T 275

15.1 The Simple Grammar . . . . . . . . . . .. ... ... .. 276

15.2 The Complete Grammar . . . . . . . . ... ... .. ....... 283
15.2.1 Precedence and Associativity . . . . .. .. ... ... .. 283
15.2.2 Alignment . . . . . . .. ... 286
15.2.3 Comments . . . . . . . . . . ... 288
15.2.4 Temporal Formulas . . . . . ... ... ... ... ..... 288
15.2.5 Two Anomalies . . . . . . . . . . . . .. ... ... .... 289

15.3 The Lexemes of TLAT . . . . . . . . . ... .. ... ....... 289

16 The Operators of TLAT 291

16.1 Constant Operators . . . . . . . . ... .. .. ... ....... 291
16.1.1 Boolean Operators . . . . . . . .. ... .. ... ..... 293
16.1.2 The Choose Operator . . . . . .. .. ... ... ..... 294
16.1.3 Interpretations of Boolean Operators . . ... ... ... 296
16.1.4 Conditional Constructs . . . . . . ... ... ... .... 298
16.1.5 The Let/In Construct . . . . . . . ... ... ... .... 299
16.1.6 The Operators of Set Theory . . . . . .. ... ... ... 299
16.1.7 Functions . . . . . . . . . ... . ... 301
16.1.8 Records . . . . . . . . . . .. ... 305
16.1.9 Tuples. . . . . . . . o 306
16.1.10 Strings . . . . . . oo 307
16.1.11 Numbers . . . . . . . . . . . . ... 308

16.2 Nonconstant Operators . . . . . . . .. ... ... ... ..... 309
16.2.1 Basic Constant Expressions . . . . . .. .. ... ... .. 309
16.2.2 The Meaning of a State Function . . . . . . ... ... .. 310
16.2.3 Action Operators . . . . . . . . ... ... ... ...... 312

16.2.4 Temporal Operators . . . . . . . ... ... ... ..... 314



xii

CONTENTS

17 The Meaning of a Module
17.1 Operators and Expressions . . . . . .. ... ... ... .....
17.1.1 The Order and Arity of an Operator . . . . .. .. .. ..

17.2
17.3
17.4
17.5

17.6
17.7
17.8

18 The
18.1
18.2
18.3
18.4

Index

17.1.2 )\ Expressions .

17.1.3 Simplifying Operator Application . . . . . . ... ... ..

17.1.4 Expressions . .
Levels . . ... ....
Contexts . . . . . ...

The Meaning of a A Expression . . . . . .. ... ... ......
The Meaning of a Module . . . . ... ... ... .........

17.5.1 Extends . . . .
17.5.2 Declarations . .

17.5.3 Operator Definitions . . . . . . .. ... .. ... .....
17.5.4 Function Definitions . . . . . . . . .. ... .. ... ...

17.5.5 Instantiation .

17.5.6 Theorems and Assumptions . . . . . . . .. ... .. ...

17.5.7 Submodules . .

Correctness of a Module . . . . . ... ... ... ... . .....

Finding Modules . . .

The Semantics of Instantiation . . . . .. ... ... ... ....

Standard Modules

Module Sequences . .
Module FiniteSets . .
Module Bags . . . ..
The Numbers Modules

317
317
318
319
320
321
321
324
325
327
328
329
329
329
330
332
332
332
333
334

339
339
340
340
344

349



List of Figures

2.1

3.1
3.2
3.3

4.1
4.2

5.1
5.2
5.3
5.4
5.5

9.1
9.2
9.3
9.4

10.1
10.2
10.3
10.4

11.1
11.2
11.3
11.4
11.5
11.6
11.7

The hour clock specification—typeset and ASCII versions. . . . .

Our first specification of an asynchronous interface. . . . . . . . .
Our second specification of an asynchronous interface. . . . . . .
The hour clock specification with comments. . . . .. ... ...

The specification of a FIFO, with the internal variable ¢ visible.
A specification of a FIFO buffer of length N. . . . . . ... ...

The specification of a memory interface. . . . . . . ... ... ..
The internal memory specification .. . . . . . ... .. ... ...
The memory specification. . . . . . . . ... ... ... ......
The write-through cache. . . . . . .. ... ... .. ... ....
The write-through cache specification . . . . . . .. ... ... ..

The real-time specification of an hour clock. . . . . . . ... ...
The RealTime module for writing real-time specifications. . . . .
A real-time version of the linearizable memory specification. . . .
A real-time version of the write-through cache . . . . . . . . . ..

A noninterleaving composite specification of the FIFO. . . . . . .
A joint-action specification of a linearizable memory. . . . . . . .
A specification of a binary hour clock. . . . ... ... .. ... ..
Refining a channel. . . . . . ... ... L0000

A module for specifying operators on graphs. . . . .. ... ...
A module for specifying the solution to a differential equation.

The definition of the grammar GSE for the language SE. .
The module BNFGrammars. . . . . . . . .. .o .
A module for specifying a register interface to a memory. .
Module ImnerSerial . . . . . . . . . ...
Module InnerSequential . . . . . . . . . ... ... ...

143
150
160
162

xiii



xiv LIST OF FIGURES

14.1 The alternating bit protocol . . . . . . . .. ... ... ... 223
14.2 Module MCAlternatingBit. . . . . . . . . ... ... ... ..., 227
14.3 A configuration file for module MCAlternatingBit. . . . . . . .. 227
14.4 A specification of correctness of the alternating bit protocol. . . . 229
14.5 The standard module TLC. . . . . . . .. ... ... ... .... 248
14.6 The BNF grammar of the configuration file. . . . . . .. ... .. 263
18.1 The standard Sequences module. . . . . . . ... ... ... ... 341
18.2 The standard FiniteSets module. . . . . . . ... ... ... ... 341
18.3 The standard Bags module. . . . . . . .. ... ... ... .... 343
18.4 The Peano module. . . . . . . . . .. ... ... ... 345
18.5 The ProtoReals module .. . . . . .. .. ... ... ... ..... 346
18.6 The standard Naturals module. . . . . . . . ... ... ... ... 348
18.7 The standard Integers module. . . . . . . .. .. ... .. ... 348

18.8 The standard Reals module. . . . . . . . . .. .. .. ... .... 348



List of Tables

00 3 O U= Wi+~

The constant operators. . . . . . . .. .. ... .. .. ... 268
Miscellaneous constructs. . . . . . .. .. ... oL 269
Action operators. . . . . . ... L Lo 269
Temporal operators. . . . . . . . .. .. .. .. ... .. ... 269
User-definable operator symbols. . . . . . ... ... ... .... 270
The precedence ranges of operators. . . . .. ... ... ..... 271
Operators defined in the standard modules. . . . . .. .. .. .. 272
The ASCII representations of typeset symbols. . . . . . ... ... 273

XV



xvi LIST OF TABLES




Introduction

This book will teach you how to write specifications of computer systems, using
the language TLA™. It’s rather long, but most people will read only Part I, which
comprises the first 83 pages. That part contains all that most engineers need to
know about writing specifications; it assumes only the basic background in com-
puting and knowledge of mathematics expected of an undergraduate studying
engineering or computer science. Part II contains more advanced material for
more sophisticated readers. The remainder of the book is a reference manual—
Part III for the TLA™ tools and Part IV for the language itself.

The TLA World Wide Web page contains material to accompany the book,
including the TLA™ tools, exercises, references to the literature, and a list of
corrections. There is a link to the TLA web page on

http://lamport.org
You can also find the page by searching the web for the 21-letter string
uidlamporttlahomepage

Do not put this string in any document that might appear on the web.

What is a Specification?

Writing is nature’s way of letting you
know how sloppy your thinking is.
Guindon

A specification is a written description of what a system is supposed to do.
Specifying a system helps us understand it. It’s a good idea to understand a
system before building it, so it’s a good idea to write a specification of a system
before implementing it.

This book is about specifying the behavioral properties of a system—also
called its functional or logical properties. These are the properties that spec-
ify what the system is supposed to do. There are other important kinds of



properties that we don’t consider, including performance properties. Worst-
case performance can often be expressed as a behavioral property—for example,
Chapter 9 explains how to specify that a system must react within a certain
length of time. However, specifying average performance is beyond the scope of
the methods described here.

Our basic tool for writing specifications is mathematics. Mathematics is
nature’s way of letting you know how sloppy your writing is. It’s hard to be
precise in an imprecise language like English or Chinese. In engineering, impre-
cision can lead to errors. To avoid errors, science and engineering have adopted
mathematics as their language.

The mathematics we use is more formal than the math you've grown up
with. Formal mathematics is nature’s way of letting you know how sloppy
your mathematics is. The mathematics written by most mathematicians and
scientists is not really precise. It’s precise in the small, but imprecise in the large.
Each equation is a precise assertion, but you have to read the accompanying
words to understand how the equations relate to one another and exactly what
the theorems mean. Logicians have developed ways of eliminating those words
and making the mathematics completely formal, and hence completely precise.

Most mathematicians and scientists think that formal mathematics, without
words, is long and tiresome. They’re wrong. Ordinary mathematics can be
expressed compactly in a precise, completely formal language. It takes only
about two dozen lines to define the solution to an arbitrary differential equation
in the DifferentialEquations module of Chapter 11. But few specifications need
such sophisticated mathematics. Most require only simple application of a few
standard mathematical concepts.

Why TLA*?

We specify a system by describing its allowed behaviors—what it may do in the
course of an execution. In 1977, Amir Pnueli introduced the use of temporal
logic for describing system behaviors. In principle, a system could be described
by a single temporal logic formula. In practice, it couldn’t. Pnueli’s temporal
logic was ideal for describing some properties of systems, but awkward for others.
So, it was usually combined with a more traditional way of describing systems.

In the late 1980’s, I invented TLA, the Temporal Logic of Actions—a simple
variant of Pnueli’s original logic. TLA makes it practical to describe a system by
a single formula. Most of a TLA specification consists of ordinary, nontemporal
mathematics. Temporal logic plays a significant role only in describing those
properties that it’s good at describing. TLA also provides a nice way to formalize
the style of reasoning about systems that has proved to be most effective in
practice—a style known as assertional reasoning. However, this book is about
specification; it says almost nothing about proofs.



Temporal logic assumes an underlying logic for expressing ordinary mathe-
matics. There are many ways to formalize ordinary math. Most computer sci-
entists prefer one that resembles their favorite programming language. I chose
instead the one that most mathematicians prefer—the one logicians call first-
order logic and set theory.

TLA provides a mathematical foundation for describing systems. To write
specifications, we need a complete language built atop that foundation. I ini-
tially thought that this language should be some sort of abstract programming
language whose semantics would be based on TLA. I didn’t know what kind of
programming language constructs would be best, so I decided to start writing
specifications directly in TLA. I intended to introduce programming constructs
as I needed them. To my surprise, I discovered that I didn’t need them. What
I needed was a robust language for writing mathematics.

Although mathematicians have developed the science of writing formulas,
they haven’t turned that science into an engineering discipline. They have de-
veloped notations for mathematics in the small, but not for mathematics in the
large. The specification of a real system can be dozens or even hundreds of pages
long. Mathematicians know how to write 20-line formulas, not 20-page formulas.
So, I had to introduce notations for writing long formulas. What I took from
programming languages were ideas for modularizing large specifications.

The language I came up with is called TLA™. I refined TLA™ in the course
of writing specifications of disparate systems. But it has changed little in the
last few years. I have found TLAT to be quite good for specifying a wide class
of systems—from program interfaces (APIs) to distributed systems. It can be
used to write a precise, formal description of almost any sort of discrete system.
It’s especially well suited to describing asynchronous systems—that is, systems
with components that do not operate in strict lock-step.

About this Book

Part I, consisting of Chapters 1-7, is the core of the book and is meant to be read
from beginning to end. It explains how to specify the class of properties known
as safety properties. These properties, which can be specified with almost no
temporal logic, are all that most engineers need to know about.

After reading Part I, you can read as much of Part I as you like. Each of
its chapters is independent of the others. Temporal logic comes to the fore in
Chapter 8, where it is used to specify the additional class of properties known as
liveness properties. Chapter 9 describes how to specify real-time properties, and
Chapter 10 describes how to write specifications as compositions. Chapter 11
contains more advanced examples.

Part III serves as the reference manual for three TLA™T tools: the Syntactic
Analyzer, the TLATEX typesetting program, and the TLC model checker. If you



want to use TLAT, then you probably want to use these tools. They are available
from the TLA web page. TLC is the most sophisticated of them. The examples
on the web can get you started using it, but you’ll have to read Chapter 14 to
learn to use TLC effectively.

Part IV is a reference manual for the TLA™ language. Part I provides a
good enough working knowledge of the language for most purposes. You need
look at Part IV only if you have questions about the fine points of the syntax
and semantics. Chapter 15 gives the syntax of TLA™T. Chapter 16 describes the
precise meanings and the general forms of all the built-in operators of TLA™;
Chapter 17 describes the precise meaning of all the higher-level TLA™ con-
structs such as definitions. Together, these two chapters specify the semantics
of the language. Chapter 18 describes the standard modules—except for module
RealTime, described in Chapter 9, and module TLC, described in Chapter 14.
You might want to look at this chapter if you’re curious about how standard
elementary mathematics can be formalized in TLAT.

Part IV does have something you may want to refer to often: a mini-manual
that compactly presents lots of useful information. Pages 268-273 list all TLA™
operators, all user-definable symbols, the precedence of all operators, all opera-
tors defined in the standard modules, and the ASCII representation of symbols
like ®.



Part 1

Getting Started






A system specification consists of a lot of ordinary mathematics glued to-
gether with a tiny bit of temporal logic. That’s why most TLA™ constructs
are for expressing ordinary mathematics. To write specifications, you have to
be familiar with this ordinary math. Unfortunately, the computer science de-
partments in many universities apparently believe that fluency in C++ is more
important than a sound education in elementary mathematics. So, some readers
may be unfamiliar with the math needed to write specifications. Fortunately,
this math is quite simple. If exposure to C++ hasn’t destroyed your ability to
think logically, you should have no trouble filling any gaps in your mathematics
education. You probably learned arithmetic before learning C++, so I will as-
sume you know about numbers and arithmetic operations on them.! I will try
to explain all other mathematical concepts that you need, starting in Chapter 1
with a review of some elementary math. I hope most readers will find this review
completely unnecessary.

After the brief review of simple mathematics in the first chapter, Chapters
2 through 5 describe TLA™ with a sequence of examples. Chapter 6 explains
some more about the math used in writing specifications, and Chapter 7 reviews
everything and provides some advice. By the time you finish Chapter 7, you
should be able to handle most of the specification problems that you are likely
to encounter in ordinary engineering practice.

ISome readers may need reminding that numbers are not strings of bits, and 233 x 233
equals 2%, not overflow error.






Chapter 1

A Little Simple Math

1.1 Propositional Logic

Elementary algebra is the mathematics of real numbers and the operators +,
—, * (multiplication), and / (division). Propositional logic is the mathematics
of the two Boolean values TRUE and FALSE and the five operators whose names
(and common pronunciations) are:

A conjunction (and) = implication (implies)
V disjunction (or) = equivalence (is equivalent to)

— negation (not)

To learn how to compute with numbers, you had to memorize addition and
multiplication tables and algorithms for calculating with multidigit numbers.
Propositional logic is much simpler, since there are only two values, TRUE and
FALSE. To learn how to compute with these values, all you need to know are the
following definitions of the five Boolean operators:

A F A G equals TRUE iff both F and G equal TRUE.

V' FV G equals TRUE iff F or G equals TRUE (or both do).

- —F equals TRUE iff F' equals FALSE.

= F = (@ equals TRUE iff F equals FALSE or G equals TRUE (or both).

= F = G equals TRUE iff F' and G both equal TRUE or both equal FALSE.

iff stands for if
and only if. Like
most mathemati-
cians, I use or to
mean and/or.



10 CHAPTER 1. A LITTLE SIMPLE MATH

We can also describe these operators by truth tables. This truth table gives the
value of F' = @G for all four combinations of truth values of F and G:

F G F=
TRUE | TRUE || TRUE
TRUE FALSE FALSE
FALSE | TRUE || TRUE
FALSE | FALSE TRUE

The formula F' = G asserts that F' implies G—that is, F' = G equals TRUE
iff the statement “F implies G” is true. People often find the definition of
= confusing. They don’t understand why FALSE = TRUE and FALSE = FALSE
should equal TRUE. The explanation is simple. We expect that if n is greater
than 3 then it should be greater than 1, so n > 3 should imply n > 1. Therefore,
the formula (n > 3) = (n > 1) should equal TRUE. Substituting 4, 2, and 0 for
n in this formula explains why F' = G means F implies G or, equivalently, if
F then G.

The equivalence operator = is equality for Booleans. We can replace = by
=, but not vice versa. (We can write FALSE = = TRUE, but not 24+ 2 =4.) It’s
a good idea to write = instead of = to make it clear that the equal expressions
are Booleans.!

Just like formulas of algebra, formulas of propositional logic are made up
of values, operators, and identifiers like z that stand for values. However,
propositional-logic formulas use only the two values TRUE and FALSE and the
five Boolean operators A, V, =, =, and =. In algebraic formulas, * has higher
precedence (binds more tightly) than +, so z+y+*2z means z+ (y+z). Similarly, —
has higher precedence than A and V, which have higher precedence than = and
=,s50 ~F A G = H means ((-F) A G) = H. Other mathematical operators like
+ and > have higher precedence than the operators of propositional logic, so
n>0=n—12>0means (n >0) = (n—1>0). Redundant parentheses can’t
hurt and often make a formula easier to read.If you have the slightest doubt
about whether parentheses are needed, use them.

The operators A and V are associative, just like + and *. Associativity of +
means that z + (y + 2) equals (z 4+ y) + 2, so we can write x + y + z without
parentheses. Similarly, associativity of A and V lets us write F A G A H or
FvVv GV H. Like + and *, the operators A and V are also commutative, so FFA G
is equivalent to G A F', and F V G is equivalent to G V F'.

The truth of the formula (z = 2) = (z + 1 = 3) expresses a fact about
numbers. To determine that it’s true, we have to understand some elementary
properties of arithmetic. However, we can tell that (z =2) = (z =2)V (y > 7)
is true even if we know nothing about numbers. This formula is true because
F = FV @ is true, regardless of what the formulas F and G are. In other

ISection 16.1.3 explains a more subtle reason for using = instead of = for equality of
Boolean values.



1.2. SETS

11

words, F' = F V G is true for all possible truth values of its identifiers F' and
G. Such a formula is called a tautology.

In general, a tautology of propositional logic is a propositional-logic formula
that is true for all possible truth values of its identifiers. Simple tautologies like
this should be as obvious as simple algebraic properties of numbers. It should
be as obvious that FF = F V G is a tautology as that z < z + y is true for all
non-negative numbers z and y. One can derive complicated tautologies from
simpler ones by calculations, just as one derives more complicated properties of
numbers from simpler ones. However, this takes practice. You've spent years
learning how to manipulate number-valued expressions—for example, to deduce
that £ < —z+y holds iff 2xz < y does. You probably haven’t learned to deduce
that =F Vv G holds iff F = G does.

If you haven’t learned to manipulate Boolean-valued expressions, you will
have to do the equivalent of counting on your fingers. You can check if a formula
is a tautology by calculating whether it equals TRUE for each possible assignment
of Boolean values to its variables. This is best done by constructing a truth table
that lists the possible assignments of values to variables and the corresponding
values of all subformulas. For example, here is the truth table showing that
(F = G) = (—-FV G) is a tautology.

F G F=G -F -FVG (F=G)=-FVG
TRUE TRUE TRUE FALSE TRUE TRUE
TRUE FALSE FALSE FALSE FALSE TRUE
FALSE | TRUE TRUE TRUE TRUE TRUE
FALSE | FALSE TRUE TRUE TRUE TRUE

Writing truth tables is a good way to improve your understanding of propo-
sitional logic. However, computers are better than people at doing this sort
of calculation. Chapter 14 explains, on page 261, how to use the TLC model
checker to verify propositional logic tautologies and to perform other TLA™ cal-
culations.

1.2 Sets

Set theory is the foundation of ordinary mathematics. A set is often described
as a collection of elements, but saying that a set is a collection doesn’t explain
very much. The concept of set is so fundamental that we don’t try to define
it. We take as undefined concepts the notion of a set and the relation €, where
z € S means that z is an element of S. We often say is in instead of is an
element of.

A set can have a finite or infinite number of elements. The set of all natural
numbers (0, 1, 2, etc.) is an infinite set. The set of all natural numbers less than



12 CHAPTER 1. A LITTLE SIMPLE MATH

3 is finite, and contains the three elements 0, 1, and 2. We can write this set
{0,1,2}.

A set is completely determined by its elements. Two sets are equal iff they
have the same elements. Thus, {0,1,2} and {2, 1,0} and {0,0, 1,2, 2} are all the
same set—the unique set containing the three elements 0, 1, and 2. The empty
set, which we write {}, is the unique set that has no elements.

The most common operations on sets are:

N intersection U union C subset \ set difference
Here are their definitions and examples of their use:

SN T The set of elements in both S and T.
{1,-1/2,3} n {1, 2,3,5, 7} = {1, 3}

SUT The set of elements in S or T (or both).
{1, -1/2} U {1,5,7} = {1, —-1/2,5, 7}

S C T True iff every element of S is an element of T'.
{1,3} € {3,2, 1}

S\ T The set of elements in S that are not in 7.

{17_1/273} \ {17577} = {_1/273}

This is all you need to know about sets before we start looking at how to specify
systems. We’ll return to set theory in Section 6.1.

1.3 Predicate Logic

Once we have sets, it’s natural to say that some formula is true for all the
elements of a set, or for some of the elements of a set. Predicate logic extends
propositional logic with the two quantifiers:

V universal quantification (for all)
3 existential quantification (there exists)

The formula Vz € S : F' asserts that formula F' is true for every element z in the
set S. For example, Vn € Nat:n + 1 > n asserts that the formula n 4+ 1 > n is
true for all elements n of the set Nat of natural numbers. This formula happens
to be true.

The formula 3z € S: F asserts that formula F' is true for at least one ele-
ment z in S. For example, 3n € Nat : n? = 2 asserts that there exists a natural
number n whose square equals 2. This formula happens to be false.

Formula F' is true for some x in S iff F' is not false for all x in S—that is, iff
it’s not the case that —F is true for all z in S. Hence, the formula

(1.1) (3ze€S:F) = -(VzeS:-F)



1.3. PREDICATE LOGIC

13

is a tautology of predicate logic, meaning that it is true for all values of the
identifiers S and F.?

Since there exists no element in the empty set, the formula 3z € {}: F is
false for every formula F. By (1.1), this implies that ¥z € {} : F must be true
for every F.

The quantification in the formulas Vo € S: F and 3z € §: F is said to be
bounded, since these formulas make an assertion only about elements in the set
S. There is also unbounded quantification. The formula V z : F' asserts that F
is true for all values x, and Jz : F asserts that F' is true for at least one value
of z—a value that is not constrained to be in any particular set. Bounded and
unbounded quantification are related by the following tautologies:

VzeS:F) = (Vz:(z€e8)=F)
FzeS:F) Fz:(zeS)NF)

The analog of (1.1) for unbounded quantifiers is also a tautology:
Hz:F) = —-(Vz:-F)

Whenever possible, it is better to use bounded than unbounded quantification
in a specification. This makes the specification easier for both people and tools
to understand.

Universal quantification generalizes conjunction. If S is a finite set, then
V2 € S:F is the conjunction of the formulas obtained by substituting the dif-
ferent elements of S for z in F. For example,

(Vze{2,3,7:z<y®) = <y )AB<y )A(T<y")

We sometimes informally talk about the conjunction of an infinite number of
formulas when we formally mean a universally quantified formula. For example,
the conjunction of the formulas z < y* for all natural numbers z is the formula
Vz € Nat : z < y®. Similarly, existential quantification generalizes disjunction.

Logicians have rules for proving predicate-logic tautologies such as (1.1), but
you shouldn’t need them. You should become familiar enough with predicate
logic that simple tautologies are obvious. Thinking of V as conjunction and 3
as disjunction can help. For example, the associativity and commutativity of
conjunction and disjunction lead to the tautologies:

VzeS:F)YANeeS:G) = zeS: FAG)
FzeS:F)v(3zeS:G) =3zeS:FVEG)
for any set S and formulas F' and G.

Mathematicians use some obvious abbreviations for nested quantifiers. For
example:

2Strictly speaking, € isn’t an operator of predicate logic, so this isn’t really a predicate-logic
tautology.



14 CHAPTER 1. A LITTLE SIMPLE MATH

VeeS,ye T:F means Ve € S:(Vye T:F)
Jw,z,y,z€ S:F means Jwe §:(Fze€ S:(yeS:(Fz€ 5:F)))

In the expression dz € S: F', logicians say that x is a bound variable and
that occurrences of z in F' are bound. For example, n is a bound variable in the
formula 3n € Nat:n + 1 > n, and the two occurrences of n in the subexpression
n + 1 > n are bound. A variable z that’s not bound is said to be free, and
occurrences of = that are not bound are called free occurrences. This terminology
is rather misleading. A bound variable doesn’t really occur in a formula because
replacing it by some new variable doesn’t change the formula. The two formulas

dne€ Nat:n+1>n dze Nat:z+1> 2z

are equivalent. Calling n a variable of the first formula is a bit like calling a a
variable of that formula because it appears in the name Nat. Nevertheless, it is
convenient to talk about an occurrence of a bound variable in a formula.

1.4 Formulas and Language

When you first studied mathematics, formulas were statements. The formula
2% x > r was just a compact way of writing the statement “2 times z is greater
than z.” In this book, you are entering the realm of logic, where a formula is a
noun. The formula 2xz > z is just a formula; it may be true or false, depending
on the value of z. If we want to assert that this formula is true, meaning that
2 x x really is greater than z, we should explicitly write “2 x z > x is true.”

Using a formula in place of a statement can lead to confusion. On the
other hand, formulas are more compact and easier to read than prose. Reading
2%z > z is easier than reading “2* z is greater than z”; and “2xz > x is true”
may seem redundant. So, like most mathematicians, I will often write sentences
like:

We know that z is positive, so 2 x z > .

If it’s not obvious whether a formula is really a formula or is the statement
that the formula is true, here’s an easy way to tell. Replace the formula with
a name and read the sentence. If the sentence is grammatically correct, even
though nonsensical, then the formula is a formula; otherwise, it’s a statement.
The formula 2 * x > = in the sentence above is a statement because

We know that z is positive, so Mary.
is ungrammatical. It is a formula in the sentence

To prove 2 x z > x, we must prove that z is positive.
because the following silly sentence is grammatically correct:

To prove Fred, we must prove that z is positive.



Chapter 2

Specifying a Simple Clock

2.1 Behaviors

Before we try to specify a system, let’s look at how scientists do it. For centuries,
they have described a system with equations that determine how its state evolves
with time, where the state consists of the values of variables. For example, the
state of the system comprising the earth and the moon might be described by
the values of the four variables e_pos, m_pos, e_vel, and m_vel, representing the
positions and velocities of the two bodies. These values are elements in a 3-
dimensional space. The earth-moon system is described by equations expressing
the variables’ values as functions of time and of certain constants—namely, their
masses and initial positions and velocities.

A behavior of the earth-moon system consists of a function F' from time
to states, F'(t) representing the state of the system at time ¢. A computer
system differs from the systems traditionally studied by scientists because we can
pretend that its state changes in discrete steps. So, we represent the execution
of a system as a sequence of states. Formally, we define a behavior to be a
sequence of states, where a state is an assignment of values to variables. We
specify a system by specifying a set of possible behaviors—the ones representing
a correct execution of the system.

2.2 An Hour Clock

Let’s start with a very trivial system—a digital clock that displays only the
hour. To make the system completely trivial, we ignore the relation between the
display and the actual time. The hour clock is then just a device whose display
cycles through the values 1 through 12. Let the variable hr represent the clock’s



16 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

display. A typical behavior of the clock is the sequence
(21) [pr=11] - [r=12] - [r=1] — [r=2] — ---

of states, where [hr = 11] is a state in which the variable hr has the value 11.
A pair of successive states, such as [hr = 1] — [hr = 2], is called a step.

To specify the hour clock, we describe all its possible behaviors. We write an
initial predicate that specifies the possible initial values of hr, and a next-state
relation that specifies how the value of hr can change in any step.

We don’t want to specify exactly what the display reads initially; any hour
will do. So, we want the initial predicate to assert that hr can have any value
from 1 through 12. Let’s call the initial predicate HCini. We might informally

define HCini by: The symbol =
means s defined
HCini = href{l,...,12} to equal.
Later, we’ll see how to write this definition formally, without the “...” that

stands for the informal and so on.

The next-state relation HCnat is a formula expressing the relation between
the values of hr in the old (first) state and new (second) state of a step. We
let hr represent the value of hr in the old state and hr’ represent its value in
the new state. (The ’ in hr’ is read prime.) We want the next-state relation to
assert that hr’ equals hr + 1 except if Ar equals 12, in which case hr’ should
equal 1. Using an IF/THEN/ELSE construct with the obvious meaning, we can
define HCnzt to be the next-state relation by writing:

HCnat £ hr' = 1F hr #12 THEN hr+1 ELSE 1

HCnat is an ordinary mathematical formula, except that it contains primed as
well as unprimed variables. Such a formula is called an action. An action is true
or false of a step. A step that satisfies the action HCnat is called an HCnzxt step.

When an HCnzt step occurs, we sometimes say that HCnaxt is erecuted.
However, it would be a mistake to take this terminology seriously. An action is
a formula, and formulas aren’t executed.

We want our specification to be a single formula, not the pair of formulas
HC'ini and HCnat. This formula must assert about a behavior that (i) its initial
state satisfies HCini, and (ii) each of its steps satisfies HCnat. We express (i) as
the formula HCini, which we interpret as a statement about behaviors to mean
that the initial state satisfies HCini. To express (ii), we use the temporal-logic
operator O (pronounced boz). The temporal formula OF asserts that formula
F' is always true. In particular, OHCnzt is the assertion that HCnzt is true
for every step in the behavior. So, HCini A OHCnxt is true of a behavior iff
the initial state satisfies HCini and every step satisfies HCnzt. This formula
describes all behaviors like the one in (2.1) on this page; it seems to be the
specification we’re looking for.



2.2. AN HOUR CLOCK

17

If we considered the clock only in isolation and never tried to relate it to
another system, then this would be a fine specification. However, suppose the
clock is part of a larger system—for example, the hour display of a weather
station that displays the current hour and temperature. The state of the sta-
tion is described by two variables: hr, representing the hour display, and tmp,
representing the temperature display. Consider this behavior of the weather
station:

hr =11
[tmp = 23.5}
hr = 12 hr =1
[tmp = 23.3} [tmp = 23.3} o
In the second and third steps, tmp changes but hr remains the same. These steps
are not allowed by OHCnat, which asserts that every step must increment hr.
The formula HCini A OHCnat does not describe the hour clock in the weather
station.

A formula that describes any hour clock must allow steps that leave hr
unchanged—in other words, hr’ = hr steps. These are called stuttering steps of
the clock. A specification of the hour clock should allow both HCnat steps and
stuttering steps. So, a step should be allowed iff it is either an HCnaxt step or
a stuttering step—that is, iff it is a step satisfying HCnat V (hr' = hr). This
suggests that we adopt HCini A O(HCnat V (hr' = hr)) as our specification.
In TLA, we let [HCnazt]p, stand for HCnat V (hr' = hr), so we can write the
formula more compactly as HCini A O[HCnat]p,.

The formula HCini A O[HCnat]p, does allow stuttering steps. In fact, it
allows the behavior

hr = 12
tmp = 23.4

hr = 12 .
tmp = 23.5

[hr=10] — [hr=11] — [hr=11] — [Ar=11] — ---

that ends with an infinite sequence of stuttering steps. This behavior describes
a clock whose display attains the value 11 and then keeps that value forever—in
other words, a clock that stops at 11. In a like manner, we can represent a
terminating execution of any system by an infinite behavior that ends with a
sequence of nothing but stuttering steps. We have no need of finite behaviors
(finite sequences of states), so we consider only infinite ones.

It’s natural to require that a clock does not stop, so our specification should
assert that there are infinitely many nonstuttering steps. Chapter 8 explains
how to express this requirement. For now, we content ourselves with clocks that
may stop, and we take as our specification of an hour clock the formula HC
defined by

HC = HCini AN O[HCnat]p,

I pronounce
[HCnat|p, as
square HCnat sub
hr.



18 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

2.3 A Closer Look at the Specification

A state is an assignment of values to variables, but what variables? The answer
is simple: all variables. In the behavior (2.1) on page 16, [hr = 1] represents
some particular state that assigns the value 1 to hr. It might assign the value
23 to the variable tmp and the value v/—17 to the variable m_pos. We can think
of a state as representing a potential state of the entire universe. A state that
assigns 1 to hr and a particular point in 3-space to m_pos describes a state of the
universe in which the hour clock reads 1 and the moon is in a particular place.
A state that assigns v/—2 to hr doesn’t correspond to any state of the universe
that we recognize, because the hour-clock can’t display the value /—2. It might
represent the state of the universe after a bomb fell on the clock, making its
display purely imaginary.
A behavior is an infinite sequence of states—for example:

(2.2) [hr=11] — [hr=772] — [hr=782] — [hr=v—2] — ---

A behavior describes a potential history of the universe. The behavior (2.2)
doesn’t correspond to a history that we understand, because we don’t know how
the clock’s display can change from 11 to 77.2. Whatever kind of history it
represents is not one in which the clock is doing what it’s supposed to.

Formula HC' is a temporal formula. A temporal formula is an assertion about
behaviors. We say that a behavior satisfies HC iff HC' is a true assertion about
the behavior. Behavior (2.1) satisfies formula HC. Behavior (2.2) does not,
because HC' asserts that every step satisfies HCnzt or leaves hr unchanged, and
the first and third steps of (2.2) don’t. (The second step, [hr = 77.2] — [hr =
78.2], does satisfy HCnat.) We regard formula HC to be the specification of
an hour clock because it is satisfied by exactly those behaviors that represent
histories of the universe in which the clock functions properly.

If the clock is behaving properly, then its display should be an integer from 1
through 12. So, hr should be an integer from 1 through 12 in every state of any
behavior satisfying the clock’s specification, HC'. Formula HCini asserts that
hr is an integer from 1 through 12, and OHCini asserts that HCini is always
true. So, OHCini should be true for any behavior satisfying HC'. Another way
of saying this is that HC' implies OH('ini, for any behavior. Thus, the formula
HC = OHCini should be satisfied by every behavior. A temporal formula
satisfied by every behavior is called a theorem, so HC' = OHC(C'ini should be a
theorem.! It’s easy to see that it is: HC implies that HCini is true initially (in
the first state of the behavior), and O[HCnat]p, implies that each step either
advances hr to its proper next value or else leaves hr unchanged. We can
formalize this reasoning using the proof rules of TLA, but we’re not going to
delve into proofs and proof rules.

Logicians call a formula valid if it is satisfied by every behavior; they reserve the term
theorem for provably valid formulas.



2.4. THE SPECIFICATION IN TLA™

19

2.4 The Specification in TLA™

Figure 2.1 on the next page shows how the hour clock specification can be
written in TLAT. There are two versions: the ASCII version on the bottom is
the actual TLA™ specification, the way you type it; the typeset version on the
top is one that the TLATEX program, described in Chapter 13, might produce.
Before trying to understand the specification, observe the relation between the
two syntaxes:

e Reserved words that appear in small upper-case letters (like EXTENDS) are
written in ASCII with ordinary upper-case letters.

e When possible, symbols are represented pictorially in Ascii—for example,
O is typed as [] and # as #. (You can also type # as /=.)

e When there is no good ASCII representation, TEX notation? is used—for
example, € is typed as \in. The major exception is =, which is typed as

A complete list of symbols and their ASCII equivalents appears in Table 8 on
page 273. 1 will usually show the typeset version of a specification; the AsCII
versions of all the specifications in this book can be found through the TLA web
page.

Now let’s look at what the specification says. It starts with

: MODULE HourClock

which begins a module named HourClock. TLA™ specifications are partitioned
into modules; the hour clock’s specification consists of this single module.

Arithmetic operators like + are not built into TLA™, but are themselves
defined in modules. (You might want to write a specification in which + means
addition of matrices rather than numbers.) The usual operators on natural
numbers are defined in the Naturals module. Their definitions are incorporated
into module HourClock by the statement

EXTENDS Naturals

Every symbol that appears in a formula must either be a built-in operator of
TLAT, or else it must be declared or defined. The statement

VARIABLE hr

declares hr to be a variable.

2The TEX typesetting system is described in The TgXbook by Donald E. Knuth, published
by Addison-Wesley, Reading, Massachusetts, 1994.



20 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

MODULE HourClock

EXTENDS Naturals
VARIABLE hr

HCini = hre(l..12)
HCnzt = hr' = 1F hr #12 THEN hr+1 ELSE 1
HC £ HCini A O[HCnat]

THEOREM HC = OHCini

EXTENDS Naturals
VARIABLE hr

HCini == hr \in (1 .. 12)
HCnxt == hr’ = IF hr # 12 THEN hr + 1 ELSE 1
HC == HCini /\ [][HCnxt]_hr

THEOREM HC => [JHCini

Figure 2.1: The hour clock specification—typeset and ASCII versions.

To define HCini, we need to express the set {1, ..., 12} formally, without
the ellipsis “...”. We can write this set out completely as

{1,2,3,4,5,6,7,8,9,10,11,12}

but that’s tiresome. Instead, we use the operator “..”, defined in the Naturals
module, to write this set as 1..12. In general .. is the set of integers from 4
through j, for any integers 7 and j. (It equals the empty set if j < i.) It’s now
obvious how to write the definition of HCini. The definitions of HCnzt and HC
are written just as before. (The ordinary mathematical operators of logic and
set theory, like A and €, are built into TLA™.)

The line

! |
I 1

can appear anywhere between statements; it’s purely cosmetic and has no mean-
ing. Following it is the statement

THEOREM HC = OHCini

of the theorem that was discussed above. This statement asserts that the formula
HC = OHCini is true in the context of the statement. More precisely, it



2.5. AN ALTERNATIVE SPECIFICATION

21

asserts that the formula follows logically from the definitions in this module, the
definitions in the Naturals module, and the rules of TLAT. If the formula were
not true, then the module would be incorrect.

The module is terminated by the symbol

L

The specification of the hour clock is the definition of HC, including the
definitions of the formulas HCnzt and HCini and of the operators .. and +
that appear in the definition of HC. Formally, nothing in the module tells us
that HC rather than HCini is the clock’s specification. TLA™T is a language for
writing mathematics—in particular, for writing mathematical definitions and
theorems. What those definitions represent, and what significance we attach to
those theorems, lies outside the scope of mathematics and therefore outside the
scope of TLAT. Engineering requires not just the ability to use mathematics,
but the ability to understand what, if anything, the mathematics tells us about
an actual system.

2.5 An Alternative Specification

The Naturals module also defines the modulus operator, which we write %. The
formula 7 % n, which mathematicians write ¢ mod n, is the remainder when 7 is
divided by n. More formally, i % n is the natural number less than n satisfying
i =qg*xn+ (i % n) for some natural number ¢q. Let’s express this condition
mathematically. The Naturals module defines Nat to be the set of natural
numbers, and the assertion that there exists a ¢ in the set Nat satisfying a
formula F' is written 3¢ € Nat : F. Thus, if i and n are elements of Nat and
n > 0, then 7 % n is the unique number satisfying

(i%ne0..(n—1)) AN(3geNat : i=qgxn+(i%n))

We can use % to simplify our hour-clock specification a bit. Observing that
(11 % 12)+1 equals 12 and (12 % 12)+1 equals 1, we can define a different next-
state action HCnzt2 and a different formula HC?2 to be the clock specification:

HCnat2 = hr' = (hr % 12) + 1 HC2 = HCini A O[HCnzt2]y,

Actions HCnazt and HCnxt2 are not equivalent. The step [hr = 24] — [hr = 25]
satisfies HCnzt but not HCnaxt2, while the step [hr = 24] — [hr = 1] satisfies
HCnzt2 but not HCnat. However, any step starting in a state with Arin 1 .. 12
satisfies HCnaxt iff it satisfies HCnxt2. It’s therefore not hard to deduce that any
behavior starting in a state satisfying HCini satisfies O[HCnaxt]p, iff it satisfies
O[HCnzt2]p,. Hence, formulas HC and HC2 are equivalent. In other words,
HC = HC?2 is a theorem. It doesn’t matter which of the two formulas we take
to be the specification of an hour clock.



22 CHAPTER 2. SPECIFYING A SIMPLE CLOCK

Mathematics provides infinitely many ways of expressing the same thing.
The expressions 6 + 6, 3 x4, and 141 — 129 all have the same meaning; they are
just different ways of writing the number 12. We could replace either instance
of the number 12 in module HourClock by any of these expressions without
changing the meaning of any of the module’s formulas.

When writing a specification, you will often be faced with a choice of how
to express something. When that happens, you should first make sure that the
choices yield equivalent specifications. If they do, then you can choose the one
that you feel makes the specification easiest to understand. If they don’t, then
you must decide which one you mean.



Chapter 3

An Asynchronous Interface

We now specify an interface for transmitting data between asynchronous devices.
A sender and a receiver are connected as shown here:

val

>
-

rdy
Sender Receiver

ack

Data is sent on val, and the rdy and ack lines are used for synchronization. The
sender must wait for an acknowledgment (an Ack) for one data item before it can
send the next. The interface uses the standard two-phase handshake protocol,
described by the following sample behavior.

val = 26 val = 37| 4. |val = 37

Send 37 Send 4
rdy = 0 — rdy = 1 — |rdy =1 —
ack = 0 ack = 0 ack = 1

val = 4 Ack val = 4 Send 19 val = 19 Ack
rdy = 0| — |rdy = 0 — rdy = 1 —
ack = 1 ack = 0 ack = 0

(It doesn’t matter what value val has in the initial state.)

It’s easy to see from this sample behavior what the set of all possible behav-
iors should be—once we decide what the data values are that can be sent. But,
before writing the TLA™ specification that describes these behaviors, let’s look
at what I've just done.

In writing this behavior, I made the decision that val and rdy should change
in a single step. The values of the variables val and rdy represent voltages

23



24 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

on some set of wires in the physical device. Voltages on different wires don’t
change at precisely the same instant. I decided to ignore this aspect of the
physical system and pretend that the values of val and rdy represented by those
voltages change instantaneously. This simplifies the specification, but at the
price of ignoring what may be an important detail of the system. In an actual
implementation of the protocol, the voltage on the rdy line shouldn’t change
until the voltages on the val lines have stabilized; but you won’t learn that from
my specification. Had I wanted the specification to convey this requirement, I
would have written a behavior in which the value of val and the value of rdy
change in separate steps.

A specification is an abstraction. It describes some aspects of the system and
ignores others. We want the specification to be as simple as possible, so we want
to ignore as many details as we can. But, whenever we omit some aspect of the
system from the specification, we admit a potential source of error. With my
specification, we can verify the correctness of a system that uses this interface,
and the system could still fail because the implementer didn’t know that the val
line should stabilize before the rdy line is changed.

The hardest part of writing a specification is choosing the proper abstraction.
I can teach you about TLAT, so expressing an abstract view of a system as a
TLAT specification becomes a straightforward task. But I don’t know how to
teach you about abstraction. A good engineer knows how to abstract the essence
of a system and suppress the unimportant details when specifying and designing
it. The art of abstraction is learned only through experience.

When writing a specification, you must first choose the abstraction. In a
TLA specification, this means choosing the variables that represent the system’s
state and the granularity of the steps that change those variables’ values. Should
the rdy and ack lines be represented as separate variables or as a single variable?
Should val and rdy change in one step, two steps, or an arbitrary number of
steps? To help make these choices, I recommend that you start by writing the
first few steps of one or two sample behaviors, just as I did at the beginning of
this section. Chapter 7 has more to say about these choices.

3.1 The First Specification

Let’s specify the asynchronous interface with a module Asynchinterface. The
specification uses subtraction of natural numbers, so our module EXTENDS the
Naturals module to incorporate the definition of the subtraction operator “—”.
We next decide what the possible values of val should be—that is, what data
values may be sent. We could write a specification that places no restriction
on the data values. The specification could allow the sender first to send 37,
then to send v/—15, and then to send Nat (the entire set of natural numbers).
However, any real device can send only a restricted set of values. We could pick



3.1. THE FIRST SPECIFICATION

25

some specific set—for example, 32-bit numbers. However, the protocol is the
same regardless of whether it’s used to send 32-bit numbers or 128-bit numbers.
So, we compromise between the two extremes of allowing anything to be sent
and allowing only 32-bit numbers to be sent by assuming only that there is some
set Data of data values that may be sent. The constant Data is a parameter of
the specification. It’s declared by the statement

CONSTANT Data
Our three variables are declared by
VARIABLES val, rdy, ack

The keywords VARIABLE and VARIABLES are synonymous, as are CONSTANT and
CONSTANTS.

The variable rdy can assume any value—for example, —1/2. That is, there
exist states that assign the value —1/2 to rdy. When discussing the specification,
we usually say that rdy can assume only the values 0 and 1. What we really mean
is that the value of rdy equals 0 or 1 in every state of any behavior satisfying the
specification. But a reader of the specification shouldn’t have to understand the
complete specification to figure this out. We can make the specification easier
to understand by telling the reader what values the variables can assume in a
behavior that satisfies the specification. We could do this with comments, but I
prefer to use a definition like this one:

TypeInvariant = (val € Data) A (rdy € {0,1}) A (ack € {0,1})

I call the set {0,1} the type of rdy, and I call Typelnvariant a type invariant.
Let’s define type and some other terms more precisely:

e A state function is an ordinary expression (one with no prime or O) that
can contain variables and constants.

e A state predicate is a Boolean-valued state function.

e An invariant Inv of a specification Spec is a state predicate such that
Spec = OlInv is a theorem.

e A variable v has type T in a specification Spec iff v € T is an invariant of
Spec.

We can make the definition of Typelnvariant easier to read by writing it as
follows.

TypeInvariant = A wval € Data
A rdy € {0,1}
A ack € {0,1}



26 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

Each conjunct begins with a A and must lie completely to the right of that
A. (The conjunct may occupy multiple lines). We use a similar notation for
disjunctions. When using this bulleted-list notation, the A’s or V’s must line up
precisely (even in the AsciI input). Because the indentation is significant, we can
eliminate parentheses, making this notation especially useful when conjunctions
and disjunctions are nested.

The formula Typelnvariant will not appear as part of the specification. We
do not assume that Typelnvariant is an invariant; the specification should imply
that it is. In fact, its invariance will be asserted as a theorem.

The initial predicate is straightforward. Initially, val can equal any element
of Data. We can start with rdy and ack either both 0 or both 1.

Init = A val € Data
A rdy € {0,1}
A ack = rdy

Now for the next-state action Next. A step of the protocol either sends a value
or receives a value. We define separately the two actions Send and Rcv that
describe the sending and receiving of a value. A Next step (one satisfying action
Next) is either a Send step or a Rcov step, so it is a Send V Rcv step. Therefore,
Next is defined to equal Send V Rcv. Let’s now define Send and Rcw.

We say that action Send is enabled in a state from which it is possible to
take a Send step. From the sample behavior above, we see that Send is enabled
iff rdy equals ack. Usually, the first question we ask about an action is, when
is it enabled? So, the definition of an action usually begins with its enabling
condition. The first conjunct in the definition of Send is therefore rdy = ack.
The next conjuncts tell us what the new values of the variables wval, rdy, and
ack are. The new value val’ of val can be any element of Data—that is, any
value satisfying val’ € Data. The value of rdy changes from 0 to 1 or from 1 to
0, so rdy’ equals 1 — rdy (because 1 =1 —0 and 0 = 1 — 1). The value of ack is
left unchanged.

TLAT defines UNCHANGED v to mean that the expression v has the same
value in the old and new states. More precisely, UNCHANGED v equals v’ = v,
where v’ is the expression obtained from v by priming all its variables. So, we
define Send by:

Send = A rdy = ack
A val' € Data
Ardy =1—rdy
A UNCHANGED ack

(I could have written ack’ = ack instead of UNCHANGED ack, but I prefer to use
the UNCHANGED construct in specifications.)

A Rcw step is enabled iff rdy is different from ack; it complements the value
of ack and leaves val and rdy unchanged. Both val and rdy are left unchanged iff



3.1. THE FIRST SPECIFICATION

27

MODULE AsynchInterface

EXTENDS Naturals
CONSTANT Data
VARIABLES val, rdy, ack

Typelnvariant = A wal € Data
A rdy € {0,1}
A ack € {0,1}

Init = A val € Data
rdy € {0,1}
ack = rdy

Send = A rdy = ack

val’ € Data

rdy’ =1 — rdy
UNCHANGED ack

rdy # ack

ack’ =1 — ack
UNCHANGED (wal, rdy)
Send V Rcv

Init A D[Next](’ual,rdy,ack)

Rev

>>> >>> > > > >

Next
Spec

e

THEOREM Spec = O Typelnvariant

Figure 3.1: Our first specification of an asynchronous interface.

the pair of values val, rdy is left unchanged. TLA™ uses angle brackets ( and ) to
enclose ordered tuples, so Rev asserts that (wval, rdy) is left unchanged. (Angle
brackets are typed in ASCII as << and >>.) The definition of Rcv is therefore:

Rev = A rdy # ack
A ack! =1 — ack
A UNCHANGED (wal, rdy )

As in our clock example, the complete specification Spec should allow stuttering
steps—in this case, ones that leave all three variables unchanged. So, Spec allows
steps that leave (wal, rdy, ack) unchanged. Its definition is

Spec = Init A O[Newt](vat,rdy,ack)

Module Asynchlinterface also asserts the invariance of Typelnvariant. It appears
in full in Figure 3.1 on this page.



28 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

3.2 Another Specification

Module Asynchlinterface is a fine description of the interface and its handshake
protocol. However, it’s not well-suited for helping to specify systems that use
the interface. Let’s rewrite the interface specification in a form that makes it
more convenient to use as part of a larger specification.

The first problem with the original specification is that it uses three variables
to describe a single interface. A system might use several different instances of
the interface. To avoid a proliferation of variables, we replace the three variables
val, rdy, ack with a single variable chan (short for channel). A mathematician
would do this by letting the value of chan be an ordered triple—for example, a
state [chan = (—1/2, 0, 1)] might replace the state with val = —1/2, rdy = 0,
and ack = 1. But programmers have learned that using tuples like this leads to
mistakes; it’s easy to forget if the ack line is represented by the second or third
component. TLAT therefore provides records in addition to more conventional
mathematical notation.

Let’s represent the state of the channel as a record with val, rdy, and ack
fields. If r is such a record, then r.val is its val field. The type invariant asserts
that the value of chan is an element of the set of all such records r in which
r.val is an element of the set Data and r.rdy and r.ack are elements of the set
{0,1}. This set of records is written:

[val : Data, rdy:{0,1}, ack:{0,1}]

The fields of a record are not ordered, so it doesn’t matter in what order we
write them. This same set of records can also be written as:

[ack : {0,1}, wal: Data, rdy:{0,1}]

Initially, chan can equal any element of this set whose ack and rdy fields are
equal, so the initial predicate is the conjunction of the type invariant and the
condition chan.ack = chan.rdy.

A system that uses the interface may perform an operation that sends some
data value d and performs some other changes that depend on the value d.
We'd like to represent such an operation as an action that is the conjunction
of two separate actions: one that describes the sending of d and the other that
describes the other changes. Thus, instead of defining an action Send that sends
some unspecified data value, we define the action Send(d) that sends data value
d. The next-state action is satisfied by a Send(d) step, for some d in Data, or
a Rcv step. (The value received by a Rev step equals chan.val.) Saying that
a step is a Send(d) step for some d in Data means that there exists a d in
Data such that the step satisfies Send(d)—in other words, that the step is an
3d € Data : Send(d) step. So we define

Next = (3d € Data : Send(d)) V Rev



3.2. ANOTHER SPECIFICATION

The Send(d) action asserts that chan’ equals the record r such that:
r.val = d r.rdy = 1 — chan.rdy r.ack = chan.ack
This record is written in TLAT as:
[val — d, rdy — 1 — chan.rdy, ack — chan.ack]

(The symbol +— is typed in AscCII as |->.) Since the fields of records are not
ordered, this record can just as well be written:

[ack — chan.ack, val — d, rdy — 1 — chan.rdy]

The enabling condition of Send(d) is that the rdy and ack lines are equal, so we
can define:

Send(d) =
A chan.rdy = chan.ack
A chan' = [val — d, rdy — 1 — chan.rdy, ack — chan.ack]

This is a perfectly good definition of Send(d). However, I prefer a slightly
different one. We can describe the value of chan’ by saying that it is the same
as the value of chan except that its val field equals d and its rdy field equals
1 — chan.rdy. In TLA™, we can write this value as:

[chan EXCEPT l.wal = d, !.rdy =1 — chan.rdy]

Think of the ! as standing for the new record that the EXCEPT expression forms
by modifying chan. So, the expression can be read as the record ! that is
the same as chan except !.val equals d and !.rdy equals 1 — chan.rdy. In the
expression that !.rdy equals, the symbol @ stands for chan.rdy, so we can write
this EXCEPT expression as

[chan EXCEPT l.wal = d, l.rdy =1 — Q]
In general, for any record r, the expression
[r EXCEPT l.ci =eq, ..., l.cp, = e,]

is the record obtained from r by replacing r.c; with e;, for each i in 1 .. n. An
@ in the expression e; stands for r.c;. Using this notation, we define:

Send(d) = A chan.rdy = chan.ack
A chan’ = [chan EXCEPT l.wal = d, !.rdy =1 — Q]

The definition of Rcv is straightforward. A value can be received when chan.rdy
does not equal chan.ack, and receiving the value complements chan.ack:

Rev = A chan.rdy # chan.ack
A chan’ = [chan EXCEPT !.ack =1 — Q]

The complete specification appears in Figure 3.2 on the next page.



30 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

MODULE Channel

EXTENDS Naturals
CONSTANT Data
VARIABLE chan

Typelnvariant = chan € [val : Data, rdy:{0,1}, ack:{0,1}]

Init = A Typelnvariant
A chan.ack = chan.rdy

Send(d) = A chan.rdy = chan.ack

A chan' = [chan EXCEPT l.wal = d, !.rdy =1 — Q]
Rev = A chan.rdy # chan.ack

A chan' = [chan EXCEPT !l.ack =1 — Q]
Next = (3d € Data : Send(d)) V Rev
Spec = Init A O[Next] chan

THEOREM Spec = O Typelnvariant

Figure 3.2: Our second specification of an asynchronous interface.

3.3 Types: A Reminder

As defined in Section 3.1, a variable v has type T in specification Spec iff v € T
is an invariant of Spec. Thus, hr has type 1 .. 12 in the specification HC' of
the hour clock. This assertion does not mean that the variable hr can assume
only values in the set 1 .. 12. A state is an arbitrary assignment of values to
variables, so there exist states in which the value of hr is v/—2. The assertion
does mean that, in every behavior satisfying formula HC, the value of hr is an
element of 1 .. 12.

If you are used to types in programming languages, it may seem strange that
TLAT allows a variable to assume any value. Why not restrict our states to
ones in which variables have the values of the right type? In other words, why
not add a formal type system to TLAT? A complete answer would take us too
far afield. The question is addressed further in Section 6.2. For now, remember
that TLATis an untyped language. Type correctness is just a name for a certain
invariance property. Assigning the name Typelnvariant to a formula gives it no
special status.



3.4. DEFINITIONS

31

3.4 Definitions

Let’s examine what a definition means. If Id is a simple identifier like Imit
or Spec, then the definition Id = exp defines Id to be synonymous with the
expression exp. Replacing Id by exp, or vice-versa, in any expression does not
change the meaning of that expression. This replacement must be done after
the expression is parsed, not in the “raw input”. For example, the definition
z = a + b makes z*c equal to (a4 b)* ¢, not to a+ b+ ¢, which equals a+ (b c).

The definition of Send has the form Id(p) £ exp, where Id and p are identi-
fiers. For any expression e, this defines Id(e) to be the expression obtained by
substituting e for p in exp. For example, the definition of Send in the Channel
module defines Send(—5) to equal

A chan.rdy = chan.ack
A chan' = [chan EXCEPT !.wal = =5, l.rdy = 1 — Q]

Send(e) is an expression, for any expression e. Thus, we can write the formula
Send(—5) A (chan.ack = 1). The identifier Send by itself is not an expression,
and Send A (chan.ack = 1) is not a grammatically well-formed string. It’s non-
syntactic nonsense, like a + % b+ .

We say that Send is an operator that takes a single argument. We define
operators that take more than one argument in the obvious way, the general
form being

(3.1) Id(p1,.--, pn) )

where the p; are distinct identifiers and exp is an expression. We can consider
defined identifiers like Init and Spec to be operators that take no argument, but
we generally use operator to mean an operator that takes one or more arguments.
I will use the term symbol to mean an identifier like Send or an operator
symbol like +. Every symbol that is used in a specification must either be a built-
in operator of TLA™T (like €) or it must be declared or defined. Every symbol
declaration or definition has a scope within which the symbol may be used. The
scope of a VARIABLE or CONSTANT declaration, and of a definition, is the part of
the module that follows it. Thus, we can use Init in any expression that follows
its definition in module Channel. The statement EXTENDS Naturals extends the
scope of symbols like + defined in the Naturals module to the Channel module.
The operator definition (3.1) implicitly includes a declaration of the identi-
fiers p1, ..., pn whose scope is the expression exp. An expression of the form

JvelS: exp

has a declaration of v whose scope is the expression exp. Thus the identifier v
has a meaning within the expression ezp (but not within the expression 5).



32 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

A symbol cannot be declared or defined if it already has a meaning. The
expression

Fves:epl) N FveT: exp2)

is all right, because neither declaration of v lies within the scope of the other.
Similarly, the two declarations of the symbol d in the Channel module (in the
definition of Send and in the expression 3d in the definition of Next) have
disjoint scopes. However, the expression

(Jvel: (expl ANJveT: exp2))

is illegal because the declaration of v in the second 3 v lies inside the scope of its
declaration in the first 3v. Although conventional mathematics and program-
ming languages allow such redeclarations, TLA™T forbids them because they can
lead to confusion and errors.

3.5 Comments

Even simple specifications like the ones in modules Asynchinterface and Channel
can be hard to understand from the mathematics alone. That’s why I began with
an intuitive explanation of the interface. That explanation made it easier for
you to understand formula Spec in the module, which is the actual specification.
Every specification should be accompanied by an informal prose explanation.
The explanation may be in an accompanying document, or it may be included
as comments in the specification.

Figure 3.3 on the next page shows how the hour clock’s specification in
module HourClock might be explained by comments. In the typeset version,
comments are distinguished from the specification itself by the use of a different
font. As shown in the figure, TLA™T provides two ways of writing comments in
the ASCII version. A comment may appear anywhere enclosed between (* and
*). An end-of-line comment is preceded by \*. Comments may be nested, so
you can comment out a section of a specification by enclosing it between (* and
*), even if the section contains comments.

A comment almost always appears on a line by itself or at the end of a line.
I put a comment between HCnat and = just to show that it can be done.

To save space, I will write few comments in the example specifications. But
specifications should have lots of comments. Even if there is an accompany-
ing document describing the system, comments are needed to help the reader
understand how the specification formalizes that description.

Comments can help solve a problem posed by the logical structure of a spec-
ification. A symbol has to be declared or defined before it can be used. In
module Channel, the definition of Spec has to follow the definition of Next,
which has to follow the definitions of Send and Rcv. But it’s usually easiest to



3.5. COMMENTS

33

MODULE HourClock

This module specifies a digital clock that displays the current hour. It ignores real
time, not specifying when the display can change.

EXTENDS Naturals
VARIABLE hr  Variable hr represents the display.
HCini = hre (1..12) Initially, A~ can have any value from 1 through 12.

HCnzt This is a weird place for a comment. =
The value of hr cycles from 1 through 12.
hr' = IF hr # 12 THEN hr+1 ELSE 1
HC = HCini A O[HCnat]p,
The complete spec. It permits the clock to stop.
f |

r
THEOREM HC = OHC(Cini Type-correctness of the spec.

—————————————————————— MODULE HourClock ----—-————-——-—-—-—-—-—————-
(kkok ok s skook ok ok ok ook ok ok ok ook ook ok oK ok o ok ok o Kok ook o oK oK ok Kok ook ok ok Kok oK ok ok Kok oK )
(* This module specifies a digital clock that displays *)
(* the current hour. It ignores real time, not *)
(* specifying when the display can change. *)
(o kok ok ko ok ok ook ook ok ok ok oK ok ok ok oK ok Kok oK o Kok oK ok o ok oK ok oK ok Kok ok ok oK ok ok Kok ok Kok ok )

EXTENDS Naturals

VARIABLE hr \* Variable hr represents the display.

HCini == hr \in (1 .. 12) \* Initially, hr can have any

\* value from 1 through 12.

HCnxt (* This is a weird place for a comment. *) ==
(kkok ok ko ko ook ook o ok ok oK ok ook oK ok Kok ook ook ook ok Kok oK oK ok oK ok ok Kok ok ok )

(* The value of hr cycles from 1 through 12. *)
(kkok ok sk ok ok ok o ok o ok o ok ok ok ok o oK ok ok oK ok oK ok o oK ook ok o ok oK ook ok Kok ook oK ok oK )
hr’ = IF hr # 12 THEN hr + 1 ELSE 1

HC == HCini /\ [][HCnxt]_hr
(* The complete spec. It permits the clock to stop. *)

THEOREM HC => [JHCini \* Type-correctness of the spec.

Figure 3.3: The hour clock specification with comments.



34 CHAPTER 3. AN ASYNCHRONOUS INTERFACE

understand a top-down description of a system. We would probably first want
to read the declarations of Data and chan, then the definition of Spec, then
the definitions of Init and Nezt, and then the definitions of Send and Rcv. In
other words, we want to read the specification more or less from bottom to top.
This is easy enough to do for a module as short as Channel; it’s inconvenient
for longer specifications. We can use comments to guide the reader through a
longer specification. For example, we could precede the definition of Send in the
Channel module with the comment:

Actions Send and Rcv below are the disjuncts of the next-state action
Next.

The module structure also allows us to choose the order in which a spec-
ification is read. For example, we can rewrite the hour-clock specification by
splitting the HourClock module into three separate modules:

HCVar A module that declares the variable hr.

HCActions A module that EXTENDS modules Naturals and HCVar and de-
fines HC'ini and HCnat.

HCSpec A module that EXTENDS module HCActions, defines formula
HC(C', and asserts the type-correctness theorem.

The EXTENDS relation implies a logical ordering of the modules: HC'Var precedes
HCActions, which precedes HCSpec. But the modules don’t have to be read in
that order. The reader can be told to read HCVar first, then HCSpec, and finally
HCActions. The INSTANCE construct introduced below in Chapter 4 provides
another tool for modularizing specifications.

Splitting a tiny specification like HourClock in this way would be ludicrous.
But the proper splitting of modules can help make a large specification easier to
read. When writing a specification, you should decide in what order it should
be read. You can then design the module structure to permit reading it in that
order, when each individual module is read from beginning to end. Finally,
you should ensure that the comments within each module make sense when the
different modules are read in the appropriate order.



Chapter 4

A FIFO

Our next example is a FIFO buffer, called a FIFO for short—a device with which
a sender process transmits a sequence of values to a receiver. The sender and
receiver use two channels, in and out, to communicate with the buffer:

i t
n Buffer ou

Receiver

Y

Y

Sender

Values are sent over in and out using the asynchronous protocol specified by the
Channel module of Figure 3.2 on page 30. The system’s specification will allow
behaviors with four kinds of nonstuttering steps: Send and Rcv steps on both
the in channel and the out channel.

4.1 The Inner Specification

The specification of the FIFO first EXTENDS modules Naturals and Sequences.
The Sequences module defines operations on finite sequences. We represent a
finite sequence as a tuple, so the sequence of three numbers 3, 2, 1 is the triple
(3,2,1). The Sequences module defines the following operators on sequences.

Seq(S) The set of all sequences of elements of the set S. For example,
(3,7) is an element of Seq(Nat).

Head(s) The first element of sequence s. For example, Head ({3, 7)) equals 3.



36 CHAPTER 4. A FIFO

Tail(s) The tail of sequence s, which consists of s with its head removed.
For example, Tail((3,7)) equals (7).

Append(s, e) The sequence obtained by appending element e to the tail of
sequence s. For example, Append((3,7),3) equals (3,7,3).

sot The sequence obtained by concatenating the sequences s and ¢. For
example, (3,7) o (3) equals (3,7,3). (We type o in ASCII as \o.)

Len(s) The length of sequence s. For example, Len((3,7)) equals 2.

The FIFO’s specification continues by declaring the constant Message, which
represents the set of all messages that can be sent.! It then declares the variables.
There are three variables: in and out, representing the channels, and a third
variable ¢ that represents the queue of buffered messages. The value of ¢ is the
sequence of messages that have been sent by the sender but not yet received by
the receiver. (Section 4.3 has more to say about this additional variable q.)

We want to use the definitions in the Channel module to specify operations
on the channels in and out. This requires two instances of that module—one
in which the variable chan of the Channel module is replaced with the variable
in of our current module, and the other in which chan is replaced with out.
In both instances, the constant Data of the Channel module is replaced with
Message. We obtain the first of these instances with the statement:

InChan = INSTANCE Channel WITH Data «— Message, chan «— in

For every symbol o defined in module Channel, this defines InChan!o to have
the same meaning in the current module as ¢ had in module Channel, except
with Message substituted for Data and in substituted for chan. For example,
this statement defines InChan! Typelnvariant to equal

in € [val: Message, rdy:{0,1}, ack:{0,1}]

(The statement does not define InChan!Data because Data is declared, not
defined, in module Channel.) We introduce our second instance of the Channel
module with the analogous statement:

OutChan £ INSTANCE Channel WITH Data «— Message, chan — out

The initial states of the in and out channels are specified by InChan!Init and
OutChan!Init. Initially, no messages have been sent or received, so ¢ should

11 like to use a singular noun like Message rather than a plural like Messages for the name
of a set. That way, the € in the expression m € Message can be read is a. This is the same
convention that most programmers use for naming types.



4.2. INSTANTIATION EXAMINED

equal the empty sequence. The empty sequence is the 0-tuple (there’s only one,
and it’s written (), so we define the initial predicate to be:

Init = A InChan!Init
A OutChan!Init

Ag=()

We next define the type invariant. The type invariants for in and out come from
the Channel module, and the type of ¢ is the set of finite sequences of messages.
The type invariant for the FIFO specification is therefore:

TypeInvariant = A InChan! Typelnvariant
A OutChan! Typelnvariant
A q € Seq(Message)

The four kinds of nonstuttering steps allowed by the next-state action are de-
scribed by four actions:

SSend(msg) The sender sends message msg on the in channel.

BufRcv The buffer receives the message from the in channel and ap-
pends it to the tail of q.

BufSend The buffer removes the message from the head of ¢ and sends
it on channel out.

RRcv The receiver receives the message from the out channel.

The definitions of these actions, along with the rest of the specification, are in
module InnerFIFO of Figure 4.1 on the next page. The reason for the adjective
Inner is explained in Section 4.3 below.

4.2 Instantiation Examined

The INSTANCE statement is seldom used except in one idiom for hiding variables,
which is described in Section 4.3. So, most readers can skip this section and go
directly to page 41.

4.2.1 Instantiation is Substitution

Consider the definition of Next in module Channel (page 30). We can remove
every defined symbol that appears in that definition by using the symbol’s def-
inition. For example, we can eliminate the expression Send(d) by expanding
the definition of Send. We can repeat this process. For example the “—” that
appears in the expression 1 — @ (obtained by expanding the definition of Send)



38 CHAPTER 4. A FIFO

: MODULE InnerFIFO

EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES in, out, ¢
InChan = INSTANCE Channel WITH Data — Message, chan «— in
\ OutChan = INSTANCE Channel WITH Data «— Message, chan «— out
Init = A InChan!Init
A OutChan! Init
Ag=()
Typelnvariant = A InChan! TypeInvariant

A OutChan! Typelnvariant
A q € Seq(Message)

SSend(msg) = A InChan!Send(msg) Send msg on channel in.
A UNCHANGED (out, ¢)

BufRcv = A InChan!Rcv Receive message from channel in
A ¢ = Append(q, in.val) and append it to tail of g.
A UNCHANGED out

BufSend = N q ;é <> Enabled only if ¢ is nonempty.
A OutChan!Send(Head(q)) Send Head(q) on channel out
A ¢ = Tail(q) and remove it from q.

A\ UNCHANGED in

RRcv = A OutChan! Recv Receive message from channel out.
A UNCHANGED (in, q)

Nexzt = V Imsg € Message : SSend(msg)
V BufRcv
V BufSend
V RRcv

Spec 2 Init A O[Next] (in, out, q)

| |
r 1

THEOREM Spec = O Typelnvariant

L

Figure 4.1: The specification of a FIFO, with the internal variable ¢ visible.



4.2. INSTANTIATION EXAMINED

39

can be eliminated by using the definition of “—” from the Naturals module.
Continuing in this way, we eventually obtain a definition for Next in terms of
only the built-in operators of TLAT and the parameters Data and chan of the
Channel module. We consider this to be the “real” definition of Next in module
Channel. The statement

InChan = INSTANCE Channel WITH Data «— Message, chan «— in

in module InnerFIFO defines InChan!Next to be the formula obtained from
this real definition of Next by substituting Message for Data and in for chan.
This defines InChan! Next in terms of only the built-in operators of TLAT and
the parameters Message and in of module InnerFIFO.

Let’s now consider an arbitrary INSTANCE statement

IM £ INSTANCE M WITH Pl €1, ..., Pn < €n

Let ¥ be a symbol defined in module M and let d be its “real” definition. The
INSTANCE statement defines IM Y to have as its real definition the expression
obtained from d by replacing all instances of p; by the expression e;, for each 3.
The definition of IM!Y must contain only the parameters (declared constants
and variables) of the current module, not the ones of module M. Hence, the p;
must consist of all the parameters of module M. The e; must be expressions
that are meaningful in the current module.

4.2.2 Parametrized Instantiation

The FIFO specification uses two instances of module Channel—one with in
substituted for chan and the other with out substituted for chan. We could
instead use a single parametrized instance by putting the following statement in
module InnerFIFO:

Chan(ch) = INSTANCE Channel WITH Data < Message, chan « ch

For any symbol ¥ defined in module Channel and any expression ezp, this de-
fines Chan(ezp)!Y to equal formula ¥ with Message substituted for Data and
exp substituted for chan. The Rcv action on channel in could then be writ-
ten Chan(in)!Rev, and the Send(msg) action on channel out could be written
Chan(out)! Send(msg).

The instantiation above defines Chan!Send to be an operator with two argu-
ments. Writing Chan(out)!Send(msg) instead of Chan!Send(out, msg) is just
an idiosyncrasy of the syntax. It is no stranger than the syntax for infix opera-
tors, which has us write a + b instead of +(a, b).

Parametrized instantiation is used almost exclusively in the TLA™ idiom for
variable hiding, described in Section 4.3. You can use that idiom without under-
standing it, so you probably don’t need to know anything about parametrized
instantiation.



40 CHAPTER 4. A FIFO

4.2.3 Implicit Substitutions

The use of Message as the name for the set of transmitted values in the FIFO
specification is a bit strange, since we had just used the name Data for the
analogous set in the asynchronous channel specifications. Suppose we had used
Data in place of Message as the constant parameter of module InnerFIFO. The
first instantiation statement would then have been

InChan = INSTANCE Channel WITH Data < Data, chan «— in

The substitution Data <« Data indicates that the constant parameter Data of
the instantiated module Channel is replaced with the expression Data of the
current module. TLAT allows us to drop any substitution of the form ¥ « 3,
for a symbol X. So, the statement above can be written as

InChan £ 1INSTANCE Channel WITH chan «— in

We know there is an implied Data < Data substitution because an INSTANCE
statement must have a substitution for every parameter of the instantiated mod-
ule. If some parameter p has no explicit substitution, then there is an implicit
substitution p « p. This means that the INSTANCE statement must lie within
the scope of a declaration or definition of the symbol p.

It is quite common to instantiate a module with this kind of implicit substi-
tution. Often, every parameter has an implicit substitution, in which case the
list of explicit substitutions is empty. The WITH is then omitted.

4.2.4 Instantiation Without Renaming

So far, all the instantiations we’ve used have been with renaming. For exam-
ple, the first instantiation of module Channel renames the defined symbol Send
as InChan!Send. This kind of renaming is necessary if we are using multiple
instances of the module, or a single parametrized instance. The two instances
InChan!Init and OutChan!Init of Init in module InnerFIFO are different for-
mulas, so they need different names.

Sometimes we need only a single instance of a module. For example, suppose
we are specifying a system with only a single asynchronous channel. We then
need only one instance of Channel, so we don’t have to rename the instantiated
symbols. In that case, we can write something like

INSTANCE Channel WiTH Data < D, chan «— x

This instantiates Channel with no renaming, but with substitution. Thus, it
defines Rcv to be the formula of the same name from the Channel module,
except with D substituted for Data and x substituted for chan. The expressions
substituted for an instantiated module’s parameters must be defined. So, this
INSTANCE statement must be within the scope of the definitions or declarations
of D and z.



4.3. HIDING THE QUEUE

41

4.3 Hiding the Queue

Module InnerFIFO of Figure 4.1 defines Spec to be Init A O[Next]  , the sort
of formula we’ve become accustomed to as a system specification. However,
formula Spec describes the value of variable ¢, as well as of the variables in and
out. The picture of the FIFO system I drew on page 35 shows only channels in
and out; it doesn’t show anything inside the boxes. A specification of the FIFO
should describe only the values sent and received on the channels. The variable
g, which represents what’s going on inside the box labeled Buffer, is used to
specify what values are sent and received. It is an internal variable and, in the
final specification, it should be hidden.

In TLA, we hide a variable with the existential quantifier 3 of temporal
logic. The formula 3z : F' is true of a behavior iff there exists some sequence of
values—one in each state of the behavior—that can be assigned to the variable
z that will make formula F true. (The meaning of 3 is defined more precisely
in Section 8.8.)

The obvious way to write a FIFO specification in which ¢ is hidden is with the
formula 3 ¢ : Spec. However, we can’t put this definition in module InnerFIFO
because ¢ is already declared there, and a formula 3 ¢q: ... would redeclare it. In-
stead, we use a new module with a parametrized instantiation of the InnerFIFO
module (see Section 4.2.2 above):

[ MODULE FIFO

CONSTANT Message
VARIABLES in, out

Inner(q) = INSTANCE InnerFIFO

Spec = 3q : Inner(q)!Spec
L

Observe that the INSTANCE statement is an abbreviation for

Inner(q) = INSTANCE InnerFIFO
WITH q < q, in < in, out «— out, Message < Message

The variable parameter ¢ of module InnerFIFO is instantiated with the parame-
ter g of the definition of Inner. The other parameters of the InnerFIFO module
are instantiated with the parameters of module FIFO.

If this seems confusing, don’t worry about it. Just learn the TLAT idiom for
hiding variables used here and be content with its intuitive meaning. In fact,
for most applications, there’s no need to hide variables in the specification. You
can just write the inner specification and note in the comments which variables
should be regarded as visible and which as internal (hidden).



42 CHAPTER 4. A FIFO

4.4 A Bounded FIFO

We have specified an unbounded FIFO—a buffer that can hold an unbounded
number of messages. Any real system has a finite amount of resources, so it can
contain only a bounded number of in-transit messages. In many situations, we
wish to abstract away the bound on resources and describe a system in terms
of unbounded FIFOs. In other situations, we may care about that bound. We
then want to strengthen our specification by placing a bound N on the number
of outstanding messages.

A specification of a bounded FIFO differs from our specification of the un-
bounded FIFO only in that action BufRcv should not be enabled unless there
are fewer than N messages in the buffer—that is, unless Len(q) is less than
N. It would be easy to write a complete new specification of a bounded FIFO
by copying module InnerFIFO and just adding the conjunct Len(q) < N to
the definition of BufRcv. But let’s use module InnerFIFO as it is, rather than
copying it.

The next-state action BNext for the bounded FIFO is the same as the FIFO’s
next-state action Next except that it allows a BufRcv step only if Len(q) is less
than N. In other words, BNext should allow a step only if (i) it’s a Next step
and (ii) if it’s a BufRcv step, then Len(q) < N is true in the first state. In other
words, BNext should equal

Next A (BufRecv = (Len(q) < N))

Module BoundedFIFO in Figure 4.2 on the next page contains the specification.
It introduces the new constant parameter N. It also contains the statement

ASSUME (N € Nat) A (N > 0)

which asserts that, in this module, we are assuming that N is a positive natu-
ral number. Such an assumption has no effect on any definitions made in the
module. However, it may be taken as a hypothesis when proving any theorems
asserted in the module. In other words, a module asserts that its assumptions
imply its theorems. It’s a good idea to state this kind of simple assumption
about constants.

An ASSUME statement should be used only to make assumptions about con-
stants. The formula being assumed should not contain any variables. It might
be tempting to assert type declarations as assumptions—for example, to add to
module InnerFIFO the assumption q € Seq(Message). However, that would be
wrong because it asserts that, in any state, ¢ is a sequence of messages. As we
observed in Section 3.3, a state is a completely arbitrary assignment of values
to variables, so there are states in which ¢ has the value v/—17. Assuming that
such a state doesn’t exist would lead to a logical contradiction.

You may wonder why module BoundedFIFO assumes that N is a positive
natural, but doesn’t assume that Message is a set. Similarly, why didn’t we



4.5. WHAT WE'RE SPECIFYING

MODULE BoundedFIFO

EXTENDS Naturals, Sequences
VARIABLES in, out
CONSTANT Message, N

ASSUME (N € Nat) A (N > 0)
Inner(q) = INSTANCE InnerFIFO

BNext(q) = A Inner(q)! Next
A Inner(q)! BufRev = (Len(q) < N)

Spec = Fq : Inner(q)!Init A O[BNext(q)](in,out,q)

Figure 4.2: A specification of a FIFO buffer of length N.

assume that the constant parameter Data in our asynchronous interface speci-
fications is a set? The answer is that, in TLAY, every value is a set.?2 A value
like the number 3, which we don’t think of as a set, is formally a set. We just
don’t know what its elements are. The formula 2 € 3 is a perfectly reasonable
one, but TLA™ does not specify whether it’s true or false. So, we don’t have to
assume that Message is a set because we know that it is one.

Although Message is automatically a set, it isn’t necessarily a finite set. For
example, Message could be instantiated with the set Nat of natural numbers. If
you want to assume that a constant parameter is a finite set, then you need to
state this as an assumption. (You can do this with the IsFiniteSet operator from
the FiniteSets module, described in Section 6.1.) However, most specifications
make perfect sense for infinite sets of messages or processors, so there is no
reason to assume these sets to be finite.

4.5 What We’re Specifying

I wrote at the beginning of this chapter that we were going to specify a FIFO
buffer. Formula Spec of the FIFO module actually specifies a set of behaviors,
each representing a sequence of sending and receiving operations on the channels
in and out. The sending operations on in are performed by the sender, and the
receiving operations on out are performed by the receiver. The sender and
receiver are not part of the FIFO buffer; they form its environment.

Our specification describes a system consisting of the FIFO buffer and its
environment. The behaviors satisfying formula Spec of module FIFO represent
those histories of the universe in which both the system and its environment

2TLAY is based on the mathematical formalism known as Zermelo-Frinkel set theory, also
called ZF.



44 CHAPTER 4. A FIFO

behave correctly. It’s often helpful in understanding a specification to indicate
explicitly which steps are system steps and which are environment steps. We
can do this by defining the next-state action to be

Next = SysNext V EnvNext

where SysNext describes system steps and EnvNext describes environment steps.
For the FIFO, we have

SysNext
EnvNext

BufRcv V BufSend
(3msg € Message : SSend(msg)) V RRcv

A
A

While suggestive, this way of defining the next-state action has no formal sig-
nificance. The specification Spec equals Init A O[Next]. . ; changing the way we
structure the definition of Next doesn’t change its meaning. If a behavior fails
to satisfy Spec, nothing tells us if the system or its environment is to blame.

A formula like Spec, which describes the correct behavior of both the system
and its environment, is called a closed-system or complete-system specification.
An open-system specification is one that describes only the correct behavior of
the system. A behavior satisfies an open-system specification if it represents a
history in which either the system operates correctly, or it failed to operate cor-
rectly only because its environment did something wrong. Section 10.7 explains
how to write open-system specifications.

Open-system specifications are philosophically more satisfying. However,
closed-system specifications are a little easier to write, and the mathematics
underlying them is simpler. So, we almost always write closed-system speci-
fications. It’s usually quite easy to turn a closed-system specification into an
open-system specification. But in practice, there’s seldom any reason to do so.



Chapter 5

A Caching Memory

A memory system consists of a set of processors connected to a memory by some
abstract interface, which we label memint.

r-r—-——-- - -~ 1
Ty
: memlInt :~<—> 1(\)/[
aE
L - - - - - - — J

In this section we specify what the memory is supposed to do, then we specify a
particular implementation of the memory using caches. We begin by specifying
the memory interface, which is common to both specifications.

5.1 The Memory Interface

The asynchronous interface described in Chapter 3 uses a handshake protocol.
Receipt of a data value must be acknowledged before the next data value can be
sent. In the memory interface, we abstract away this kind of detail and represent
both the sending of a data value and its receipt as a single step. We call it a
Send step if a processor is sending the value to the memory; it’s a Reply step
if the memory is sending to a processor. Processors do not send values to one
another, and the memory sends to only one processor at a time.

We represent the state of the memory interface by the value of the variable
memlint. A Send step changes memlnt in some way, but we don’t want to
specify exactly how. The way to leave something unspecified in a specification
is to make it a parameter. For example, in the bounded FIFO of Section 4.4,
we left the size of the buffer unspecified by making it a parameter N. We’d



46 CHAPTER 5. A CACHING MEMORY

therefore like to declare a parameter Send so that Send(p, d) describes how
memlInt is changed by a step that represents processor p sending data value
d to the memory. However, TLAT provides only CONSTANT and VARIABLE
parameters, not action parameters.! So, we declare Send to be a constant
operator and write Send(p, d, memlInt, memlInt’) instead of Send(p, d).

In TLAT, we declare Send to be a constant operator that takes four argu-
ments by writing

CONSTANT Send(—, —, —, _)

This means that Send(p, d, miOld, miNew) is an expression, for any expressions
p, d, miOld, and miNew, but it says nothing about what the value of that
expression is. We want it to be a Boolean value that is true iff a step in which
memlInt equals miOld in the first state and miNew in the second state represents
the sending by p of value d to the memory.2 We can assert that the value is a
Boolean by the assumption:

ASSUME V p, d, miOld, miNew :
Send(p, d, miOld, miNew) € BOOLEAN

This asserts that the formula
Send(p, d, miOld, miNew) € BOOLEAN

is true for all values of p, d, miOld, and miNew. The built-in symbol BOOLEAN
denotes the set {TRUE, FALSE}, whose elements are the two Boolean values TRUE
and FALSE.

This ASSUME statement asserts formally that the value of

Send(p, d, miOld, miNew)

is a Boolean. But the only way to assert formally what that value signifies would
be to say what it actually equals—that is, to define Send rather than making
it a parameter. We don’t want to do that, so we just state informally what
the value means. This statement is part of the intrinsically informal description
of the relation between our mathematical abstraction and a physical memory
system.

To allow the reader to understand the specification, we have to describe
informally what Send means. The ASSUME statement asserting that Send(...)
is a Boolean is then superfluous as an explanation. But it’s a good idea to
include it anyway.

IEven if TLAT allowed us to declare an action parameter, we would have no way to specify
that a Send(p, d) action constrains only memlInt and not other variables.

2We expect Send(p, d, miOld, miNew) to have this meaning only when p is a processor and
d a value that p is allowed to send, but we simplify the specification a bit by requiring it to
be a Boolean for all values of p and d.



5.1. THE MEMORY INTERFACE

47

A specification that uses the memory interface can use the operators Send
and Reply to specify how the variable memlInt changes. The specification must
also describe memlInt’s initial value. We therefore declare a constant parameter
InitMemlInt that is the set of possible initial values of memlint.

We also introduce three constant parameters that are needed to describe the
interface:

Proc The set of processor identifiers. (We usually shorten processor identifier
to processor when referring to an element of Proc.)

Adr The set of memory addresses.
Val The set of possible memory values that can be assigned to an address.

Finally, we define the values that the processors and memory send to one another
over the interface. A processor sends a request to the memory. We represent
a request as a record with an op field that specifies the type of request and
additional fields that specify its arguments. Our simple memory allows only
read and write requests. A read request has op field “Rd” and an adr field
specifying the address to be read. The set of all read requests is therefore the
set

[op : {“Rd"}, adr: Adr]

of all records whose op field equals “Rd” (is an element of the set {“Rd”} whose
only element is the string “Rd”) and whose adr field is an element of Adr. A
write request must specify the address to be written and the value to write. It is
represented by a record with op field equal to “Wr”, and with adr and val fields
specifying the address and value. We define MReq, the set of all requests, to
equal the union of these two sets. (Set operations, including union, are described
in Section 1.2.)

The memory responds to a read request with the memory value it read.
We will also have it respond to a write request, and it seems nice to let the
response be different from the response to any read request. We therefore require
the memory to respond to a write request by returning a value NoVal that is
different from any memory value. We could declare NoVal to be a constant
parameter and add the assumption NoVal ¢ Val. (The symbol ¢ is typed in
ASCII as \notin.) But it’s best, when possible, to avoid introducing parameters.
Instead, we define NoVal by:

NoVal = CHOOSE v : v ¢ Val

The expression CHOOSE z : F' equals an arbitrarily chosen value z that satisfies
the formula F'. (If no such z exists, the expression has a completely arbitrary
value.) This statement defines NoVal to be some value that is not an element of



48 CHAPTER 5. A CACHING MEMORY

MODULE Memorylnterface

VARIABLE memlint
CONSTANTS S’end(_, — =, _), A Send(p, d, memlInt, memlInt') step represents processor p
sending value d to the memory.

Reply(_, — =, _), A Reply(p, d, memInt, memInt’) step represents the memory
sending value d to processor p.

InitMemlInt, The set of possible initial values of memlInt.

Proc, The set of processor identifiers.
Adr, The set of memory addresses.
Val The set of memory values.

ASSUME V p, d, miOld, miNew : A Send(p, d, miOld, miNew) € BOOLEAN
A Reply(p, d, miOld, miNew) € BOOLEAN

MReq = [op:{“Rd”}, adr: Adr] U [op:{“Wr"}, adr: Adr, val: Val]

The set of all requests; a read specifies an address, a write specifies an address and a value.

NoVal = CHOOSE v : v ¢ Val ~ An arbitrary value not in Val.

Figure 5.1: The specification of a memory interface.

Val. We have no idea what the value of NoVal is; we just know what it isn’t—
namely, that it isn’t an element of Val. The CHOOSE operator is discussed in
Section 6.6.

The complete memory interface specification is module Memorylnterface in
Figure 5.1 on this page.

5.2 Functions

A memory assigns values to addresses. The state of the memory is therefore
an assignment of elements of Val (memory values) to elements of Adr (memory
addresses). In a programming language, such an assignment is called an array
of type Val indexed by Adr. In mathematics, it’s called a function from Adr to
Val. Before writing the memory specification, let’s look at the mathematics of
functions, and how it is described in TLAT.

A function f has a domain, written DOMAIN f, and it assigns to each element
z of its domain the value f[z]. (Mathematicians write this as f(z), but TLAT
uses the array notation of programming languages, with square brackets.) Two
functions f and g are equal iff they have the same domain and f[z] = g[z] for
all z in their domain.

The range of a function f is the set of all values of the form f[z] with z in
DOMAIN f. For any sets S and T, the set of all functions whose domain equals



5.2. FUNCTIONS 49

S and whose range is any subset of T is written [S — T].

Ordinary mathematics does not have a convenient notation for writing an ex-
pression whose value is a function. TLAT defines [z € S — e] to be the function
f with domain S such that f[z] = e for every z € S.3 For example,

succ = [n € Nat v+ n+1]

defines succ to be the successor function on the natural numbers—the function
with domain Nat such that succ[n] = n + 1 for all n € Nat.

A record is a function whose domain is a finite set of strings. For example,
a record with wval, ack, and rdy fields is a function whose domain is the set
{“val”, “ack”, “rdy”} consisting of the three strings “val”, “ack”, and “rdy”.
The expression r.ack, the ack field of a record r, is an abbreviation for r[“ack”].
The record

[val — 42, ack — 1, rdy — 0]
can be written

[Z E {“Val”, Léack”, Lery”} —
IF ¢ = “val” THEN 42 ELSE IF ¢ = “ack” THEN 1 ELSE 0]

The EXCEPT construct for records, explained in Section 3.2, is a special case of a
general EXCEPT construct for functions, where !.c¢ is an abbreviation for ![“c”].
For any function f, the expression [f EXCEPT ![c] = ] is the function f that is
the same as f except with f[c] = e. This function can also be written:

[t € DOMAINf — IF 2 = ¢ THEN e ELSE fl[z]]

assuming that the symbol z does not occur in any of the expressions f, ¢, and
e. For example, [succ EXCEPT ![42] = 86] is the function ¢ that is the same as
succ except that g[42] equals 86 instead of 43.

As in the EXCEPT construct for records, the expression e in

[f EXCEPT ![c] = €]

can contain the symbol @, where it means f[c]. For example,

[succ EXCEPT ![42] =2 @] = [succ EXCEPT ![42] = 2% succ[42]]
In general,
[f EXCEPT ![c1] =eq, ..., !cn] = en]

3The € in [z € S + e] is just part of the syntax; TLAT uses that particular symbol to help
you remember what the construct means. Computer scientists write Az : S.e to represent
something similar to [z € S +— e], except that their A expressions aren’t quite the same as the
functions of ordinary mathematics that are used in TLA™,



20 CHAPTER 5. A CACHING MEMORY

is the function f that is the same as f except with f[cz] = ¢; for each i. More
precisely, this expression equals

[...[lf EXCEPT ![c1] = e1] EXCEPT ![ca] = €3] ... EXCEPT ![c,] = e,]

Functions correspond to the arrays of programming languages. The domain of a
function corresponds to the index set of an array. Function [f EXCEPT ![c] = €]
corresponds to the array obtained from f by assigning e to f[c¢]. A function
whose range is a set of functions corresponds to an array of arrays. TLAT defines
[f EXCEPT ![c][d] = e] to be the function corresponding to the array obtained
by assigning e to f[c][d]. It can be written as

[f EXCEPT ![c] = [@ EXCEPT ![d] = ¢]]

The generalization to [f EXCEPT ![c1]...[c,] = €] for any n should be obvious.
Since a record is a function, this notation can be used for records as well. TLAT

uniformly maintains the notation that o.c is an abbreviation for o[“c”]. For
example, this implies:

[f EXCEPT ![c].d = €] = [f EXCEPT ![c][“d"] = €]
= [f EXCEPT ![c] = [@ EXCEPT !.d = €]]

The TLA™ definition of records as functions makes it possible to manipulate
them in ways that have no counterparts in programming languages. For example,
we can define an operator R such that R(r,s) is the record obtained from r by
replacing the value of each field ¢ that is also a field of the record s with s.c.
In other words, for every field ¢ of r, if ¢ is a field of s then R(r,s).c = s.c;
otherwise R(r, s).c = r.c. The definition is:

R(r,s) = [c € DOMAINr— IF ¢ € DOMAIN s THEN s[¢] ELSE r[c]]

So far, we have seen only functions of a single argument, which are the
mathematical analog of the one-dimensional arrays of programming languages.
Mathematicians also use functions of multiple arguments, which are the analog
of multi-dimensional arrays. In TLAT, as in ordinary mathematics, a function of
multiple arguments is one whose domain is a set of tuples. For example, f[5,3, 1]
is an abbreviation for f[(5,3,1)], the value of the function f applied to the triple

(5,3,1).
The function constructs of TLA™T have extensions for functions of multiple
arguments. For example, [g EXCEPT ![a, b] = e] is the function § that is the

same as g except with gla, b] equal to e. The expression
(5.1) [n € Nat, r € Real — n * ]

equals the function f such that f[n, r] equals nxr, for all n € Nat and r € Real.
Just as Vie S:Vj € §:P can be written as Vi,j € §: P, we can write the
function [t € S, 7 € S — e] as [i,j € S+ e].



5.3. A LINEARIZABLE MEMORY

o1

Section 16.1.7 on page 301 describes the general versions of the TLAT func-
tion constructs for functions with any number of arguments. However, functions
of a single argument are all you’re likely to need. You can almost always replace
a function of multiple arguments with a function-valued function—for example,
writing f[a][b] instead of f[a, b].

5.3 A Linearizable Memory

We now specify a very simple memory system in which a processor p issues a
memory request and then waits for a response before issuing the next request.
In our specification, the request is executed by accessing (reading or modifying)
a variable mem, which represents the current state of the memory. Because
the memory can receive requests from other processors before responding to
processor p, it matters when mem is accessed. We let the access of mem occur
any time between the request and the response. This specifies what is called a
linearizable memory. Less restrictive, more practical memory specifications are
described in Section 11.2.

In addition to mem, the specification has the internal variables ctl and buf,
where ctl[p] describes the status of processor p’s request and buf[p] contains
either the request or the response. Consider the request req that equals

[op — “Wr” adr — a, val — v]

It is a request to write v to memory address a, and it generates the response
NoVal. The processing of this request is represented by the following three steps:

ctllp] = “rdy”| pegp |Ctllp] = “busy”
buflp] = --- — | buf[p] = req
meml[a] = --- memla] = -
Do(py |Ctllp] = “done”| gy [ctl[p] = “rdy”
— |buf[p] = NoVal| — |buf[p] = NoVal
meml[a] = v mem[a] = v

A Req(p) step represents the issuing of a request by processor p. It is enabled
when ctl[p] = “rdy”; it sets ctl[p] to “busy” and sets buf[p] to the request. A
Do(p) step represents the memory access; it is enabled when ctl[p] = “busy”
and it sets ctl[p] to “done” and buf[p] to the response. A Rsp(p) step represents
the memory’s response to p; it is enabled when ctl[p] = “done” and it sets ctl[p]
to “rdy”.

Writing the specification is a straightforward exercise in representing these
changes to the variables in TLAT notation. The internal specification, with
mem, ctl, and buf visible (free variables), appears in module InternalMemory
on the following two pages. The memory specification, which hides the three
internal variables, is module Memory in Figure 5.3 on page 53.



92 CHAPTER 5. A CACHING MEMORY

[ MODULE InternalMemory

EXTENDS Memorylnterface
VARIABLES mem, ctl, buf

! |
I 1

IInit = The initial predicate

N mem € [Ad?“ — Val] Initially, memory locations have any values in Val,

A ctl = [p € Proc — “rdy”} each processor is ready to issue requests,

A buf = [p € Proc — NoVal] each buf[p] is arbitrarily initialized to NoVal,

A memlint € InitMemlInt and memlInt is any element of InitMemlInt.
Typelnvariant = The type-correctness invariant.

N mem € [Ad’f‘ — VCLZ] mem is a function from Adr to Val.

A ctl € [PT‘OC — {“rdy”7 “busy”, “done”}] ctl[p] equals “rdy”, “busy”, or “done”.
A buf € [PTOC — MReq U Val U {NO Val}] buf[p] is a request or a response.

A
Req (p) = Processor p issues a request.
A ctl [p} = “I’dy” Enabled iff p is ready to issue a request.
A dreq € MReq : For some request req:

A Send(p, req, memlInt, memlInt’) Send req on the interface.
A buf’ = [buf EXCEPT '[p] = Teq] Set buf[p] to the request.
A ctl’ = [ctl EXCEPT ![p] = “busy”] Set ctl[p] to “busy”.

A UNCHANGED mem

Do(p) = Perform p’s request to memory.
A ctl[p] = “busy”  Enabled iff p’s request is pending.
A mem’ =1F buf[p].op = “Wr”
THEN [mem EXCEPT Write to memory on a

[buf[p].adr] = buf[p].val] “Wr’ request.
ELSE mem  Leave mem unchanged on a “Rd” request.
A buf’ = [buf EXCEPT

'[p] = 1F buf[p].op = “Wr” Set buf[p] to the response:
THEN NoVal NoVal for a write;
ELSE mem[buf [p].adr] ] the memory value for a read.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl[p] to “done”.

A UNCHANGED memlint

Figure 5.2a: The internal memory specification (beginning).



5.4. TUPLES AS FUNCTIONS

93

Rsp(p) 2 Return the response to p’s request.
A ctl [p] = “done” Enabled iff req. is done but resp. not sent.
A Reply(p, buf[p], memInt, memlInt’) Send the response on the interface.
A ctl’ = [etl EXCEPT ![p] = “rdy”] Set ctl[p] to “rdy”.

A UNCHANGED (mem, buf)
INext = 3p € Proc : Req(p) V Do(p) V Rsp(p) The next-state action.

ISpec 2 IInit A D[INemtkmemIanem,ctl7buf> The specification.

THEOREM [Spec = O Typelnvariant

Figure 5.2b: The internal memory specification (end).

5.4 Tuples as Functions

Before writing our caching memory specification, let’s take a closer look at tu-
ples. Recall that (a, b, ¢) is the 3-tuple with components a, b, and ¢. In TLAT,
this 3-tuple is actually the function with domain {1,2, 3} that maps 1 to a, 2 to
b, and 3 to c¢. Thus, (a, b, ¢)[2] equals b.

TLA™ provides the Cartesian product operator x of ordinary mathematics,
where A x B x C is the set of all 3-tuples (a, b, ¢) such that a € 4, b € B, and
c € C. Note that A x B x C is different from A x (B x '), which is the set of
pairs (a,p) with a in A and p in the set of pairs B x C.

The Sequences module defines finite sequences to be tuples. Hence, a se-
quence of length n is a function with domain 1 .. n. In fact, s is a sequence iff
it equals [i € 1 .. Len(s) — s[i]] . Below are a few operator definitions from the
Sequences module. (The meanings of the operators are described in Section 4.1.)

Head(s) = s[1]
Tail(s) = [i €1 .. (Len(s) —1)— s[i+1]]
sot = [iel.. (Len(s)+ Len(t)) —

IF i < Len(s) THEN s[i] ELSE t[i — Len(s)]]

MODULE Memory

\
EXTENDS MemorylInterface
Inner(mem, ctl, buf) = INSTANCE InternalMemory

‘ Spec = Amem, ctl, buf : Inner(mem, ctl, buf)!ISpec

Figure 5.3: The memory specification.



04 CHAPTER 5. A CACHING MEMORY

5.5 Recursive Function Definitions

We need one more tool to write the caching memory specification: recursive
function definitions. Recursively defined functions are familiar to programmers.
The classic example is the factorial function, which I'll call fact. It’s usually
defined by writing:

fact[n] = IF n=0 THEN 1 ELSE n * fact[n — 1]

for all n € Nat. The TLA™T notation for writing functions suggests trying to
define fact by

fact = [n € Nat+—1F n =0 THEN 1 ELSE 7 * fact[n — 1]|

This definition is illegal because the occurrence of fact to the right of the = is
undefined—fact is defined only after its definition.

TLAT does allow the apparent circularity of recursive function definitions.
We can define the factorial function fact by:

fact[n € Nat] = 1F n =0 THEN 1 ELSE n * fact[n — 1]

In general, a definition of the form f[z € 5] £ ¢ can be used to define recursively
a function f with domain S.

The function definition notation has a straightforward generalization to def-
initions of functions of multiple arguments. For example,

Acker[m, n € Nat] =
IF m=0 THEN n+1
ELSE IF n =0 THEN Acker[m — 1, 0]
ELSE Acker[m — 1, Acker[m, n — 1]

defines Acker[m, n] for all natural numbers m and n.
Section 6.3 explains exactly what recursive definitions mean. For now, we
will just write recursive definitions without worrying about their meaning.

5.6 A Write-Through Cache

We now specify a simple write-through cache that implements the memory spec-
ification. The system is described by the picture of Figure 5.4 on the next page.
Each processor p communicates with a local controller, which maintains three
state components: buf[p], ctl[p], and cache[p]. The value of cache[p] represents
the processor’s cache; buf[p] and ctl[p] play the same role as in the internal
memory specification (module InternalMemory). (However, as we will see be-
low, ctl[p] can assume an additional value “waiting”.) These local controllers



5.6. A WRITE-THROUGH CACHE

95

. bus

Processor p memint | ] buf [p] B

men
.

Figure 5.4: The write-through cache.

communicate with the main memory wmem,* and with one another, over a bus.
Requests from the processors to the main memory are in the queue mem@ of
maximum length QLen.

A write request by processor p is performed by the action DoWr(p). This is
a write-through cache, meaning that every write request updates main memory.
So, the DoWr(p) action writes the value into cache[p] and adds the write request
to the tail of mem@. When the request reaches the head of mem(@, the action
Mem@QWr stores the value in wmem. The DoWr(p) action also updates cache[q|
for every other processor ¢ that has a copy of the address in its cache.

A read request by processor p is performed by the action DoRd(p), which
obtains the value from the cache. If the value is not in the cache, the action
RdMiss(p) adds the request to the tail of mem@ and sets ctl[p] to “waiting”.
When the enqueued request reaches the head of mem(@, the action MemQRd
reads the value and puts it in cache[p], enabling the DoRd(p) action.

We might expect the Mem@Rd action to read the value from wmem. How-
ever, this could cause an error if there is a write to that address enqueued in
mem(@ behind the read request. In that case, reading the value from mem-
ory could lead to two processors having different values for the address in their
caches: the one that issued the read request, and the one that issued the write
request that followed the read in mem@. So, the Mem@QRd action must read
the value from the last write to that address in mem@), if there is such a write;

4We use the name wmem to distinguish this variable from variable mem of module
InternalMemory. We don’t have to, since mem is not a free (visible) variable of the actual
memory specification in module Memory, but it helps us avoid getting confused.



26 CHAPTER 5. A CACHING MEMORY

otherwise, it reads the value from wmem.

Eviction of an address from processor p’s cache is represented by a separate
Evict(p) action. Since all cached values have been written to memory, eviction
does nothing but remove the address from the cache. There is no reason to evict
an address until the space is needed, so in an implementation, this action would
be executed only when a request for an uncached address is received from p and
p’s cache is full. But that’s a performance optimization; it doesn’t affect the
correctness of the algorithm, so it doesn’t appear in the specification. We allow
a cached address to be evicted from p’s cache at any time—except if the address
was just put there by a Mem@QRd action for a read request whose DoRd(p)
action has not yet been performed. This is the case when ctl[p] equals “waiting”
and buf[p].adr equals the cached address.

The actions Req(p) and Rsp(p), which represent processor p issuing a request
and the memory issuing a reply to p, are the same as the corresponding actions
of the memory specification, except that they also leave the new variables cache
and mem(@ unchanged, and they leave unchanged vmem instead of mem.

To specify all these actions, we must decide how the processor caches and
the queue of requests to memory are represented by the variables mem@ and
cache. We let mem@ be a sequence of pairs of the form (p, req), where req is
a request and p is the processor that issued it. For any memory address a, we
let cache[p][a] be the value in p’s cache for address a (the “copy” of a in p’s
cache). If p’s cache does not have a copy of a, we let cache[p][a] equal NoVal.

The specification appears in module Write ThroughCache on pages 57-59.
I'll now go through this specification, explaining some of the finer points and
some notation that we haven’t encountered before.

The EXTENDS, declaration statements, and ASSUME are familiar. We can re-
use some of the definitions from the InternalMemory module, so an INSTANCE
statement instantiates a copy of that module with wmem substituted for mem.
(The other parameters of module InternalMemory are instantiated by the pa-
rameters of the same name in module Write ThroughCache.)

The initial predicate Init contains the conjunct M !IInit, which asserts that
ctl and buf have the same initial values as in the internal memory specification,
and that wmem has the same initial value as mem does in that specification.
The write-through cache allows ctl[p] to have the value “waiting” that it didn’t
in the internal memory specification, so we can’t re-use the internal memory’s
type invariant M ! Typelnvariant. Formula Typelnvariant therefore explicitly
describes the types of wmem, ctl, and buf. The type of mem@ is the set of
sequences of (processor, request) pairs.

The module next defines the predicate Coherence, which asserts the basic
cache coherence property of the write-through cache: for any processors p and
g and any address a, if p and ¢ both have copies of address a in their caches,
then those copies are equal. Note the trick of writing = ¢ {y, z} instead of the
equivalent but longer formula (z # y) A (z # 2).



5.6. A WRITE-THROUGH CACHE

[ MODULE Write ThroughCache

EXTENDS Naturals, Sequences, MemorylInterface
VARIABLES wmem, ctl, buf, cache, mem@
CONSTANT QLen

ASSUME (QLen € Nat) A (QLen > 0)

A
M = INSTANCE InternalMemory WITH mem «— wmem
1

I
Init = The initial predicate
A M IInit wmem, buf, and ctl are initialized as in the internal memory spec.
A cache = All caches are initially empty (cache[p][a] = NoVal for all p, a).

[p € Proc — [a € Adr — NoVal]]
A memQ = <> The queue mem(@ is initially empty.

Typelnvariant = The type invariant.
A wmem € [Adr — Val]
A ctl € [Proc — {“rdy”, “busy”, “waiting”, “done” }]
A buf € [Proc — MReqU Val U {NoVal}]
A cache € [Proc — [Adr — Val U {NoVal}]]
A mem(@ € Seq(PTOC X MReq) mem(@ is a sequence of (proc., request) pairs.

A
Coherence = Asserts that if two processors’ caches both have copies
VY p,q € Proc, a € Adr - of an address, then those copies have equal values.

(NoVal ¢ {cachelp][a], cache[q][a]}) = (cache[p][a] = cache[q][a])

1

' A
Req ( p) = Processor p issues a request.
M!Req(p) A UNCHANGED (cache, mem(@)
A .
Rsp ( p) = The system issues a response to processor p.

M!Rsp(p) N UNCHANGED (cache, mem(@))

. A
RdMiss ( p) = Enqueue a request to write value from memory to p’s cache.

A (ctl[p] = “busy”) A (buf[p].op = “Rd”) Enabled on a read request when
A cache[p] [buf [p].adr] = NoVal the address is not in p’s cache
A Len(mem@) < QLen and mem(@ is not full.

A mem@Q' = Append(mem@, (p, buf[p} )) Append (p,request) to memQ@Q.
A ctl’ = [ctl EXCEPT ![p] = “waiting”] Set ctl[p] to “waiting”.

A UNCHANGED (memlInt, wmem, buf, cache)

Figure 5.5a: The write-through cache specification (beginning).



98 CHAPTER 5. A CACHING MEMORY

DORd(p) 2 Perform a read by p of a value in its cache.

A ctllp] € {“busy”, “waiting” } Enabled if a read

A buf [p}.op = “Rd” request is pending and
A cache[p][buf[p].adr] # NoVal address is in cache.

A buf’ = [buf EXCEPT '[p] = cache[p][buf[p].adr]] Get result from cache.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl[p] to “done”.

A UNCHANGED (memlInt, wmem, cache, mem@)

Do W’I“(p) = Write to p’s cache, update other caches, and enqueue memory update.

=

LET r buf[p} Processor p’s request.

IN A (Cﬂ[p] = “busy”) A (r.op = “Wr”) Enabled if write request pending
A Len(mem@) < QLen and mem@ is not full.
A cache' = Update p’s cache and any other cache that has a copy.
[q € Proc— 1F (p = q) V (cache[q][r.adr] # NoVal)

THEN [cachelq] EXCEPT ![r.adr] = r.val]
ELSE cache[q]]

A mem@' = Append(mem@, {p,r)) Enqueue write at tail of mem@.
N buf’ = [buf EXCEPT ![p] = No Val] Generate response.
A ctl’ = [ctl EXCEPT ![p] = “done”] Set ctl to indicate request is done.

A UNCHANGED (memlInt, wmem)

2

vmem The value wmem will have after all the writes in mem@ are performed.

LET f[l €0.. Len(memQ)] = The value wmem will have after the first
IF i =0 THEN wmem i writes in mem(@ are performed.
ELSE IF memQ[i][2].op = “Rd”
THEN f[i — 1]
ELSE [f[¢ — 1] EXCEPT ![memQ[i][2].adr] =
mem@|[i][2].val]
IN  f[Len(mem@)]

N
MemQ@QWr = Perform write at head of mem@ to memory.

LET 7 2 Head(memQ)[?] The request at the head of mem@.
IN A (mem@ # () A (r.op = “Wr”) Enabled if Head(mem@) a write.

A wmem’ = Perform the write to memory.
[wmem EXCEPT ![r.adr] = r.val]
A mem@' = Tail(memQ) Remove the write from mem@.

A UNCHANGED (memlInt, buf, ctl, cache)

Figure 5.5b: The write-through cache specification (middle).



5.6. A WRITE-THROUGH CACHE

99

MemQRd

LET p
r

IN

A
N
N

A
= Perform an enqueued read to memory.

2 Head(mem@)[1] The requesting processor.
= Head(memQ)[Q] The request at the head of mem(@.
(mem@ # ()) A (r.op = “Rd”) Enabled if Head(memQ) is a read.

mem @' = Tail(mem@Q)

Remove the head of mem@.

cache’ =  Put value from memory or mem@ in p’s cache.

[cache EXCEPT ![p][r.adr] = vmem/[r.adr]|

A UNCHANGED (memlInt, wmem, buf, ctl)

Evict(p, a)

N
= Remove address a from p’s cache.

A (Cﬂ[p} = “Waiting”) = (buf [p].adr #+ a) Can’t evict a if it was just read

A cache’ = [cache EXCEPT ![p][a] = NoVal]

into cache from memory.

A UNCHANGED (memlInt, wmem, buf, ctl, mem@)

Next =

Spec =

V dp € Proc : V Req(p) V Rsp(p)

V' RdMiss(p) V DoRd(p)V DoWr(p)
V Ja € Adr : Evict(p, a)

V MemQWr N MemQRd

Init AO [Newtkmemlnt, wmem, buf, ctl, cache, memQ)

THEOREM Spec = O( Typelnvariant A Coherence)

LM =

INSTANCE Memory The memory spec. with internal variables hidden.

| THEOREM Spec = LM!SpeC Formula Spec implements the memory spec.

Figure 5.5¢: The write-through cache specification (end).

The actions Req(p) and Rsp(p), which represent a processor sending a re-
quest and receiving a reply, are essentially the same as the corresponding actions
in module InternalMemory. However, they must also specify that the variables
cache and mem@, not present in module InternalMemory, are left unchanged.

In the definition of RdMiss, the expression Append(mem@, {p, buf[p])) is the
sequence obtained by appending the element (p, buf[p]) to the end of mem@).

The DoRd(p) action represents the performing of the read from p’s cache.

If ctl[p]

“busy”, then the address was originally in the cache. If ctl[p] =

“waiting”, then the address was just read into the cache from memory.

The DoWr(p) action writes the value to p’s cache and updates the value in
any other caches that have copies. It also enqueues a write request in mem@.
In an implementation, the request is put on the bus, which transmits it to the
other caches and to the mem@ queue. In our high-level view of the system, we
represent all this as a single step.



60 CHAPTER 5. A CACHING MEMORY

The definition of DoWr introduces the TLA' LET/IN construct. The LET
clause consists of a sequence of definitions whose scope extends until the end of
the IN clause. In the definition of Do Wr, the LET clause defines r to equal buf[p]
within the IN clause. Observe that the definition of r contains the parameter p
of the definition of DoWr. Hence, we could not move the definition of r outside
the definition of Do Wr.

A definition in a LET is just like an ordinary definition in a module; in
particular, it can have parameters. These local definitions can be used to shorten
an expression by replacing common subexpressions with an operator. In the
definition of DoWr, I replaced five instances of buf[p] by the single symbol 7.
This was a silly thing to do, because it makes almost no difference in the length
of the definition and it requires the reader to remember the definition of the
new symbol r. But using a LET to eliminate common subexpressions can often
greatly shorten and simplify an expression.

A LET can also be used to make an expression easier to read, even if the
operators it defines appear only once in the IN expression. We write a specifica-
tion with a sequence of definitions, instead of just defining a single monolithic
formula, because a formula is easier to understand when presented in smaller
chunks. The LET construct allows the process of splitting a formula into smaller
parts to be done hierarchically. A LET can appear as a subexpression of an IN
expression. Nested LETs are common in large, complicated specifications.

Next comes the definition of the state function vmem, which is used in defin-
ing action Mem@Rd below. It equals the value that the main memory wmem
will have after all the write operations currently in mem@ have been performed.
Recall that the value read by Mem@Rd must be the most recent one written
to that address—a value that may still be in mem@. That value is the one in
vmem. The function vmem is defined in terms of the recursively defined func-
tion f, where f[i] is the value wmem will have after the first ¢ operations in
mem( have been performed. Note that mem@]i][2] is the second component
(the request) of memQ[i], the i*" element in the sequence mem(Q.

The next two actions, Mem@QWr and Mem@Rd, represent the processing of
the request at the head of the mem(@Q queue—Mem@QWr for a write request,
and Mem@Rd for a read request. These actions also use a LET to make local
definitions. Here, the definitions of p and r could be moved before the definition
of Mem@Wr. In fact, we could save space by replacing the two local definitions of
r with one global (within the module) definition. However, making the definition
of r global in this way would be somewhat distracting, since r is used only in the
definitions of MemQ@Wr and Mem@QRd. It might be better instead to combine
these two actions into one. Whether you put a definition into a LET or make it
more global should depend on what makes the specification easier to read.

The Ewvict(p, a) action represents the operation of removing address a from
processor p’s cache. As explained above, we allow an address to be evicted at
any time—unless the address was just written to satisfy a pending read request,



5.7. INVARIANCE

61

which is the case iff ctl[p] = “waiting” and buf[p].adr = a. Note the use of the
“double subscript” in the EXCEPT expression of the action’s second conjunct.
This conjunct “assigns NoVal to cache[p][a]”. If address a is not in p’s cache,
then cache[p]a] already equals NoVal and an Ewvict(p, a) step is a stuttering
step.

The definitions of the next-state action Next and of the complete specifica-
tion Spec are straightforward. The module closes with two theorems that are
discussed below.

5.7 Invariance

Module WriteThroughCache contains the theorem
THEOREM Spec = O( Typelnvariant A Coherence)

which asserts that Typelnvariant A Coherence is an invariant of Spec. A state
predicate P A @ is always true iff both P and @ are always true, so O(P A Q)
is equivalent to OP A O(. This implies that the theorem above is equivalent to
the two theorems:

THEOREM Spec = O Typelnvariant
THEOREM Spec = OCoherence

The first theorem is the usual type-invariance assertion. The second, which
asserts that Coherence is an invariant of Spec, expresses an important property
of the algorithm.

Although Typelnvariant and Coherence are both invariants of the temporal
formula Spec, they differ in a fundamental way. If s is any state satisfying
Typelnvariant, then any state ¢ such that s — ¢ is a Next step also satisfies
Typelnvariant. This property is expressed by:

THEOREM Typelnvariant A Next = Typelnvariant’

(Recall that Typelnvariant’ is the formula obtained by priming all the variables
in formula Typelnvariant.) In general, when P A N = P’ holds, we say that
predicate P is an invariant of action N. Predicate Typelnvariant is an invariant
of Spec because it is an invariant of Next and it is implied by the initial predicate
Inat.

Predicate Coherence is not an invariant of the next-state action Next. For
example, suppose s is a state in which

e cache[pl]la] =1
e cache[g][b] = NoVal, for all (g, b) different from (pl, a)

e wmem|a] =2

An invariant of

a specification

S that is also

an invariant of

its next-state ac-
tion is sometimes
called an inductive
invariant of S.



62 CHAPTER 5. A CACHING MEMORY

e mem() contains the single element (p2, [op — “Rd”, adr — a])

for two different processors pl and p2 and some address a. Such a state s (an
assignment of values to variables) exists, assuming that there are at least two
processors and at least one address. Then Coherence is true in state s. Let ¢
be the state obtained from s by taking a Mem@Rd step. In state ¢, we have
cache[p2][a] = 2 and cache[pl][a] = 1, so Coherence is false. Hence Coherence
is not an invariant of the next-state action.

Coherence is an invariant of formula Spec because states like s cannot occur
in a behavior satisfying Spec. Proving its invariance is not so easy. We must
find a predicate Inv that is an invariant of Next such that Inv implies Coherence
and is implied by the initial predicate Init.

Important properties of a specification can often be expressed as invariants.
Proving that a state predicate P is an invariant of a specification means proving
a formula of the form

Init A O[Next], = OP
This is done by finding an appropriate state predicate Inv and proving
Init = Inv, Inv A [Neat],, = Inv’, Inv=P

Since our subject is specification, not proof, I won’t discuss how to find Inwv.

5.8 Proving Implementation

Module WriteThroughCache ends with the theorem
THEOREM Spec = LM ! Spec

where LM !Spec is formula Spec of module Memory. This theorem asserts that
every behavior satisfying specification Spec of the write-through cache also sat-
isfies LM !Spec, the specification of a linearizable memory. In other words, it
asserts that the write-through cache implements a linearizable memory. In TLA,
implementation is implication. A system described by a formula Sys implements
a specification Spec iff Sys implies Spec—that is, iff Sys = Spec is a theorem.
TLA makes no distinction between system descriptions and specifications; they
are both just formulas.

By definition of formula Spec of the Memory module (page 53), we can restate
the theorem as

THEOREM Spec = Imem, ctl, buf : LM Inner(mem, ctl, buf)! ISpec

where LM ! Inner(mem, ctl, buf)!ISpec is formula ISpec of the InternalMemory
module. The rules of logic tell us that to prove such a theorem, we must find
“witnesses” for the quantified variables mem, ctl, and buf. These witnesses are



5.8. PROVING IMPLEMENTATION

63

state functions (ordinary expressions with no primes), which I'll call omem, octl,
and obuf, that satisfy:

(5.2) Spec = LM!Inner(omem, octl, obuf)!ISpec

Formula LM !Inner(omem, octl, obuf)!ISpec is formula ISpec with the substi-
tutions:

mem «— omem, ctl «— octl, buf — obuf

The tuple { omem, octl, obuf ) of witness functions is called a refinement mapping,
and we describe (5.2) as the assertion that Spec implements formula ISpec under
this refinement mapping. Intuitively, this means Spec implies that the value of
the tuple ( memliInt, omem, octl, obuf) of state functions changes the way ISpec
asserts that the tuple (memlInt, mem, ctl, buf) of variables should change.

I will now briefly describe how we prove (5.2); for details, see the technical
papers about TLA, available through the TLA web page. Let me first introduce
a bit of non-TLA T notation. For any formula F' of module InternalMemory, let
F equal LM ! Inner(omem, octl, obuf)! F, which is formula F with omem, octl,
and obuf substituted for mem, ctl, and buf. In particular, mem, ctl, and buf
equal omem, octl, and obuf, respectively.

With this notation, we can write (5.2) as Spec = ISpec. Replacing Spec and
ISpec by their definitions, this formula becomes

(53) Init A O [Next]<memlnt, wmem, buf, ctl, cache, memQ)
= [Init A O[INext|

(memlInt, mem, ctl, buf)

Formula (5.3) is then proved by finding an invariant Inv of Spec such that

A Init = IInit

A Inv A Next = V INext
V UNCHANGED (memlInt, mem, ctl, buf)

The second conjunct is called step simulation. It asserts that a Next step start-
ing in a state satisfying the invariant Inv is either an INext step—a step that
changes the 4-tuple (memlInt, omem, octl, obuf ) the way an INext step changes
(memlInt, mem, ctl, buf )—or else it leaves that 4-tuple unchanged. For our
memory specifications, the state functions omem, octl, and obuf are defined by:

omem = vmem
octl = [p € Proc — 1F ctl[p] = “waiting” THEN “busy” ELSE ctl[p]|
obuf = buf

The mathematics of an implementation proof is simple, so the proof is
straightforward—in theory. For specifications of real systems, such proofs can be
quite difficult. Going from theory to practice requires turning the mathematics

memlInt equals

memlnt, since
memlnt is a vari-
able distinct from
mem, ctl, and
buf.



64 CHAPTER 5. A CACHING MEMORY

of proofs into an engineering discipline. This is a subject that deserves a book
to itself, and I won’t try to discuss it here.

You will probably never prove that one specification implements another.
However, you should understand refinement mappings and step simulation. You
will then be able to use TLC to check that one specification implements another;
Chapter 14 explains how.



Chapter 6

Some More Math

The mathematics we use to write specifications is built on a small, simple collec-
tion of concepts. You’ve already seen most of what’s needed to describe almost
any kind of mathematics. All you lack are a handful of operators on sets that
are described below in Section 6.1. After learning about them, you will be able
to define all the data structures and operations that occur in specifications.

While our mathematics is simple, its foundations are nonobvious—for exam-
ple, the meanings of recursive function definitions and the CHOOSE operator are
subtle. This section discusses some of those foundations. Understanding them
will help you use TLA™ more effectively.

6.1 Sets

The simple operations on sets described in Section 1.2 are all you need to write
most system specifications. However, you may occasionally have to use more
sophisticated operators—especially if you need to define data structures beyond
tuples, records, and simple functions.

Two powerful operators of set theory are the unary operators UNION and
SUBSET, defined as follows.

UNION S The union of the elements of S. In other words, a value e is an
element of UNION § iff it is an element of an element of S. For
example:

uNIoN {{1,2},{2,3},{3,4}} = {1,2,3,4}

SUBSET S The set of all subsets of S. In other words, T' € SUBSET S iff
T C S. For example:

suBseT {1,2} = {{},{1},{2},{1.2}}

Mathematicians
write UNION S as
Us.

Mathematicians
call SUBSETS the
power set of S
and write it P(.5)

or 25.



66 CHAPTER 6. SOME MORE MATH

Mathematicians often describe a set as “the set of all ... such that ...”. TLAT
has two constructs that formalize such a description:

{z € S : p} The subset of S consisting of all elements z satisfying property
p. For example, the set of odd natural numbers can be written
{n € Nat : n % 2 = 1}. The identifier z is bound in p; it may The modulus op-

not occur in S. erator % is de-
scribed in Sec-

{e:z € S} The set of elements of the form e, for all z in the set S. For tion 2.5.
example, {2xn + 1:n € Nat} is the set of all odd natural num-
bers. The identifier z is bound in e; it may not occur in S.

The construct {e:z € S} has the same generalizations as 3z € S: F. For ex-
ample, {e:z € S, y € T} is the set of all elements of the form e, for z in S and
y in T. In the construct {x € S: P}, we can let z be a tuple. For example,
{({y,z) € S: P} is the set of all pairs (y,z) in the set S that satisfy P. The
grammar of TLAT in Chapter 15 specifies precisely what set expressions you can
write.

All the set operators we’ve seen so far are built-in operators of TLA™. There
is also a standard module FiniteSets that defines two operators:

Cardinality(S) The number of elements in set S, if S is a finite set.
IsFiniteSet(S) True iff S is a finite set.

The FiniteSets module appears on 341. The definition of Cardinality is discussed
on page 70 below.

Careless reasoning about sets can lead to problems. The classic example of
this is Russell’s paradox:

Let R be the set of all sets S such that S ¢ S. The definition of R
implies that R € R is true iff R ¢ R is true.

The formula R ¢ R is the negation of R € R, and a formula and its negation
can neither both be true nor both be false. The source of the paradox is that R
isn’t a set. There’s no way to write it in TLA™. Intuitively, R is too big to be
a set. A collection C is too big to be a set if it is as big as the collection of all
sets—meaning that we can assign to every set a different element of C. That is,
C is too big to be a set if we can define an operator SMap such that:

e SMap(9S) is in C, for any set S.
o If S and T are two different sets, then SMap(S) # SMap(T).

For example, the collection of all sequences of length 2 is too big to be a set; we
can define the operator SMap by
A

SMap(S) = (1,5)

This operator assigns to every set S a different sequence of length 2.



6.2. SILLY EXPRESSIONS

67

6.2 Silly Expressions

Most modern programming languages introduce some form of type checking
to prevent you from writing silly expressions like 3/“abc”. TLA™ is based on
the usual formalization of mathematics by mathematicians, which doesn’t have
types. In an untyped formalism, every syntactically well-formed expression has
a meaning—even a silly expression like 3/“abc”. Mathematically, the expression
3/“abc” is no sillier than the expression 3/0, and mathematicians implicitly write
that silly expression all the time. For example, consider the true formula

Vz € Real : (z #0) = (z*(3/z) =3)

where Real is the set of all real numbers. This asserts that (z # 0) = (zx(3/z) =
3) is true for all real numbers z. Substituting 0 for z yields the true formula
(0 #£0) = (0%(3/0) = 3) that contains the silly expression 3/0. It’s true because
0 # 0 equals FALSE, and FALSE = P is true for any formula P.

A correct formula can contain silly expressions. For example, 3/0 = 3/0 is a
correct formula because any value equals itself. However, the truth of a correct
formula cannot depend on the meaning of a silly expression. If an expression is
silly, then its meaning is probably unspecified. The definitions of / and * (which
are in the standard module Reals) don’t specify the value of 0% (3/0), so there’s
no way of knowing whether that value equals 3.

No sensible syntactic rules can prevent you from writing 3/0 without also
preventing you from writing perfectly reasonable expressions. The typing rules
of programming languages introduce complexity and limitations on what you can
write that don’t exist in ordinary mathematics. In a well-designed programming
language, the costs of types are balanced by benefits: types allow a compiler to
produce more efficient code, and type checking catches errors. For programming
languages, the benefits seem to outweigh the costs. For writing specifications, I
have found that the costs outweigh the benefits.

If you’re used to the constraints of programming languages, it may be a while
before you start taking advantage of the freedom afforded by mathematics. At
first, you won’t think of defining anything like the operator R defined on page 50
of Section 5.2, which couldn’t be written in a typed programming language.

6.3 Recursion Revisited

Section 5.5 introduced recursive function definitions. Let’s now examine what
such definitions mean mathematically. Mathematicians usually define the fac-
torial function fact by writing:

fact[n] = IF n=0 THEN 1 ELSE n * fact[n — 1], for all n € Nat



68 CHAPTER 6. SOME MORE MATH

This definition can be justified by proving that it defines a unique function fact
with domain Nat. In other words, fact is the unique value satisfying:

(6.1) fact =[n € Nat — 1F n =0 THEN 1 ELSE n * fact[n — 1]]

The CHOOSE operator, introduced on pages 47-48 of Section 5.1, allows us to
express “the value z satisfying property p” as CHOOSE z :p. We can therefore
define fact as follows to be the value satisfying (6.1):

(6.2) fact = CHOOSE fact :
fact =[n € Nat — 1F n =0 THEN 1
ELSE n * fact[n — 1]]

(Since the symbol fact is not yet defined in the expression to the right of the
«B oy

=7, we can use it as the bound identifier in the CHOOSE expression.) The
TLA™ definition

fact[n € Nat] = 1F n =0 THEN 1 ELSE n * fact[n — 1]

is simply an abbreviation for (6.2). In general, flz € §] = e is an abbreviation
for:

(6.3) f = CHOOSE f : f=[z€ S — ¢
TLAT allows you to write silly definitions. For example, you can write
(6.4) circ[n € Nat] = CHOOSE y : y # circ[n]

This appears to define circ to be a function such that circ[n] # circ[n] for
any natural number n. There obviously is no such function, so circ can’t be
defined to equal it. A recursive function definition doesn’t necessarily define a
function. If there is no f that equals [z € S — e], then (6.3) defines f to be
some unspecified value. Thus, the nonsensical definition (6.4) defines circ to be
some unknown value.

Although TLAT allows the apparent circularity of a recursive function defi-
nition, it does not allow circular definitions in which two or more functions are
defined in terms of one another. Mathematicians occasionally write such mutu-
ally recursive definitions. For example, they might try to define functions f and
g, with domains equal to the set Nat, by writing:

fn € Nat]
g[n € Nat]

IF n =0 THEN 17 ELSE f[n — 1] * g[n] This pair of definitions is
not allowed in TLAT.

e 1>

IF n =0 THEN 42 ELSE f[n — 1]+ g[n — 1]

TLAT does not allow mutually recursive definitions. However, we can define
these functions f and g in TLA™T as follows. We first define a function ms such
that mr[n] is a record whose f and g fields equal f[n] and g[n], respectively:

mr[n € Nat] =
[f — 1IF n=0 THEN 17 ELSE mr[n — 1].f * mr[n].g,
g — IF n=0 THEN 42 ELSE mr[n — 1].f + mr[n — 1].¢]



6.4. FUNCTIONS VERSUS OPERATORS

69

We can then define f and g in terms of mr:

fln € Nat] = mr[n].f

g[n € Nat] = mrlnl.g

This trick can be used to convert any mutually recursive definitions into a sin-
gle recursive definition of a record-valued function whose fields are the desired
functions.

If we want to reason about a function f defined by f[z € 5] £ ¢, we need
to prove that there exists an f that equals [x € S+ e]. The existence of f is
obvious if f does not occur in e. If it does, so this is a recursive definition, then
there is something to prove. Since I'm not discussing proofs, I won’t describe
how to prove it. Intuitively, you have to check that, as in the case of the factorial
function, the definition uniquely determines the value of f[z] for every z in S.

Recursion is a common programming technique because programs must com-
pute values using a small repertoire of simple elementary operations. It’s not
used as often in mathematical definitions, where we needn’t worry about how to
compute the value and can use the powerful operators of logic and set theory.
For example, the operators Head, Tail, and o are defined in Section 5.4 with-
out recursion, even though computer scientists usually define them recursively.
Still, there are some things that are best defined inductively, using a recursive
function definition.

6.4 Functions versus Operators
Consider these definitions, which we’ve seen before

Tail(s) = [i
fact|n € Nat]

1..(Len(s) —1)— s[i+1]]

IF n =0 THEN 1 ELSE n * fact[n — 1]

> M

They define two very different kinds of objects: fact is a function, and Tail is
an operator. Functions and operators differ in a few basic ways.

Their most obvious difference is that a function like fact by itself is a complete
expression that denotes a value, but an operator like Tail is not. Both fact[n] € S
and fact € S are syntactically correct expressions. But, while Tail(n) € S is
syntactically correct, Tail € S is not. It is gibberish—a meaningless string of
symbols, like z+ > 0.

Unlike an operator, a function must have a domain, which is a set. We cannot
define a function Tail so that Tail[s] is the tail of any nonempty sequence s;
the domain of such a function would have to include all nonempty sequences,
and the collection of all such sequences is too big to be a set. (As explained
on page 66, a collection C is too big to be a set if we can assign to each set a
different member of C. The operator SMap defined by SMap(S) = (S) assigns



70 CHAPTER 6. SOME MORE MATH

to every set a different nonempty sequence.) Hence, we can’t define Tail to be
a function.

Unlike a function, an operator cannot be defined recursively in TLAY. How-
ever, we can usually transform an illegal recursive operator definition into a
nonrecursive one using a recursive function definition. For example, let’s try to
define the Cardinality operator on finite sets. (Recall that the cardinality of a
finite set S is the number of elements in S.) The collection of all finite sets is
too big to be a set. (The operator SMap(S) = {S} assigns to each set a different
set of cardinality 1.) The Cardinality operator has a simple intuitive definition:

e Cardinality({}) = 0.

e If S is a nonempty finite set, then S\ {z} is the set
f all el i
Cardinality(S) = 1+ Cardinality(S \ {z}) of all elements in

S except z.
where z is an arbitrary element of S.

Using the CHOOSE operator to describe an arbitrary element of S, we can write
this as the more formal-looking, but still illegal, definition:

Cardinality(S) = This is not a legal TLA* definition.
IF S ={} THEN 0
ELSE 1+ Cardinality(S\ {CHOOSE z : z € S})

This definition is illegal because it’s circular—only in a recursive function defi-
nition can the symbol being defined appear to the right of the =9

To turn this into a legal definition, observe that, for a given finite set S, we
can define a function CS such that CS[T] equals the cardinality of T for every
subset T of S. The definition is

CS[T € suBser §] =
IF T ={} THEN 0
ELSE 14 CS[T\{CHOOSE z : z € T}|

Since S is a subset of itself, this defines CS[S] to equal Cardinality(S), if S is a
finite set. (We don’t know or care what CS[S] equals if S is not finite.) So, we
can define the Cardinality operator by:

Cardinality(S) =
LET CS[T € SUBSET S§] =
IF T ={} THEN 0
ELSE 1+ CS[T\{CHOOSE z : z € T}]
IN  CS[S]

Operators also differ from functions in that an operator can take an operator
as an argument. For example, we can define an operator IsPartialOrder so that



6.4. FUNCTIONS VERSUS OPERATORS

71

IsPartialOrder(R, S) equals true iff the operator R defines an irreflexive partial
order on S. The definition is

A

IsPartialOrder(R(-, -), §) =
AVz,y,z€ S : R(z,y) AN R(y, z) = R(z,2)
AVz eSS : -R(z,z)

We could also use an infix-operator symbol like < instead of R as the parameter
of the definition, writing:

IsPartialOrder(_<_, §) =
AVz,y,z€8 1 (z<yY)AN(y<2)=(r<2)
AVzeS :—(r=<zx)

The first argument of IsPartialOrder is an operator that takes two arguments;
its second argument is an expression. Since > is an operator that takes two
arguments, the expression IsPartialOrder(>, Nat) is syntactically correct. In
fact, it equals TRUE, if > is defined to be the usual operator on numbers. The
expression IsPartialOrder(+, 3) is also syntactically correct, but it’s silly and we
have no idea whether or not it equals TRUE.

There is one difference between functions and operators that is subtle and not
very important, but I will mention it anyway for completeness. The definition
of Tail defines Tail(s) for all values of s. For example, it defines Tail(1/2) to
equal

(6.5) [iel..(Len(1/2) —1) — (1/2)[i +1]]

We have no idea what this expression means, because we don’t know what
Len(1/2) or (1/2)[i + 1] mean. But, whatever (6.5) means, it equals Tail(1/2).
The definition of fact defines fact[n] only for n € Nat. It tells us nothing about
the value of fact[1/2]. The expression fact[1/2] is syntactically well-formed, so
it too denotes some value. However, the definition of fact tells us nothing about
what that value is.

The last difference between operators and functions has nothing to do with
mathematics and is an idiosyncrasy of TLA™: the language doesn’t permit us
to define infix functions. Mathematicians often define / to be a function of two
arguments, but we can’t do that in TLAT. If we want to define /, we have no
choice but to make it an operator.

One can write equally nonsensical things using functions or operators. How-
ever, whether you use functions or operators may determine whether the non-
sense you write is nonsyntactic gibberish or syntactically correct but semanti-
cally silly. The string of symbols 2(“a”) is not a syntactically correct formula
because 2 is not an operator. However, 2[“a”], which can also be written 2.a, is
a syntactically correct expression. It’s nonsensical because 2 isn’t a function,! so

IMore precisely, we don’t know whether or not 2 is a function.

If you don’t know
what an irreflex-
ive partial or-

der is, read this
definition of
IsPartialOrder
to find out.



72 CHAPTER 6. SOME MORE MATH

we don’t know what 2[“a”] means. Similarly, Tail(s,t) is syntactically incorrect
because Tuail is an operator that takes a single argument. However, as explained
in Section 16.1.7 (page 301), fact[m, n] is syntactic sugar for fact[(m,n)], so it is
a syntactically correct, semantically silly formula. Whether an error is syntactic
or semantic determines what kind of tool can catch it. In particular, the parser
described in Chapter 12 catches syntactic errors, but not semantic silliness. The
TLC model checker, described in Chapter 14, will report an error if it tries to
evaluate a semantically silly expression.

The distinction between functions and operators seems to confuse some peo-
ple. One reason is that, although this distinction exists in ordinary math, it
usually goes unnoticed by mathematicians. If you ask a mathematician whether
SUBSET is a function, she’s likely to say yes. But if you point out to her that
SUBSET can’t be a function because its domain can’t be a set, she will probably
realize for the first time that mathematicians use operators like SUBSET and €
without noticing that they form a class of objects different from functions. Lo-
gicians will observe that the distinction between operators and values, including
functions, arises because TLA™ is a first-order logic rather than a higher-order
logic.

When defining an object V, you may have to decide whether to make V
an operator that takes an argument or a function. The differences between
operators and functions will often determine the decision. For example, if a
variable may have V as its value, then V must be a function. Thus, in the
memory specification of Section 5.3, we had to represent the state of the memory
by a function rather than an operator, since the variable mem couldn’t equal
an operator. If these differences don’t determine whether to use an operator or
a function, then the choice is a matter of taste. I usually prefer operators.

6.5 Using Functions

Consider the following two formulas:

(6.6) f' ' =1ie Nat— i+1]

(6.7) Vi€ Nat : f'[i]=14i+1

Both formulas imply that f'[i] = i + 1 for every natural number ¢, but they
are not equivalent. Formula (6.6) uniquely determines f’, asserting that it’s a

function with domain Nat. Formula (6.7) is satisfied by lots of different values
of f'. For example, it is satisfied if f’ is the function

[i € Real — 1F i € Nat THEN i+ 1 ELSE i?]

In fact, from (6.7), we can’t even deduce that f’ is a function. Formula (6.6)
implies formula (6.7), but not vice-versa.



6.6. CHOOSE

73

When writing specifications, we almost always want to specify the new value
of a variable f rather than the new values of f[i] for all i in some set. We
therefore usually write (6.6) rather than (6.7).

6.6 Choose

The CHOOSE operator was introduced in the memory interface of Section 5.1 in
the simple idiom CHOOSE v:wv ¢ S, which is an expression whose value is not
an element of S. In Section 6.3 above, we saw that it is a powerful tool that can
be used in rather subtle ways.

The most common use for the CHOOSE operator is to “name” a uniquely
specified value. For example, a/b is the unique real number that satisfies the
formula a = b * (a/b), if a and b are real numbers and b # 0. So, the standard
module Reals defines division on the set Real of real numbers by

a/b = CHOOSE ¢ € Real : a =bxc

(The expression CHOOSE z € S:p means CHOOSE z:(z € S)Ap.) If a is a
nonzero real number, then there is no real number ¢ such that a = 0 % c.
Therefore, a/0 has an unspecified value. We don’t know what a real number
times a string equals, so we cannot say whether or not there is a real number ¢
such that a equals “xyz” * ¢. Hence, we don’t know what the value of a/“xyz”
is.

People who do a lot of programming and not much mathematics often think
that CHOOSE must be a nondeterministic operator. In mathematics, there is
no such thing as a nondeterministic operator or a nondeterministic function. If
some expression equals 42 today, then it will equal 42 tomorrow, and it will still
equal 42 a million years from tomorrow. The specification

(z = CHOOSE n : n € Nat) A Oz’ = CHOOSE n : n € Nat],

allows only a single behavior—one in which z always equals CHOOSE n : n € Nat,
which is some particular, unspecified natural number. It is very different from
the specification

(z € Nat) A O[z’ € Nat],

that allows all behaviors in which z is always a natural number—possibly a
different number in each state. This specification is highly nondeterministic,
allowing lots of different behaviors.

The CHOOSE op-
erator is known
to logicians as
Hilbert’s e.



74

CHAPTER 6. SOME MORE MATH




Chapter 7

Writing a Specification:
Some Advice

You have now learned all you need to know about TLA™T to write your own
specifications. Here are a few additional hints to help you get started.

7.1 Why Specify

Writing a specification requires effort; the benefit it provides must justify that
effort. The purpose of writing a specification is to help avoid errors. Here are
some ways it can do that:

e Writing a TLA™ specification can help the design process. Having to de-
scribe a design precisely often reveals problems—subtle interactions and
“corner cases” that are easily overlooked. These problems are easier to cor-
rect when discovered in the design phase rather than after implementation
has begun.

e A TLAT specification can provide a clear, concise way of communicating
a design. It helps ensure that the designers agree on what they have
designed, and it provides a valuable guide to the engineers who implement
and test the system. It may also help users understand the system.

o A TLA™ specification is a formal description to which tools can be applied
to help find errors in the design and to help in testing the system. The
most useful tool written so far for this purpose is the TLC model checker,
described in Chapter 14.

Whether the benefit justifies the effort of writing the specification depends on
the nature of the project. Specification is not an end in itself; it is just a tool



76 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

that an engineer should be able to use when appropriate.

7.2 What to Specify

Although we talk about specifying a system, that’s not what we do. A specifi-
cation is a mathematical model of a particular view of some part of a system.
When writing a specification, the first thing you must choose is exactly what
part of the system you want to model. Sometimes the choice is obvious; often it
isn’t. The cache-coherence protocol of a real multiprocessor computer may be
intimately connected with how the processors execute instructions. Finding an
abstraction that describes the coherence protocol while suppressing the details
of instruction execution may be difficult. It may require defining an interface
between the processor and the memory that doesn’t exist in the actual system
design.

The primary purpose of a specification is to help avoid errors. You should
specify those parts of the system for which a specification is most likely to reveal
errors. TLA™T is particularly effective at revealing concurrency errors—ones that
arise through the interaction of asynchronous components. So, when writing a
TLAT specification, you will probably concentrate your efforts on the parts of the
system that are most likely to have such errors. If that’s not where you should
be concentrating your efforts, then you probably shouldn’t be using TLA™.

7.3 The Grain of Atomicity

After choosing what part of the system to specify, you must choose the specifica-
tion’s level of abstraction. The most important aspect of the level of abstraction
is the grain of atomicity, the choice of what system changes are represented as
a single step of a behavior. Sending a message in an actual system involves
multiple suboperations, but we usually represent it as a single step. On the
other hand, the sending of a message and its receipt are usually represented as
separate steps when specifying a distributed system.

The same sequence of system operations is represented by a shorter sequence
of steps in a coarser-grained representation than in a finer-grained one. This
almost always makes the coarser-grained specification simpler than the finer-
grained one. However, the finer-grained specification more accurately describes
the behavior of the actual system. A coarser-grained specification may fail to
reveal important details of the system.

There is no simple rule for deciding on the grain of atomicity. However,
there is one way of thinking about granularity that can help. To describe it, we
need the TLAY action-composition operator “”. If A and B are actions, then
the action A-B is executed by executing first A then B as a single step. More



7.3. THE GRAIN OF ATOMICITY

77

precisely, A - B is the action defined by letting s — ¢ be an A - B step iff there
exists a state u such that s — u is an A step and u — t is a B step.

When determining the grain of atomicity, we must decide whether to repre-
sent the execution of an operation as a single step or as a sequence of steps, each
corresponding to the execution of a suboperation. Let’s consider the simple case
of an operation consisting of two suboperations that are executed sequentially,
where those suboperations are described by the two actions R and L. (Execut-
ing R enables L and disables R.) When the operation’s execution is represented
by two steps, each of those steps is an R step or an L step. The operation is
then described with the action RV L. When its execution is represented by
a single step, the operation is described with the action R-L.! Let S2 be the
finer-grained specification in which the operation is executed in two steps, and
let S1 be the coarser-grained specification in which it is executed as a single R- L
step. To choose the grain of atomicity, we must choose whether to take S1 or 52
as the specification. Let’s examine the relation between the two specifications.

We can transform any behavior ¢ satisfying S1 into a behavior o satisfying
S2 by replacing each step s L4 with the pair of steps s Eaul t, for some
state u. If we regard o as being equivalent to &, then we can regard S1 as being
a strengthened version of S2—one that allows fewer behaviors. Specification S1
requires that each R step be followed immediately by an L step, while S2 allows
behaviors in which other steps come between the R and L steps. To choose
the appropriate grain of atomicity, we must decide whether those additional
behaviors allowed by S2 are important.

The additional behaviors allowed by S2 are not important if the actual sys-
tem executions they describe are also described by behaviors allowed by S1. So,
we can ask whether each behavior 7 satisfying S2 has a corresponding behavior
7 satisfying S1 that is, in some sense, equivalent to 7. One way to construct 7
from 7 is to transform a sequence of steps

R A, A A, L
(7.1) s—>up —ug — U3 ... Up — Upy1 — ¢

into the sequence

Al Ak R L Ak+1 An
(72) § —> V1 ... Vg—2 — V-1 — Vg — Vg1 — UVg42 - Upyl1 — t

where the A; are other system actions that can be executed between the R and
L steps. Both sequences start in state s and end in state ¢, but the intermediate
states may be different.

When is such a transformation possible? An answer can be given in terms of
commutativity relations. We say that actions A and B commute if performing

IWe actually describe the operation with an ordinary action, like the ones we've been
writing, that is equivalent to R-L. The operator “” rarely appears in an actual specification.
If you're ever tempted to use it, look for a better way to write the specification; you can
probably find one.



78 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

them in either order produces the same result. Formally, A and B commute iff
A - B is equivalent to B-A. A simple sufficient condition for commutativity is
that two actions commute if (i) each one leaves unchanged any variable whose
value may be changed by the other, and (ii) neither enables or disables the other.
It’s not hard to see that we can transform (7.1) to (7.2) in the following two
cases:

e R commutes with each A,. (In this case, k = n.)
e L commutes with each A;. (In this case, k = 0.)

In general, if an operation consists of a sequence of m subactions, we must decide
whether to choose the finer-grained representation OV O3 V...V O,, or the
coarser-grained one 01 - Og--- O,. The generalization of the transformation
from (7.1) to (7.2) is one that transforms an arbitrary behavior satisfying the
finer-grained specification into one in which the sequence of Oy, Osg, ..., O,
steps come one right after the other. Such a transformation is possible if all but
one of the actions O; commute with every other system action. Commutativity

can be replaced by weaker conditions, but it is the most common case.
O Om
By commuting actions and replacing a sequence s 2o D tof steps by

a single O; --- O,, step, you may be able to transform any behavior of a finer-
grained specification into a corresponding behavior of a coarser-grained one.
But that doesn’t mean that the coarser-grained specification is just as good as
the finer-grained one. The sequences (7.1) and (7.2) are not the same, and a
sequence of O; steps is not the same as a single O1 - -- O,, step. Whether you
can consider the transformed behavior to be equivalent to the original one, and
use the coarser-grained specification, depends on the particular system you are
specifying and on the purpose of the specification. Understanding the relation
between finer- and coarser-grained specifications can help you choose between
them; it won’t make the choice for you.

7.4 The Data Structures

Another aspect of a specification’s level of abstraction is the accuracy with which
it describes the system’s data structures. For example, should the specification
of a program interface describe the actual layout of a procedure’s arguments in
memory, or should the arguments be represented more abstractly?

To answer such a question, you must remember that the purpose of the spec-
ification is to help catch errors. A precise description of the layout of procedure
arguments will help prevent errors caused by misunderstandings about that lay-
out, but at the cost of complicating the program interface’s specification. The
cost is justified only if such errors are likely to be a real problem and the TLAY
specification provides the best way to avoid them.



7.5. WRITING THE SPECIFICATION

79

If the purpose of the specification is to catch errors caused by the asyn-
chronous interaction of concurrently executing components, then detailed de-
scriptions of data structures will be a needless complication. So, you will proba-
bly want to use high-level, abstract descriptions of the system’s data structures
in the specification. For example, to specify a program interface, you might
introduce constant parameters to represent the actions of calling and return-
ing from a procedure—parameters analogous to Send and Reply of the memory
interface described in Section 5.1 (page 45).

7.5 Writing the Specification

Once you’ve chosen the part of the system to specify and the level of abstraction,
you're ready to start writing the TLA™T specification. We've already seen how
this is done; let’s review the steps.

First, pick the variables and define the type invariant and initial predicate.
In the course of doing this, you will determine the constant parameters and
assumptions about them that you need. You may also have to define some
additional constants.

Next, write the next-state action, which forms the bulk of the specification.
Sketching a few sample behaviors may help you get started. You must first decide
how to decompose the next-state action as the disjunction of actions describing
the different kinds of system operations. You then define those actions. The
goal is to make the action definitions as compact and easy to read as possible,
which requires carefully structuring them. Omne way to reduce the size of a
specification is to define state predicates and state functions that are used in
several different action definitions. When writing the action definitions, you will
determine which of the standard modules you need and will add the appropriate
EXTENDS statement. You may also have to define some constant operators for
the data structures that you are using.

You must now write the temporal part of the specification. If you want
to specify liveness properties, you have to choose the fairness conditions, as
described below in Chapter 8. You then combine the initial predicate, next-
state action, and any fairness conditions you’ve chosen into the definition of a
single temporal formula that is the specification.

Finally, you can assert theorems about the specification. If nothing else, you
probably want to add a type-correctness theorem.

7.6 Some Further Hints

Here are a few miscellaneous suggestions that may help you write better speci-
fications.



80 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

Don’t be too clever.

Cleverness can make a specification hard to read—and even wrong. The formula
g = (k') o ¢’ may look like a nice, short way of writing:

(7.3) (W' = Head(q)) A (¢’ = Tail(q))

But not only is ¢ = (h’) o ¢’ harder to understand than (7.3), it’s also wrong,.
We don’t know what a o b equals if ¢ and b are not both sequences, so we don’t
know whether &' = Head(q) and ¢’ = Tuil(q) are the only values of b’ and ¢’
that satisfy ¢ = (h’) o ¢’. There could be other values of A’ and ¢’, which are
not sequences, that satisfy the formula.

In general, the best way to specify the new value of a variable v is with a
conjunct of the form v = exp or v’ € exp, where exp is a state function—an
expression with no primes.

A type invariant is not an assumption.

Type invariance is a property of a specification, not an assumption. When
writing a specification, we usually define a type invariant. But that’s just a
definition; a definition is not an assumption. Suppose you define a type invariant
that asserts that a variable n is of type Nat. You may be tempted then to think
that a conjunct n’ > 7 in an action asserts that n’ is a natural number greater
than 7. It doesn’t. The formula n’ > 7 asserts only that n’ > 7. It is satisfied
if n/ = /96 as well as if n’ = 8. Since we don’t know whether or not “abc” > 7
is true, it might be satisfied even if n’ = “abc”. The meaning of the formula is
not changed just because you've defined a type invariant that asserts n € Nat.

In general, you may want to describe the new value of a variable x by assert-
ing some property of z’. However, the next-state action should imply that z’ is
an element of some suitable set. For example, a specification might define:?

Actionl = (n' >7) A ...
Action2 = (n' <6) A ...
Next = (n' € Nat) A (Actionl V Action2)

Don’t be too abstract.

Suppose a user interacts with the system by typing on a keyboard. We could
describe the interaction abstractly with a variable typ and an operator parameter
KeyStroke, where the action KeyStroke(“a”, typ, typ’) represents the user typing

an “a”. This is the approach we took in describing the communication between
the processors and the memory in the MemoryInterface module (page 48).

2An alternative approach is to define Next to equal Actionl V Action2 and to let the
specification be Init A O[Next]... A O(n € Nat). But it’s usually better to stick to the simple

form Init A O[Next]... for specifications.



7.6. SOME FURTHER HINTS

81

A more concrete description would be to let kbd represent the state of the
keyboard, perhaps letting kbd = {} mean that no key is depressed, and kbd =
{“a”} mean that the a key is depressed. The typing of an a is represented by
two steps, a [kbd = {}] — [kbd = {“a”}] step represents the pressing of the a
key, and a [kbd = {“a”}] — [kbd = {}] step represents its release. This is the
approach we took in the asynchronous interface specifications of Chapter 3.

The abstract interface is simpler; typing an a is represented by a single
KeyStroke(“a”, typ, typ’) step instead of a pair of steps. However, using the
concrete representation leads us naturally to ask: what if the user presses the a
key and, before releasing it, presses the b key? That’s easy to describe with the
concrete representation. The state with both keys depressed is kbd = {“a”, “b”}.
Pressing and releasing a key are represented simply by the two actions

Press(k) = kbd' = kbd U {k} Release(k) = kbd' = kbd \ {k}
The possibility of having two keys depressed cannot be expressed with the sim-
ple abstract interface. To express it abstractly, we would have to replace the
parameter KeyStroke with two parameters PressKey and ReleaseKey, and we
would have to express explicitly the property that a key can’t be released until
it has been depressed, and vice-versa. The more concrete representation is then
simpler.

We might decide that we don’t want to consider the possibility of two keys
being depressed, and that we prefer the abstract representation. But that should
be a conscious decision. Our abstraction should not blind us to what can happen
in the actual system. When in doubt, it’s safer to use a concrete representation
that more accurately describes the real system. That way, you are less likely to
overlook real problems.

Don’t assume values that look different are unequal.

The rules of TLAY do not imply that 1 # “a”. If the system can send a message
that is either a string or a number, represent the message as a record with a
type and value field—for example,

“ ”]

[type — “String”, value — “a”] or [type — “Nat”, value — 1]

We know that these two values are different because they have different type
fields.
Move quantification to the outside.

Specifications are usually easier to read if 3 is moved outside disjunctions and
V is moved outside conjunctions. For example, instead of

Up £ Je € Elevator : ...
Down = 3e € Elevator : ...
Move = Up V Down



82 CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE

it’s usually better to write

Up(e)
Down(e)
Mowve

e e 1

Je € Elevator : Up(e) V Down(e)

Prime only what you mean to prime.

When writing an action, be careful where you put your primes. The expression
fle]’ equals f'[e']; it equals f'[e] only if ¢/ = e, which need not be true if the
expression e contains variables. Be especially careful when priming an operator
whose definition contains a variable. For example, suppose z is a variable and
op is defined by

op(a) = z+4a
Then op(y)’ equals (z+y)’, which equals z’+y’, while op(y’) equals z+y’. There
is no way to use op and ’ to write the expression z’ 4+ y. (Writing op’(y) doesn’t
work because it’s illegal—you can prime only an expression, not an operator.)

Write comments as comments.

Don’t put comments into the specification itself. I have seen people write things
like the following action definition:

A2 VAz>0
AL
VAz<O
A FALSE

The second disjunct is meant to indicate that the writer intended A not to be
enabled when x < 0. But that disjunct is completely redundant, since F' AFALSE
equals FALSE, and F VFALSE equals F', for any formula F. So the second disjunct
of the definition serves only as a form of comment. It’s better to write

A = A x>0 Aisnot enabled if z < 0
VAN

7.7 When and How to Specify

Specifications are often written later than they should be. Engineers are usually
under severe time constraints, and they may feel that writing a specification will
slow them down. Only after a design has become so complex that they need help
understanding it do most engineers think about writing a precise specification.



7.7. WHEN AND HOW TO SPECIFY

83

Writing a specification helps you think clearly. Thinking clearly is hard; we
can use all the help we can get. Making specification part of the design process
can improve the design.

I have described how to write a specification assuming that the system de-
sign already exists. But it’s better to write the specification as the system is
being designed. The specification will start out being incomplete and probably
incorrect. For example, an initial specification of the write-through cache of
Section 5.6 (page 54) might include the definition:

. A
RdMZSS(p) = Enqueue a request to write value from memory to p’s cache.

Some enabling condition must be conjoined here.

A mem@Q' = Append(memQ, buf [p]) Append request to memQ@).

A ctl’ = [etl EXCEPT ![p] = “?7] Set cti[p] to value to be determined later.

A UNCHANGED (memlInt, wmem, buf, cache)

Some system functionality will at first be omitted; it can be included later by
adding new disjuncts to the next-state action. Tools can be applied to these
preliminary specifications to help find design errors.



84

CHAPTER 7. WRITING A SPECIFICATION: SOME ADVICE




Part 11

More Advanced Topics

85






Chapter 8

Liveness and Fairness

The specifications we have written so far say what a system must not do. The
clock must not advance from 11 to 9; the receiver must not receive a message
if the FIFO is empty. They don’t require that the system ever actually do
anything. The clock need never tick; the sender need never send any messages.
Our specifications have described what are called safety properties. If a safety
property is violated, it is violated at some particular point in the behavior—by
a step that advances the clock from 11 to 9, or that reads the wrong value from
memory. Therefore, we can talk about a safety property being satisfied by a
finite behavior, which means that it has not been violated by any step so far.

We now learn how to specify that something does happen—that the clock
keeps ticking, or that a value is eventually read from memory. We specify liveness
properties—ones that cannot be violated at any particular instant. Only by
examining an entire infinite behavior can we tell that the clock has stopped
ticking, or that a message is never sent.

We express liveness properties as temporal formulas. This means that, to
add liveness conditions to your specifications, you have to understand temporal
logic—the logic of temporal formulas. The chapter begins, in Section 8.1, with
a more rigorous look at what a temporal formula means. To understand a logic,
you have to understand what its true formulas are. Section 8.2 is about temporal
tautologies, the true formulas of temporal logic. Sections 8.4-8.7 describe how
to use temporal formulas to specify liveness properties. Section 8.8 completes
our study of temporal logic by examining the temporal quantifier 3. Finally,
Section 8.9 reviews what we’ve done and explains why the undisciplined use of
temporal logic is dangerous.

This chapter is the only one that contains proofs. It would be nice if you
learned to write similar proofs yourself, but it doesn’t matter if you don’t.
The proofs are here because studying them can help you develop the intuitive
understanding of temporal formulas that you need to write specifications—

87



88 CHAPTER 8. LIVENESS AND FAIRNESS

an understanding that makes the truth of a simple temporal tautology like
OO0OF = OF as obvious as the truth of a simple theorem about numbers like
Vn & Nat:2*xn > n.

Many readers will find that this chapter taxes their mathematical ability.
Don’t worry if you have trouble understanding it. Treat this chapter as an
exercise to stretch your mind and prepare you to add liveness properties to your
specifications. And remember that liveness properties are likely to be the least
important part of your specification. You will probably not lose much if you
simply omit them.

8.1 Temporal Formulas

Recall that a state assigns a value to every variable, and a behavior is an infinite
sequence of states. A temporal formula is true or false of a behavior. Formally,
a temporal formula F' assigns a Boolean value, which we write o = F, to a
behavior o. We say that F' is true of o, or that o satisfies F, iff o | F equals
TRUE. To define the meaning of a temporal formula F', we have to explain how
to determine the value of o = F for any behavior o. For now, we consider only
temporal formulas that don’t contain the temporal existential quantifier 3.

It’s easy to define the meaning of a Boolean combination of temporal formulas
in terms of the meanings of those formulas. The formula F A G is true of a
behavior ¢ iff both F' and G are true of o, and —F is true of ¢ iff F' is not true
of 0. These definitions are written more formally as:

cE(FAG) 2 GEFRAGEG — oF-F 2 ~(0kF)

These are the definitions of the meaning of A and of — as operators on temporal
formulas. The meanings of the other Boolean operators are similarly defined.
We can also define in this way the ordinary predicate-logic quantifiers V and 3
as operators on temporal formulas—for example:

cE=@r:F) £ 3r: (cEF)

Ordinary quantification over constant sets is defined the same way. For example,
if S is an ordinary constant expression—that is, one containing no variables—
then:
cE(WreS:F) = VreS:(cF)
Quantifiers are discussed further in Section 8.8.
All the unquantified temporal formulas that we’ve seen have been Boolean
combinations of three simple kinds of formulas, which have the following mean-

ings: State function
. . . L and state predi-
e A state predicate, viewed as a temporal formula, is true of a behavior iff cqte are defined

it is true in the first state of the behavior. on page 25.



8.1. TEMPORAL FORMULAS

e A formula OP, where P is a state predicate, is true of a behavior iff P is
true in every state of the behavior.

e A formula O[N],, where N is an action and v is a state function, is true of
a behavior iff every successive pair of steps in the behavior is a [N], step.

Since a state predicate is an action that contains no primed variables, we can
both combine and generalize these three kinds of temporal formulas into the two
kinds of formulas A and OA, where A is an action. I'll first explain the meanings
of these two kinds of formulas, and then define the operator O in general. To
do this, I will use the notation that o; is the (i + 1)t state of the behavior o,
for any natural number 4, so ¢ is the behavior o9 — 01 — g9 — - -+

We interpret an arbitrary action A as a temporal formula by defining o = A
to be true iff the first two states of o are an A step. That is, we define o = A to
be true iff o9 — o1 is an A step. In the special case when A is a state predicate,
oo — o1 is an A step iff A is true in state op, so this definition of ¢ = A
generalizes our interpretation of a state predicate as a temporal formula.

We have already seen that O[N], is true of a behavior iff each step is a [N],
step. This leads us to define o = OA to be true iff 0,, — 0,41 is an A step, for
all natural numbers n.

We now generalize from the definition of o = OA for an action A to the
definition of ¢ = OF for an arbitrary temporal formula F. We defined ¢ = 0A
to be true iff o,, — 0,41 is an A step for all n. This is true iff A, interpreted as
a temporal formula, is true of a behavior whose first step is o, — 0,41, for all
n. Let’s define 7™ to be the suffix of ¢ obtained by deleting its first n states:

+n A
o = Op = 0ntl 7 Op42 — "

Then o, — 0,41 is the first step of 01", so 0 = 04 is true iff 67" = A is true
for all n. In other words:

cFEOA = VneNat: ot A
The obvious generalization is:

c=0F = VYneNat:o™mEF

for any temporal formula F. In other words, o satisfies OF iff every suffix o*"
of o satisfies F. This defines the meaning of the temporal operator O.

We have now defined the meaning of any temporal formula built from ac-
tions (including state predicates), Boolean operators, and the O operator. For
example:

o O((x=1)= 0y > 0)

)
= VYn&Nat:ot? E((z=1)=0(y>0)) By the meaning of O.
= Vn € Nat : (0.+n E(z=1)= (0.+n E O(y >0)) By the meaning of =
= Vn € Nat : ( (z=1)) = By the meaning of O.

=
m



90 CHAPTER 8. LIVENESS AND FAIRNESS

Thus, 0 = O((z = 1) = O(y > 0)) is true iff, for all n € Nat, if x = 1 is true in
state o, then y > 0 is true in all states o, ., with m > 0.

To understand temporal formulas intuitively, think of o, as the state of
the universe at time instant n during the behavior o.! For any state pred-
icate P, the expression o*t" = P asserts that P is true at time n. Thus,
O((z =1) = 0O(y > 0)) asserts that, any time z = 1 is true, y > 0 is true from
then on. For an arbitrary temporal formula F, we also interpret o™ = F as
the assertion that F' is true at time instant n. The formula OF then asserts
that F is true at all times. We can therefore read O as always or henceforth or
from then on.

We saw in Section 2.2 that a specification should allow stuttering steps—ones
that leave unchanged all the variables appearing in the formula. A stuttering
step represents a change only to some part of the system not described by the
formula; adding it to the behavior should not affect the truth of the formula.
We say that a formula F is invariant under stuttering? iff adding or deleting a
stuttering step to a behavior ¢ does not affect whether o satisfies F. A sensible
formula should be invariant under stuttering. There’s no point writing formulas
that aren’t sensible, so TLA allows you to write only temporal formulas that are
invariant under stuttering.

A state predicate (viewed as a temporal formula) is invariant under stutter-
ing, since its truth depends only on the first state of a behavior, and adding a
stuttering step doesn’t change the first state. An arbitrary action is not invari-
ant under stuttering. For example, the action [z/ = z + 1], is satisfied by a
behavior ¢ in which z is left unchanged in the first step and incremented by 2
in the second step; it isn’t satisfied by the behavior obtained by removing the
initial stuttering step from o. However, the formula Oz’ = z + 1], is invariant
under stuttering, since it is satisfied by a behavior iff every step that changes z
is an 2’ = z + 1 step—a condition not affected by adding or deleting stuttering
steps.

In general, the formula O[A], is invariant under stuttering, for any action
A and state function v. However, OA is not invariant under stuttering for an
arbitrary action A. For example, O(2’ = 2 + 1) can be made false by adding a
step that does not change z. So, even though we have assigned a meaning to
O(z' =z + 1), it isn’t a legal TLA formula.

Invariance under stuttering is preserved by O and by the Boolean operators—
that is, if F' and G are invariant under stuttering, then so are OF, =F, F A G,
Vz e S:F, ete. So, state predicates, formulas of the form O[N], and all for-
mulas obtainable from them by applying O and Boolean operators are invariant
under stuttering.

Tt is because we think of o, as the state at time n, and because we usually measure time
starting from 0, that I number the states of a behavior starting with 0 rather than 1.

2This is a completely new sense of the word invariant; it has nothing to do with the concept
of invariance discussed already.



8.1. TEMPORAL FORMULAS

91

We now examine five especially important classes of formulas that are con-
structed from arbitrary temporal formulas F' and G. We introduce new opera-
tors for expressing the first three.

OF is defined to equal =O—F'. It asserts that F' is not always false, which means
that F is true at some time:

ocECOF
=0 ': -O0-F By definition of <.
= - (o E O-F) By the meaning of —.

- (Vn € Nat : otn = —F) By the meaning of O.
ﬁ(Vn € Nat : ﬁ(0'+n ': F)) By the meaning of —.
= In € Nat : o™ ’: F Because =V — is equivalent to 3.

We usually read < as eventually, taking eventually to include now.

F ~ @ is defined to equal O(F = ©G). The same kind of calculation we just
did for o = OF shows:

ok (F G) =
Vn € Nat : (67" = F)= (3m € Nat : (ct(*t™) = @)

The formula F ~» G asserts that whenever F is true, G is eventually
true—that is, G is true then or at some later time. We read ~+ as leads to.

O(A), is defined to equal =O[—A],, where A is an action and v a state function.
Tt asserts that not every step is a (mA) V (v' = v) step, so some step is a
=((=A4) V (v = v)) step. Since (P V Q) is equivalent to (=P) A (=Q),
for any P and @, action —~((=A) V (v' = v)) is equivalent to A A (v' # v).
Hence, O(A), asserts that some step is an A A (v' # v) step—that is, an
A step that changes v. We define the action (A), by

(A), 2 AN #0)

so O(A), asserts that eventually an (A), step occurs. We think of G(A),
as the formula obtained by applying the operator < to (A),, although
technically it’s not because {A), isn’t a temporal formula.

OCF asserts that at all times, F' is true then or at some later time. For time 0,
this implies that F' is true at some time ny > 0. For time ng+ 1, it implies
that F' is true at some time ny > ng + 1. For time nq + 1, it implies that
F is true at some time ny > ny + 1. Continuing the process, we see that
F is true at an infinite sequence of time instants ng, n1, ns,.... So, OCF
implies that F' is true at infinitely many instants. Conversely, if F' is true
at infinitely many instants, then, at every instant, F must be true at some
later instant, so OCF is true. Therefore, OCF asserts that F is infinitely
often true. In particular, OC(A), asserts that infinitely many (A), steps
occur.

I pronounce (A),
as angle A sub v.



92 CHAPTER 8. LIVENESS AND FAIRNESS

OOF asserts that eventually (at some time), F becomes true and remains true
thereafter. In other words, COF asserts that F' is eventually always true.
In particular, GO[N], asserts that, eventually, every step is a [N], step.

The operators O and <& have higher precedence (bind more tightly) than the
Boolean operators, so OF VOG means (OF)V (OG). The operator ~ has
lower precedence than A and V.

8.2 Temporal Tautologies

A temporal theorem is a temporal formula that is satisfied by all behaviors.
In other words, F' is a theorem iff o0 = F' equals TRUE for all behaviors o. For
example, the HourClock module asserts that HC = OHC(C'ini is a theorem, where
HC and HC'ini are the formulas defined in the module. This theorem expresses
a property of the hour clock.

The formula OHCini = HCini is also a theorem. However, it tells us nothing
about the hour clock because it’s true regardless of how HCini is defined. For
example, substituting « > 7 for HCini yields the theorem O(z > 7) = (z > 7).
A formula like OHCini = HCini that is true when any formulas are substituted
for its identifiers is called a tautology. To distinguish them from the tautologies
of ordinary logic, tautologies containing temporal operators are sometimes called
temporal tautologies.

Let’s prove that OHCini = HCini is a temporal tautology. To avoid con-
fusing the arbitrary identifier HCini in this tautology with the formula HCing
defined in the HourClock module, let’s replace it by F', so the tautology becomes
OF = F. There are axioms and inference rules for temporal logic from which we
can prove any temporal tautology that, like OF = F', contains no quantifiers.
However, it’s often easier and more instructive to prove them directly from the
meanings of the operators. We prove that OF = F' is a tautology by proving
that o = (OF = F) equals TRUE, for any behavior o and any formula F. The
proof is simple:

O')Z(DF=>F) = (U|:DF):>(U'=F) By the meaning of =.
(Vn€ Nat : 6T = F)= (0 = F) By definition of O.
(Vn € Nat : otn EF)= (0’+0 E F') By definition of ot©.
= TRUE By predicate logic.

The temporal tautology OF = F asserts the obvious fact that, if F is true at
all times, then it’s true at time 0. Such a simple tautology should be obvious
once you become accustomed to thinking in terms of temporal formulas. Here
are three more simple tautologies, along with their English translations.

-0F = O=F
F is not always true iff it is eventually false.



8.2. TEMPORAL TAUTOLOGIES

93

O(FAG)=(0OF)A(OG)
F and G are both always true iff F' is always true and G is always true.
Another way of saying this is that O distributes over A.

O(FV G)=(OF)V (©G)
F or G is eventually true iff F' is eventually true or G is eventually true.
Another way of saying this is that < distributes over V.

At the heart of the proof of each of these tautologies is a tautology of predicate
logic. For example, the proof that O distributes over A relies on the fact that V
distributes over A:

cE(OFAG)=(0OF)A(BG))

= (cEOFAG)) = (o = (OF)A(OG)) By the meaning of =.
= (cEOWFAG) = (c EOF)A(c EOG) By the meaning of A.
= (Vn € Nat : o™ ': (F A G)) = By definition of O.

(VneNat : o™ = F) A (Vn € Nat : o™ = Q)

= TRUE By the predicate-logic tautology (Vz € S: PAQ) = Vz € S:P)A(Vz € 5: Q).

The operator O doesn’t distribute over V, nor does < distribute over A. For
example, O((n > 0) V (n < 0)) is not equivalent to (O(n > 0) V O(n < 0));
the first formula is true for any behavior in which n is always a number, but
the second is false for a behavior in which n assumes both positive and negative
values. However, the following two formulas are tautologies:

(OF)V (OG) = O(F V G) O(F A G) = (OF) A (OG)

Either of these tautologies can be derived from the other by substituting —F' for
F and -G for G. Making this substitution in the second tautology yields:

TRUE = O((0F) A (G)) = (O—F) A (©O=G) By substitution in the second tautology.
= O=(FVGE)= (O-F) A (O-G) Because (-P A—=Q) = (P V Q).
= -0O(FVG)= (-0OF)A(-0OG) Because O—H = -0H.
= -0O(FVG)=—~((0F)Vv(0G)) Because (mP A—=Q) = (P V Q).
= (OF)Vv(0OG)=0(FVG) Because (=P = —=Q) = (Q = P).

This pair of tautologies illustrates a general law: from any temporal tautology,
we obtain a dual tautology by making the replacements

0O« < O — O A «— V V «— A

and reversing the direction of all implications. (Any = or - is left unchanged.)
As in the example above, the dual tautology can be proved from the original by
replacing each identifier with its negation and applying the (dual) tautologies
O=F = -0F and -OF = O-F along with propositional-logic reasoning.



94 CHAPTER 8. LIVENESS AND FAIRNESS

Another important pair of dual tautologies assert that OO distributes over
V and <O distributes over A:

(8.1) OO(FVG) = (OCF)V (OCG) CO(F A G) = (©OF) A (©OG)

The first asserts that F' or G is true infinitely often iff F' is true infinitely often
or G is true infinitely often. Its truth should be fairly obvious, but let’s prove it.
To reason about O, it helps to introduce the symbol 3., which means there
exist infinitely many. In particular, 3o¢ € Nat: P(i) means that P(i) is true
for infinitely many natural numbers 7. On page 91, we showed that OC F asserts
that F' is true infinitely often. Using 3., we can express this as:

(82) (0 EOOF) = (3i€ Nat : o' = F)

The same reasoning proves the following more general result, where P is any
operator.

(8.3) (Vn € Nat : 3m € Nat : P(n+m)) = Fui € Nat : P(i)

Here is another useful tautology involving 3., where P and @ are arbitrary
operators and S is an arbitrary set.

(84) (Fi€ S : PG)VQU) = Buai€ S : P(i))V (3ci €8 : Qi)

Using these results, it’s now easy to prove that O distributes over V:

o E=EO0(FVG)
= Ji€Nat : o = (FVG) By (8.2).
= (i€ Nat : 07" = F) V (3i € Nat : 07 = G) By (84).
= (c EOCF) V (0 EOCG) By (8.2).

From this, we deduce the dual tautology, that <O distributes over A.

In any TLA tautology, replacing a temporal formula by an action yields a
tautology—a formula that is true for all behaviors—even if that formula isn’t a
legal TLA formula. (Remember that we have defined the meaning of nonTLA
formulas like O(z’ = 2 +1).) We can apply the rules of logic to transform those
nonTLA tautologies into TLA tautologies. Among these rules are the following
dual equivalences, which are easy to check.

[ANBl, = [AlLA[Bl,  (AVB), = (4),V(B),

(The second asserts that an A V B step that changes v is either an A step that
changes v or a B step that changes v.)

As an example of substituting actions for temporal formulas in TLA tautolo-
gies, let’s substitute (A), and (B), for F and G in the first tautology of (8.1)
to get

(8.5) OO((A)y V(B),) = (OOC(A4),) vV (OO(B),)



8.3. TEMPORAL PROOF RULES

95

This isn’t a TLA tautology, because OOC((A), V (B),) isn’t a TLA formula.
However, a general rule of logic tells us that replacing a subformula by an equiv-
alent one yields an equivalent formula. Substituting (A V B), for (4), V (B),
in (8.5) gives us the following TLA tautology:

OO(AV B, = (30(4),)V (DO(B),)

8.3 Temporal Proof Rules

A proof rule is a rule for deducing true formulas from other true formulas. For
example, the Modus Ponens Rule of propositional logic tells us that, for any
formulas F' and G, if we have proved F and F = G, then we can deduce
G. Since the laws of propositional logic hold for temporal logic as well, we
can apply the Modus Ponens Rule when reasoning about temporal formulas.
Temporal logic also has some proof rules of its own. One is:

Generalization Rule From F we can infer OF, for any temporal for-
mula F.

This rule asserts that, if F' is true for all behaviors, then so is OF. To prove it,
we must show that, if o = F is true for every behavior o, then 7 = OF is true
for every behavior 7. The proof is easy:

TEOF = VneNalt : 77" = F By definition of O.

= TRUE By predicate logic.
Another temporal proof rule is:

Implies Generalization Rule From F = G we can infer OF = OG,
for any temporal formulas F' and G.

The Generalization Rule can be derived from the Implies Generalization Rule
and the tautology TRUE = OTRUE by substituting TRUE for F' and F for G.
The difference between a temporal proof rule and a temporal tautology can be
confusing. In propositional logic, every proof rule has a corresponding tautology.
The Modus Ponens Rule, which asserts that we can deduce G by proving F' and
F = @G, implies the tautology FA(F = G) = G. But in temporal logic, a proof
rule need not imply a tautology. The Generalization Rule, which states that we
can deduce OF by proving F', does not imply that F' = OF is a tautology. The
rule means that, if o = F is true for all o, then ¢ = OF is true for all o. That’s
different from the (false) assertion that F = OF is a tautology, which would
mean that o |= (F = OF) is true for all 0. For example, o = (F = OF) equals
FALSE if F' is a state predicate that is true in the first state of o and is false
in some other state of . Forgetting the distinction between a proof rule and a
tautology is a common source of mistakes when using temporal logic.

Vn € Nat : TRUE By the assumption that o = F equals TRUE, for all o.



96 CHAPTER 8. LIVENESS AND FAIRNESS

8.4 Weak Fairness

It’s easy to specify liveness properties with the temporal operators O and <. For
example, consider the hour-clock specification of module HourClock in Figure 2.1
on page 20. We can require that the clock never stops by asserting that there
must be infinitely many HCnat steps. The obvious way to write this assertion is
OO HCnat, but that’s not a legal TLA formula because HCnzt is an action, not
a temporal formula. However, an HCnzt step advances the value hr of the clock,
so it changes hr. Therefore, an HCnxt step is also an HCnxt step that changes
hr—that is, it’s an ( HCnat )5, step. We can thus write the liveness property that
the clock never stops as OC(HCnat)p,. So, we can take HC' A OO HCnat) p,,
to be the specification of a clock that never stops.

Before continuing, I must make a confession and then lead you on a brief
digression about subscripts. Let me first confess that the argument I just gave,
that we can write OO HCnat )y, in place of OO HCnat, was sloppy (a polite term
for wrong). Not every HCnat step changes hr. Consider a state in which hr
has some value that is not a number—perhaps a value co. An HCnaxt step that
starts in such a state sets the new value of hr to co + 1. We don’t know what
00 4 1 equals; it might or might not equal co. If it does, then the HCnat step
leaves hr unchanged, so it is not an { HCnzt)p, step. Fortunately, states in which
the value of hr is not a number are irrelevant. Because we are conjoining the
liveness condition to the safety specification HC, we care only about behaviors
that satisfy HC'. In all such behaviors, hAr is always a number, and every HCnaxt
step is an ( HCnat)p, step. Therefore, HC' A OO (HCnat )y, is equivalent to the
nonTLA formula HC A OO HCnat.3

When writing liveness properties, the syntax of TLA often forces us to write
(A), instead of A, for some action A. As in the case of HCnat, the safety
specification usually implies that any A step changes some variable. To avoid
having to think about which variables A actually changes, we generally take the
subscript v to be the tuple of all variables, which is changed iff any variable
changes. But what if A does allow stuttering steps? It’s silly to assert that a
stuttering step eventually occurs, since such an assertion is not invariant under
stuttering. So, if A does allow stuttering steps, we want to require not that an
A step eventually occurs, but that a nonstuttering A step occurs—that is, an
(A), step, where v is the tuple of all the specification’s variables. The syntax
of TLA forces us to say what we should mean.

When discussing formulas, I will usually ignore the angle brackets and sub-
scripts. For example, I might describe OO( HCnat )y, as the assertion that there
are infinitely many HCnaxt steps, rather than infinitely many ( Hnat )y,., which is
what it really asserts. This finishes the digression; we now return to specifying
liveness conditions.

3Even though HC' A OOHCnat is not a TLA formula, its meaning has been defined, so we
can determine whether it is equivalent to a TLA formula.



8.4. WEAK FAIRNESS

97

Let’s modify specification Spec of module Channel (Figure 3.2 on page 30)
to require that every value sent is eventually received. We do this by conjoining
a liveness condition to Spec. The analog of the liveness condition for the clock is
OO( Rev) chan, which asserts that there are infinitely many Rcv steps. However,
only a value that has been sent can be received, so this condition would also
require that infinitely many values be sent—a requirement we don’t want to
make. We want to permit behaviors in which no value is ever sent, so no value is
ever received. We require only that any value that is sent is eventually received.

To assure that all values that should be received are eventually received, it
suffices to require only that the next value to be received eventually is received.
(When that value has been received, the one after it becomes the next value to
be received, so it must eventually be received, and so on.) More precisely, we
need only require it always to be the case that, if there is a value to be received,
then the next value to be received eventually is received. The next value is
received by a Rcv step, so the requirement is:*

O(There is an unreceived value = <(Rev) chan)

There is an unreceived value iff action Rcwv is enabled, meaning that it is possible
to take a Rcv step. TLA™ defines ENABLED A to be the predicate that is true
iff action A is enabled. The liveness condition can then be written:

(8.6) DO(ENABLED (Rcv) chan = O(Rc)chan)

In the ENABLED formula, it doesn’t matter if we write Rcv or ( Rcv) chan. We
add the angle brackets so the two actions appearing in the formula are the same.

In any behavior satisfying the safety specification HC, it’s always possible
to take an HCnxt step that changes hr. Action { HCnat)p, is therefore al-
ways enabled, so ENABLED { HCnxt ) p, is true throughout such a behavior. Since
TRUE = O{HCnat )y, is equivalent to O(HCnat )y, we can replace the liveness
condition OC( HCnat )y, for the hour clock with:

O(ENABLED ( HCnat )y, = O(HCnat ) py)
This suggests the following general liveness condition for an action A:
O(ENABLED (A), = O(A4),)

This condition asserts that, if A ever becomes enabled, then an A step will
eventually occur—even if A remains enabled for only a fraction of a nanosecond
and is never again enabled. The obvious practical difficulty of implementing
such a condition suggests that it’s too strong. So, we replace it with the weaker
formula WF, (A), defined to equal:

(8.7) O(OENABLED (A), = O(A),)

40(F = ©G) equals F ~» G, so we could write this formula more compactly with ~.
However, it’s more convenient to keep it in the form O(F = ©G)



98 CHAPTER 8. LIVENESS AND FAIRNESS

This formula asserts that if A ever becomes forever enabled, then an A step must
eventually occur. WF stands for Weak Fairness, and the condition WF,, (A4) is
called weak fairness on A. We’ll soon see that our liveness conditions for the
clock and the channel can be written as WF formulas. But first, let’s examine
(8.7) and the following two formulas, which turn out to be equivalent to it:

(8.8) OO(—ENABLED (A4),) vV OO(A),
(8.9) <OO(ENABLED (A),) = OO(A),

These three formulas can be expressed in English as:

(8.7) It’s always the case that, if A is enabled forever, then an A step eventually
occurs.

(8.8) A is infinitely often disabled, or infinitely many A steps occur.
(8.9) If A is eventually enabled forever, then infinitely many A steps occur.

The equivalence of these three formulas isn’t obvious. Trying to deduce their
equivalence from the English expressions often leads to confusion. The best way
to avoid confusion is to use mathematics. We show that the three formulas are
equivalent by proving that (8.7) is equivalent to (8.8) and that (8.8) is equivalent
to (8.9). Instead of proving that they are equivalent for an individual behavior,
we can use tautologies that we’ve already seen to prove their equivalence directly.
Here’s a proof that (8.7) is equivalent to (8.8). Studying it will help you learn
to write liveness conditions.

O(OENABLED (A4), = ¢(A4),)

= O(-OENABLED (A), VO(A),)  Because (F = G) = (-FV Q).
O(O-ENABLED (A4), V<(A),)  Because ~OF = O-F.
OO(—ENABLED (A), V (4),) Because OF V OG = O(F V Q).
= OO(-ENABLED (A4),) VOO(A), Because OO(F V G) = OOCF v OOG.

The equivalence of (8.8) and (8.9) is proved as follows.

OO (-ENABLED (A4),) VOO(A),
= —OO(ENABLED (4),) VOO(A), Because O0-F = O-0F = ~00F.
= OO(ENABLED (A),) = OOC(A), Because (F = G) = (-FV G).

We now show that the liveness conditions for the hour clock and the channel
can be written as weak fairness conditions.

First, consider the hour clock. In any behavior satisfying HC', an { HCnat ) p,
step is always enabled, so CO(ENABLED ( HCnzt)p,) equals TRUE. Therefore,
HC implies that WF},.(HCnat), which equals (8.9), is equivalent to formula
OO(HCnat )y, our liveness condition for the hour clock.



8.4. WEAK FAIRNESS

99

Now, consider the channel. T claim that the liveness condition (8.6) can be
replaced by WF 54, (Rev). More precisely, Spec implies that these two formulas
are equivalent, so conjoining either of them to Spec yields equivalent specifica-
tions. The proof rests on the observation that, in any behavior satisfying Spec,
once Rcv becomes enabled (because a value has been sent), it can be disabled
only by a Rev step (which receives the value). In other words, it’s always the
case that if Rcv is enabled, then it is enabled forever or a Rcv step eventually
occurs. Stated formally, this observation asserts that Spec implies

(8.10) O (ENABLED { Rcv) chan = DO(ENABLED ( Rcv) chan) V C{RCV) chan )

We show that we can take WF ¢p4, (Rcv) as our liveness condition by showing
that (8.10) implies the equivalence of (8.6) and WF .jqn (Rcv).

The proof is by purely temporal reasoning; we need no other facts about the
channel specification. Both for compactness and to emphasize the generality
of our reasoning, let’s replace ENABLED (Rcv)chan by E and (Rcv)cpan by A.
Using version (8.7) of the definition of WF, we must prove:

(8.11) O(F = 0OFV<CA) = (O(F = <CA) = O(0F = OA))

So far, all our proofs have been by calculation. That is, we have proved that
two formulas are equivalent, or that a formula is equivalent to TRUE, by proving
a chain of equivalences. That’s a good way to prove simple things, but it’s
usually better to tackle a complicated formula like (8.11) by splitting its proof
into pieces. We have to prove that one formula implies the equivalence of two
others. The equivalence of two formulas can be proved by showing that each
implies the other. More generally, to prove that P implies @ = R, we prove that
P A @ implies R and that P A R implies . So, we prove (8.11) by proving the
two formulas:

(8.12) O(E = OEVOA) A O(F = CA) = O(0OFE = OA)
(8.13) O(F = OEV<OA) A OOE = ©A) = O(E = OA)

Both (8.12) and (8.13) have the form OF A OG = OH. We first show that,
for any formulas F, G, and H, we can deduce OF A OG = OH by proving
FAG= H. We do this by assuming FFA G = H and proving OF AOG = OH
as follows.
1. O(FANG)=0OH
PROOF: By the assumption F'A G = H and the Implies Generalization Rule
(page 95), substituting F' A G for F' and H for G in the rule.
2. OF ANOG = UOH
PROOF: By step 1 and the tautology O(F A G) = OF AOG.



100 CHAPTER 8. LIVENESS AND FAIRNESS

This shows that we can deduce OF A OG = OH by proving F A G = H,
for any F', G, and H. We can therefore prove (8.12) and (8.13) by proving

(8.14) (E=0EVOA) AN (E=CA) = (OF = OA)
(8.15) (F=0EVOA) A (OFE = CA) = (EF = CA)

The proof of (8.14) is easy. In fact, we don’t even need the first conjunct; we
can prove (E = OA) = (OF = ©A) as follows.

(E = <A)
= (\:‘E = E) N (E = <>A) Because OF = FE is a temporal tautology.
= (OF = ©A) By the tautology (P = Q) A (Q = R) = (P = R).

The proof of (8.15) uses only propositional logic. We deduce (8.15) by substi-
tuting £ for P, OF for @, and ©A for R in the following propositional-logic
tautology.

(P=QVR)AN(Q=R) = (P=R)

A little thought should make the validity of this tautology seem obvious. If not,
you can check it by constructing a truth table.

These proofs of (8.14) and (8.15) complete the proof that we can take
WF .han (Rev) instead of (8.7) as our liveness condition for the channel.

8.5 The Memory Specification

8.5.1 The Liveness Requirement

Let’s now strengthen the specification of the linearizable memory of Section 5.3
with the liveness requirement that every request must receive a response. (We
don’t require that a request ever be issued.) The liveness requirement is con-
joined to the internal memory specification, formula ISpec of the InternalMemory
module (Figure 5.3 on pages 52-53).

We want to express the liveness requirement in terms of weak fairness. To
do this, we must understand when actions are enabled. The action Rsp(p) is
enabled only if the action

(8.16) Reply(p, buf[p], memlInt, memlInt’)

is enabled. Recall that the operator Reply is a constant parameter, declared in
the Memorylnterface module (Figure 5.1 on page 48). Without knowing more
about this operator, we can’t say when action (8.16) is enabled.

Let’s assume that Reply actions are always enabled. That is, for any pro-
cessor p and reply r, and any old value miOld of memlInt, there is a new value



8.5. THE MEMORY SPECIFICATION 101

miNew of memlInt such that Reply(p,r, miOld, miNew) is true. For simplicity,
we just assume that this is true for all p and r, and add the following assumption
to the MemorylInterface module:

ASSUME V p, 7, miOld : 3miNew : Reply(p, r, miOld, miNew)

We should also make a similar assumption for Send, but we don’t need it here.
We will subscript our weak-fairness formulas with the tuple of all variables,
so let’s give that tuple a name:

vars = (memlInt, mem, ctl, buf)

When processor p issues a request, it enables the Do(p) action, which remains
enabled until a Do(p) step occurs. The weak-fairness condition WF 4,5 (Do(p))
implies that this Do(p) step must eventually occur. A Do(p) step enables the
Rsp(p) action, which remains enabled until a Rsp(p) step occurs. The weak-
fairness condition WF 4, (Rsp(p)) implies that this Rsp(p) step, which produces
the desired response, must eventually occur. Hence, the requirement

(8.17) WF yars(Do(p)) A WF s (Rsp(p))

assures that every request issued by processor p must eventually receive a reply.
We want this condition to hold for every processor p, so we can take, as the
liveness condition for the memory specification, the formula:

(8.18) Liveness = Vp € Proc : WF yaps(Do(p)) A WF yars(Rsp(p))

The internal memory specification is then ISpec A Liveness.

8.5.2 Another Way to Write It

I find a single fairness condition simpler than the conjunction of fairness condi-
tions. Seeing the conjunction of the two weak fairness formulas in the definition
of Liveness leads me to ask if it can be replaced by a single weak fairness con-
dition on Do(p) V Rsp(p). Such a replacement isn’t always possible; in general,
the formulas WF,(A) AWF,(B) and WF,(AV B) are not equivalent. However,
in this case, we can replace the two fairness conditions with one. If we define

(8.19) Liveness2 2 Vp € Proc : WF yars (Do(p) V Rsp(p))

then ISpec A Liveness?2 is equivalent to ISpec A Liveness. As we will see, this
equivalence holds because any behavior satisfying ISpec satisfies the following
two properties:

DR1. Whenever Do(p) is enabled, Rsp(p) can never become enabled unless
a Do(p) step eventually occurs.



102 CHAPTER 8. LIVENESS AND FAIRNESS

DR2. Whenever Rsp(p) is enabled, Do(p) can never become enabled unless
a Rsp(p) step eventually occurs.

These properties are satisfied because a request to p is issued by a Regq(p) step,
executed by a Do(p) step, and responded to by a Rsp(p) step; and then, the
next request to p can be issued by a Req(p) step. Each of these steps becomes
possible (the action enabled) only after the preceding one occurs.

Let’s now show that DR1 and DR2 imply that the conjunction of weak
fairness of Do(p) and of Rsp(p) is equivalent to weak fairness of Do(p)V Rsp(p).
For compactness, and to emphasize the generality of what we’re doing, let’s
replace Do(p), Rsp(p), and vars by A, B, and v, respectively.

First, we must restate DR1 and DR2 as temporal formulas. The basic form
of DR1 and DR2 is:

Whenever F is true, G can never be true unless H is eventually true.

This is expressed in temporal logic as O(F = O-G V OH). (The assertion “P
unless @7 just means PV @.) Adding suitable subscripts, we can therefore write
DR1 and DR2 in temporal logic as:

DR1
DR2

O (ENABLED (A), = O—-ENABLED (B), V O(A),)

> 1w

O (ENABLED (B), = O—ENABLED (A), V O(B), )
Our goal is to prove
(8.20) DRI AN DR2 = (WF,(A) A\WF,(B) = WF,(AV B))

This is complicated, so we split the proof into pieces. As in the proof of (8.11)
in Section 8.4 above, we prove an equivalence by proving two implications. To
prove (8.20), we prove the two theorems:

DRI A DR2 A WF,(A) A WF,(B) = WF,(AV B)
DRI A DR2 A WF,(AV B) = WF,(A) A WF,(B)

We prove them by showing that they are true for an arbitrary behavior . In
other words, we prove:

(8.21) (o = DRI A DR2 A WF,(4) A WF,(B)) = (o |= WF,(AV B))
(8.22) (0 |= DRI A DR2 A WF,(AV B)) = (0 = WF,(A) A WF,(B))

These formulas seem daunting. Whenever you have trouble proving something,
try a proof by contradiction; it gives you an extra hypothesis for free—namely,
the negation of what you’re trying to prove. Proofs by contradiction are espe-
cially useful in temporal logic. To prove (8.21) and (8.22) by contradiction, we
need to compute —(c | WF, (C)) for an action C. From the definition (8.7) of
WE, we easily get

(8.23) (¢ = WF,(C)) =
Vn € Nat : (67" = OENABLED (C),) = (6" = O(C),)



8.5. THE MEMORY SPECIFICATION 103

This and the tautology
-(VzeS:P=Q) = (3zel: PA-Q)
of predicate logic yields:

(8.24) =(c EWF,(C)) =
dn € Nat : (o™ E OENABLED (C),) A =(c™" | O(C)y)
We also need two further results, both of which are derived from the tautology

(AVB), = (A),V(B),. Combining this tautology with the temporal tautology
O(FV G)=OF VvV OQ yields

(8.25) O(AV B), = O(A), VO(B),

Combining the tautology with the observation that an action C'V D is enabled
iff action C' or action D is enabled yields

(8.26) ENABLED (A V B), = ENABLED (A), V ENABLED ( B),

We can now prove (8.21) and (8.22). To prove (8.21), we assume that o satisfies
DR1, DR2, WF,(A), and WF,(B), but it does not satisfy WF, (A V B), and
we obtain a contradiction. By (8.24), the assumption that o does not satisfy
WF,(AV B) means that there exists some number n such that:

(8.27) ™™ = OENABLED (A V B),
(8.28) =(c™" = O(AV B),)

We obtain a contradiction from (8.27) and (8.28) as follows.
L (0™ | O(4)y) A =(o7" = O(B)y)
PRrOOF: By (8.28) and (8.25), using the tautology —(PV Q) = (=P A =Q).
2. (a) (6™ = ENABLED (A),) = (01" = O-ENABLED (B),)
(b) (6" = ENABLED (B),) = (¢™" = O - ENABLED (4),)
PROOF: By definition of DRI, the assumption ¢ = DRI implies
(o*™ = ENABLED (4),) =
(0™ = O=ENABLED (B),) V (o™ = O(A4),)
and part (a) then follows from 1. The proof of (b) is similar.
3. (a) (6" = ENABLED (4),) = (07" |= OENABLED (4),)
(b) (6™ = ENABLED (B),) = (o™ = OENABLED (B),)
PROOF: Part (a) follows from 2(a), (8.27), (8.26), and the temporal tautology
O(FV G) A O-G = OF
The proof of part (b) is similar.



104 CHAPTER 8. LIVENESS AND FAIRNESS

(a) (6™ = ENABLED (4),) = (o7 | O(4),)

(b) (6™ = ENABLED (B),) = (¢t = O(B),)

PRrOOF: The assumption o = WF,(A) and (8.23) imply
(0" = OENABLED (4),) = (o1 = O(4),)

Part (a) follows from this and 3(a). The proof of part (b) is similar.

(0™ | O(A)y) V (o7 = O(B))

PROOF: Since OF implies F, for any F, (8.27) and (8.26) imply
(67" = ENABLED (4),) V (¢ = ENABLED (B),)

Step 5 then follows by propositional logic from step 4.

Steps 1 and 5 provide the required contradiction.

We can prove (8.22) by assuming that o satisfies DRI, DR2, and WF, (AVB),

and then proving that it satisfies WF,,(A) and WF,(B). We prove only that it
satisfies WF, (A); the proof for WF,,(B) is similar. The proof is by contradiction;
we assume that o does not satisfy WF, (A4) and obtain a contradiction. By (8.24),
the assumption that o does not satisfy WF, (A4) means that there exists some
number n such that:

(8.29) o™ |= DENABLED (A),
(8.30) = (o™ = O(A)y)

We obtain the contradiction as follows.

1.

ot = <O(AV B),
PRrROOF: From (8.29) and (8.26) we deduce o™ |= OENABLED (A V B),. By
the assumption o = WF,(AV B) and (8.23), this implies o™ = O(AV B),.

. ot = O - ENABLED (B),

PROOF: From (8.29) we deduce 0™ |= ENABLED (A),, which by the assump-
tion ¢ = DRI and the definition of DRI implies

(07" = O=ENABLED (B),) V (o™ = O(A4),)
The assumption (8.30) then implies c™" |= 0 < ENABLED (B),.
= (0™ = O(B)y)
PRrROOF: The definition of ENABLED implies "ENABLED (B), = - (B),. (A
(B), step can occur only when it is enabled.) From this, simple temporal
reasoning implies

(0" = O-ENABLED (B),) = = (67" = O(B),)
(A formal proof uses the Implies Generalization Rule and the tautology
O-F = -OF.) We then deduce — (67" = &(B),) from 2.
(0" = O(AV B)y)
Proor: By (8.30), 3, and (8.25), using the tautology =P A —Q = —~(P V Q).



8.5. THE MEMORY SPECIFICATION

105

Steps 1 and 4 provide the necessary contradiction. This completes our proof of
(8.22), which completes our proof of (8.20).

8.5.3 A Generalization

Formula (8.20) provides a rule for replacing the conjunction of weak fairness
requirements on two actions with weak fairness of their disjunction. We now
generalize it from two actions A and B to n actions Aq, ..., A,. The general-
ization of DRI and DR2 is

DR(i,j) = O(ENABLED (4;), = O—-ENABLED (4;), V O(A4;),)

If we substitute Ay for A and A for B, then DRI becomes DR(1,2) and DR2
becomes DR(2,1). The generalization of (8.20) is:

(8.31) Vi, jel..n: (i#j)= DR(i,j)) =
(WE, (A1) A ... AWF,(4,) = WF, (A1 V...V A,))
To decide if you can replace the conjunction of weak fairness conditions by a
single one in a specification, you will probably find it easier to use the following
informal statement of (8.31).
WF Conjunction Rule If A4, ..., A, are actions such that, for any
distinct ¢ and j, whenever (A4;), is enabled, (A4;), cannot become en-

abled unless an (A4;), step occurs, then WF, (A1) A... ANWF,(A4,) is
equivalent to WF, (41 V...V A,).

Perhaps the best way to think of this rule is as an assertion about an arbitrary
individual behavior . Its hypothesis is then that o = DR(i,j) holds for all
distinct 4 and j; its conclusion is:

o= (WFE, (A1) A...AWF,(4,) = WF, (41 V...V 4,))

To replace WF, (A1) A ... A\WF,(4,) by WF,(A; V...V A,,) in a specification,
you have to check that any behavior satisfying the safety part of the specification
also satisfies DR(i,7), for all distinct 7 and j.

Conjunction and disjunction are special cases of quantification:

FiVv...VF, =3diel..n: F;
FiN...NF, =Viel..n: F;
We can therefore easily restate the WF Conjunction Rule as a condition on when

VieS:WF,(A4;) and WF,(3i € S: A;) are equivalent, for a finite set S. The
resulting rule is actually valid for any set S:

WF Quantifier Rule If, for all i € S, the A; are actions such that,
for any distinct ¢ and j in S, whenever (A;), is enabled, (A4,), cannot
become enabled unless an (A4;), step occurs, then Vi € S: WF,(4;) is
equivalent to WF,(3i € S: A;).



106 CHAPTER 8. LIVENESS AND FAIRNESS

8.6 Strong Fairness

We define SF,(A), strong fairness of action A, to be either of the following two
equivalent formulas.

(8.32) ©CO(—ENABLED (A),) V OO(A4),

(8.33) OOENABLED (4), = OOC(4),

Intuitively, these two formulas assert:

(8.32) A is eventually disabled forever, or infinitely many A steps occur.
(8.33) If A is infinitely often enabled, then infinitely many A steps occur.

The proof that (8.32) and (8.33) are equivalent is similar to the proof on page 98
that the two formulations (8.8) and (8.9) of WF, (A4) are equivalent.

Definition (8.32) of SF,(A) is obtained from definition (8.8) of WF, (A) by
replacing OO (-~ ENABLED (A4),,) with OO(—=ENABLED (4),). Since OOF (even-
tually always F') is stronger than (implies) OCF (infinitely often F') for any
formula F', strong fairness is stronger than weak fairness. We can express weak
and strong fairness as follows.

e Weak fairness of A asserts that an A step must eventually occur if A is
continuously enabled.

e Strong fairness of A asserts that an A step must eventually occur if A is
continually enabled.

Continuously means without interruption. Continually means repeatedly, pos-
sibly with interruptions.

Strong fairness need not be strictly stronger than weak fairness. Weak and
strong fairness of an action A are equivalent iff A infinitely often disabled implies
that either A eventually becomes forever disabled, or else infinitely many A steps
occur. This is expressed formally by the tautology:

(WF,(A) = SF,(A)) =
(OO(=ENABLED (A),) = OO(-ENABLED (4),) V OOC(A),)

In the channel example, weak and strong fairness of Rcv are equivalent because
Spec implies that, once enabled, Rcv can be disabled only by a Rcv step. Hence,
if Rcv is disabled infinitely often, then it either eventually remains disabled
forever, or else it is disabled infinitely often by Rcv steps.

The analogs of the WF Conjunction and WF Quantifier Rules (page 105)
hold for strong fairness—for example:

SF Conjunction Rule If A, ..., A, are actions such that, for any
distinct ¢ and j, whenever action A; is enabled, action A; cannot be-
come enabled until an A; step occurs, then SF,(A1) A... ASF,(A4,) is
equivalent to SF,(4; V...V A,).



8.7. THE WRITE-THROUGH CACHE

107

Strong fairness can be more difficult to implement than weak fairness, and it
is a less common requirement. A strong fairness condition should be used in a
specification only if it is needed. When strong and weak fairness are equivalent,
the fairness property should be written as weak fairness.

Liveness properties can be subtle. Expressing them with ad hoc temporal
formulas can lead to errors. We will specify liveness as the conjunction of weak
and/or strong fairness properties whenever possible—and it almost always is
possible. Having a uniform way of expressing liveness makes specifications easier
to understand. Section 8.9.2 discusses an even more compelling reason for using
fairness to specify liveness.

8.7 The Write-Through Cache

Let’s now add liveness to the write-through cache, specified in Figure 5.6 on
pages 57-59. We want our specification to guarantee that every request even-
tually receives a response, without requiring that any requests are issued. This
requires fairness on all the actions that make up the next-state action Next
except for the following:

e A Req(p) action, which issues a request.
e An Evict(p, a) action, which evicts an address from the cache.

o A Mem@Wr action, if mem@ contains only write requests and is not full
(has fewer than @)Len elements). Since a response to a write request can be
issued before the value is written to memory, failing to execute a Mem@Q Wr
action can prevent a response only if it prevents the dequeuing of a read
operation in mem@ or the enqueuing of an operation (because mem(@) is
full).

For simplicity, let’s require fairness for the Mem@Wr action too; we’ll weaken
this requirement later. Our liveness condition then has to assert fairness of the
actions

MemQWr MemQRd Rsp(p) RdMiss(p) DoRd(p) DoWr(p)

for all p in Proc. We now must decide whether to assert weak or strong fairness
for these actions. Weak and strong fairness are equivalent for an action that,
once enabled, remains enabled until it is executed. This is the case for all of
these actions except DoRd(p), RdMiss(p), and DoWr(p).

The DoRd(p) action can be disabled by an Ewict step that evicts the re-
quested data from the cache. In this case, fairness of other actions should imply
that the data will eventually be returned to the cache, re-enabling DoRd(p).
The data cannot be evicted again until the DoRd(p) action is executed, and



108 CHAPTER 8. LIVENESS AND FAIRNESS

weak fairness then suffices to ensure that the necessary DoRd(p) step eventually
occurs.

The RdMiss(p) and DoWr(p) actions append a request to the mem@ queue.
They are disabled if that queue is full. A RdMiss(p) or DoWr(p) could be
enabled and then become disabled because a RdMiss(q) or DoWr(q), for a
different processor ¢, appends a request to mem(@. We therefore need strong
fairness for the RdMiss(p) and DoWr(p) actions. So, the fairness conditions we
need are:

Weak Fairness for Rsp(p), DoRd(p), MemQWr, and MemQRd
Strong Fairness for RdMiss(p) and DoWr(p).
As before, let’s define vars to be the tuple of all variables.

vars = (memlInt, wmem, buf, ctl, cache, mem@)
We could just write the liveness condition as

(8.34) AVp € Proc : AN WF 45 (Rsp(p)) N WFars(DoRd(p))
A SFars (RAMiss(p)) A SEyars(DoWr(p))
A WFvars(MemQWT) A WFvars(MemQRd)

However, I prefer replacing the conjunction of fairness conditions by a single
fairness condition on a disjunction, as we did in Section 8.5 for the memory
specification. The WF and SF Conjunction Rules (pages 105 and 106) imply
that the liveness condition (8.34) can be rewritten as

(8.35) AVp € Proc : N WFy4rs(Rsp(p) V DoRd(p))
A SFars (RdMiss(p) V DoWr(p))
A WEF s (MemQWr V MemQRd)

We can now try to simplify (8.35) by moving the quantifier inside the WF and SF
formulas. First, because V distributes over A, we can rewrite the first conjunct
of (8.35) as

(8.36) AV p € Proc : WF y4s(Rsp(p) V DoRd(p))
AV p € Proc : SF s (RdMiss(p) V DoWr(p))

We can now try to apply the WF Quantifier Rule (page 105) to the first con-
junct of (8.36) and the corresponding SF Quantifier Rule to its second conjunct.
However, the WF quantifier rule doesn’t apply to the first conjunct. It’s possible
for both Rsp(p) V DoRd(p) and Rsp(q) V DoRd(q) to be enabled at the same
time, for two different processors p and ¢. The formula

(8.37) WF yurs(Ip € Proc : Rsp(p) V DoRd(p))



8.8. QUANTIFICATION

109

is satisfied by any behavior in which infinitely many Rsp(p) and DoRd(p) ac-
tions occur for some processor p. In such a behavior, Rsp(q) could be en-
abled for some other processor ¢ without an Rsp(q) step ever occurring, making
WF yors(Rsp(q) V DoRd(q)) false, which implies that the first conjunct of (8.36)
is false. Hence, (8.37) is not equivalent to the first conjunct of (8.36). Similarly,
the analogous rule for strong fairness cannot be applied to the second conjunct
of (8.36). Formula (8.35) is as simple as we can make it.

Let’s return to the observation that we don’t have to execute MemQWr if
the mem(@) queue contains only write requests and is not full. In other words,
we have to execute Mem@QWr only if mem(@ is full or contains a read request.
Let’s define

QCond = V Len(mem@Q) = QLen
v 3iel.. Len(mem@) : memQ[i][2].op = “Rd”

so we need eventually execute a Mem@Wr action only when it’s enabled and
QCond is true, which is the case iff the action QCond A Mem@QWr is enabled.
In this case, a MemQWr step is a QCond N Mem@QWr step. Hence, it suffices
to require weak fairness of the action QCond A Mem@Wr. We can therefore
replace the second conjunct of (8.35) with

WFyars ((QCond A MemQWr) V MemQRd)

We would do this if we wanted the specification to describe the weakest liveness
condition that implements the memory specification’s liveness condition. How-
ever, if the specification were a description of an actual device, then that device
would probably implement weak fairness on all Mem@Q Wr actions, so we would
take (8.35) as the liveness condition.

8.8 Quantification

Section 8.1 describes the meaning of ordinary quantification of temporal formu-
las. For example, the meaning of the formula V r: F, for any temporal formula
F, is defined by

c=(Nr:F) = VYr:(cF)

where ¢ is any behavior.

The symbol r in 3r: F' is usually called a bound variable. But we’ve been
using the term variable to mean something else—something that’s declared by a
VARIABLE statement in a module. The bound “variable” r is actually a constant
in these formulas—a value that is the same in every state of the behavior.® For

5Logicians use the term flezible variable for a TLA variable, and the term rigid variable
for a symbol like r that represents a constant.



110 CHAPTER 8. LIVENESS AND FAIRNESS

example, the formula 37 :O(z = r) asserts that z has the same value in every
state of a behavior.
Bounded quantification over a constant set S is defined by:

oE=MresS: : F)
cE@3reS:F)

VreS:oEF)
3reS:oEF)

A
A

The symbol r is declared to be a constant in formula F. The expression S lies
outside the scope of the declaration of r, so the symbol 7 cannot occur in §. It’s
easy to define the meanings of these formulas even if S is not a constant—for
example, by letting 37 € S: F equal 37: (r € S) A F. However, for nonconstant
S, it’s better to write Ir: (r € S) A F explicitly.

It’s also easy to define the meaning of CHOOSE as a temporal operator. We
can just let o = (CHOOSE r: F) be an arbitrary constant value r such that
o | F equals TRUE, if such an r exists. However, a temporal CHOOSE operator
is not needed for writing specifications, so CHOOSE 7: F' is not a legal TLA™
formula if F' is a temporal formula.

We now come to the temporal existential quantifier 3. In the formula 3z : F,
the symbol z is declared to be a variable in F'. Unlike 37 : F', which asserts the
existence of a single value r, the formula 3z : F asserts the existence of a value
for z in each state of a behavior. For example, if y is a variable, then the
formula 3z : O(z € y) asserts that y always has some element z, so y is always
a nonempty set. However, the element z could be different in different states,
so the values of y in different states could be disjoint.

We have been using 3 as a hiding operator, thinking of 3z : F as F with
variable z hidden. The precise definition of 3 is a bit tricky because, as dis-
cussed in Section 8.1, the formula 3z : F should be invariant under stuttering.
Intuitively, Az : F is satisfied by a behavior o iff F is satisfied by a behavior T
that is obtained from o by adding and/or deleting stuttering steps and chang-
ing the value of z. A precise definition appears in Section 16.2.4 (page 314).
However, for writing specifications, you can simply think of 3z : F as F with z
hidden.

TLA also has a temporal universal quantifier V, defined by:

Vz:F = -3z :~F

This operator is hardly ever used. TLAT does not allow bounded versions of the
operators 3 and V.



8.9. TEMPORAL LOGIC EXAMINED

111

8.9 Temporal Logic Examined

8.9.1 A Review

Let’s look at the shapes of the specifications that we’ve written so far. We
started with the simple form

(8.38) Init A O[Next]yqars

where Init is the initial predicate, Next the next-state action, and vars the tuple
of all variables. This kind of specification is, in principle, quite straightforward.
We then introduced hiding, using 3 to bind variables that should not appear in
the specification. Those bound variables, also called hidden or internal variables,
serve only to help describe how the values of the free variables (also called visible
variables) change.

Hiding variables is easy enough, and it is mathematically elegant and philo-
sophically satisfying. However, in practice, it doesn’t make much difference to
a specification. A comment can also tell a reader that a variable should be re-
garded as internal. Explicit hiding allows implementation to mean implication.
A lower-level specification that describes an implementation can be expected to
imply a higher-level specification only if the higher-level specification’s internal
variables, whose values don’t really matter, are explicitly hidden. Otherwise,
implementation means implementation under a refinement mapping. (See Sec-
tion 5.8.) However, as explained in Section 10.8, implementation often involves
a refinement of the visible variables as well.

To express liveness, the specification (8.38) is strengthened to the form

(8.39) Init A O[Newt]yors N Liveness

where Liveness is the conjunction of formulas of the form WF,,s(A) and/or
SF yars(A), for actions A. (I'm considering universal quantification to be a form
of conjunction.)

8.9.2 Machine Closure

In the specifications of the form (8.39) we’ve written so far, the actions A whose
fairness properties appear in formula Liveness have one thing in common: they
are all subactions of the next-state action Next. An action A is a subaction of
Next iff every A step is a Next step. Equivalently, A is a subaction of Next iff A
implies Next.5 In almost all specifications of the form (8.39), formula Liveness

SWe can also use the following weaker definition of subaction: A is a subaction of for-
mula (8.38) iff, for every state s of every behavior satisfying (8.38), if A is enabled in state s
then Nexzt A A is also enabled in s.



112 CHAPTER 8. LIVENESS AND FAIRNESS

should be the conjunction of weak and/or strong fairness formulas for subactions
of Next. I’ll now explain why.

When we look at the specification (8.39), we expect Init to constrain the
initial state, Next to constrain what steps may occur, and Liveness to describe
only what must eventually happen. However, consider the following formula

(840) (z=0) A D[z’ =2+ 1], A WF,((z >99) A (z' =2 —1))

The first two conjuncts of (8.40) assert that z is initially 0 and that any step
either increments = by 1 or leaves it unchanged. Hence, they imply that if z
ever exceeds 99, then it forever remains greater than 99. The weak fairness
property asserts that, if this happens, then x must eventually be decremented
by 1—contradicting the second conjunct. Hence, (8.40) implies that x can never
exceed 99, so it is equivalent to

(z=0) ADO[(z <9 A (z' =2+ 1),

Conjoining the weak fairness property to the first two conjuncts of (8.40) forbids
an 2’ = z + 1 step when z = 99.

A specification of the form (8.39) is called machine closed iff the conjunct
Liveness constrains neither the initial state nor what steps may occur. A more
general way to express this is as follows. Let a finite behavior be a finite sequence
of states.” We say that a finite behavior o satisfies a safety property S iff the
behavior obtained by adding infinitely many stuttering steps to the end of o
satisfies S. If S is a safety property, then we define the pair of formulas S, L
to be machine closed iff every finite behavior that satisfies S can be extended
to an infinite behavior that satisfies S A L. We call (8.39) machine closed if the
pair of formulas Init A O[Newxt]qrs, Liveness is machine closed.

We seldom want to write a specification that isn’t machine closed. If we
do write one, it’s usually by mistake. Specification (8.39) is guaranteed to be
machine closed if Liveness is the conjunction of weak and/or strong fairness
properties for subactions of Nexzt.® This condition doesn’t hold for specification
(8.40), which is not machine closed, because (z > 99) A (2’ =z — 1) is not a
subaction of ' = z + 1.

Liveness requirements are philosophically satisfying. A specification of the
form (8.38), which specifies only a safety property, allows behaviors in which
the system does nothing. Therefore, the specification is satisfied by a system
that does nothing. Expressing liveness requirements with fairness properties is
less satisfying. These properties are subtle and it’s easy to get them wrong.

7A finite behavior therefore isn’t a behavior, which is an infinite sequence of states. Math-
ematicians often abuse language in this way.

8More precisely, this is the case for a finite or countably infinite conjunction of properties
of the form WF,(A) and/or SF,(A), where each (A), is a subaction of Nezt. This result also
holds for the weaker definition of subaction in the footnote on the preceding page.



8.9. TEMPORAL LOGIC EXAMINED

113

It requires some thought to determine that the liveness condition for the write-
through cache, formula (8.35) on page 108, does imply that every request receives
a reply.

It’s tempting to express liveness properties more directly, without using fair-
ness properties. For example, it’s easy to write a temporal formula asserting for
the write-through cache that every request receives a response. When processor
p issues a request, it sets ctl[p] to “rdy”. We just have to assert that, for every
processor p, whenever a state in which ctl[p] = “rdy” is true occurs, there will
eventually be a Rsp(p) step:

(8.41) ¥V p € Proc : O((ctl[p] = “rdy”) = O(Rsp(p))vars)

While such formulas are appealing, they are dangerous. It’s very easy to make
a mistake and write a specification that isn’t machine closed.

Except in unusual circumstances, you should express liveness with fairness
properties for subactions of the next-state action. These are the most straight-
forward specifications, and hence the easiest to write and to understand. Most
system specifications, even if very detailed and complicated, can be written in
this straightforward manner. The exceptions are usually in the realm of subtle,
high-level specifications that attempt to be very general. An example of such a
specification appears in Section 11.2.

8.9.3 Machine Closure and Possibility

Machine closure can be thought of as a possibility condition. For example,
machine closure of the pair S, OO(A), asserts that for every finite behavior o
satisfying S, it is possible to extend o to an infinite behavior satisfying S in which
infinitely many ( A), actions occur. If we regard S as a system specification, so
a behavior that satisfies S represents a possible execution of the system, then we
can restate machine closure of §, OO(A), as follows: in any system execution,
it is always possible for infinitely many (A), actions to occur.

TLA specifications express safety and liveness properties, not possibility
properties. A safety property asserts that something is impossible—for exam-
ple, the system cannot take a step that doesn’t satisfy the next-state action. A
liveness property asserts that something must eventually happen. System re-
quirements are sometimes stated informally in terms of what is possible. Most
of the time, when examined rigorously, these requirements can be expressed with
liveness and/or safety properties. (The most notable exceptions are statistical
properties, such as assertions about the probability that something happens.)
We are never interested in specifying that something might happen. It’s never
useful to know that the system might produce the right answer. We never have
to specify that the user might type an “a”; we must specify what happens if he
does.



114 CHAPTER 8. LIVENESS AND FAIRNESS

Machine closure is a property of a pair of formulas, not of a system. Although
a possibility property is never a useful assertion about a system, it can be a useful
assertion about a specification. A specification S of a system with keyboard
input should always allow the user to type an “a”. So, every finite behavior
satisfying S should be extendable to an infinite behavior satisfying S in which
infinitely many “a”s are typed. If the action (A), represents the typing of an
“a” then saying that the user should always be able to type infinitely many “a”s
is equlvalent to saying that the pair S, OCG( A), should be machine closed. If S ,
OO(A), isn’t machine closed, then it could become impossible for the user ever
to type an “a”. Unless the system is allowed to lock the keyboard, this would
mean that there was something wrong with the specification.

This kind of possibility property can be proved. For example, to prove that
it’s always possible for the user to type infinitely many “a”’s, we show that
conjoining suitable fairness conditions on the input actions implies that the
user must type infinitely many “a”s. However, proofs of this kind of simple
property don’t seem to be worth the effort. When writing a specification, you
should make sure that possibilities allowed by the real system are allowed by the
specification. Once you are aware of what should be possible, you will usually
have little trouble ensuring that the specification makes it possible. You should
also make sure that what the system must do is implied by the specification’s
fairness conditions. This can be more difficult.

8.9.4 Refinement Mappings and Fairness

Section 5.8 (page 62) describes how to prove that the write-through memory
implements the memory specification. We have to prove Spec = ISpec, where
Spec is the specification of the write-through memory, ISpec is the internal spec-
ification of the memory (with the internal variables made visible), and, for any
formula F., we let F' mean F with expressions omem, octl, and obuf substituted
for the variables mem, ctl, and buf. We could rewrite this implication as (5.3)
because substitution (overbarring) distributes over operators like A and O, so
we had

Ilnit A O [IN@mt](memInt mem, ctl, buf )

= Ilnit A O ]Next] memlInt, mem, ctl, buf ) Because ~ distributes over A.

[

= IInit A O[INext
[
[

TmemInt, mem, ot baf) Because ~ distributes over O -] ...

(memlInt, mem, ctl, buf )

= Ilnit AN O ]Ne:l:t] Because ~ distributes over (...).
] Because memiInt = memlnt.

= IInit A O[INext

(memlInt, mem, ctl, buf)

Adding liveness to the specifications adds conjuncts to the formulas Spec and
ISpec. Suppose we take formula Liveness2, defined in (8.19) on page 101, as



8.9. TEMPORAL LOGIC EXAMINED 115

the liveness property of ISpec. Then ISpec has the additional term Liveness2,
which can be simplified as follows:

Liveness2

= Vp € Proc : WF@M-S(DO(I)) vV Rsp(p)) By definition of Liveness2.

= Vp € Proc : WFUMS(DO([)) V Rsp(p)) Because ~ distributes over V.

But we cannot automatically move the ~ inside the WF because substitution
does not, in general, distribute over ENABLED, and hence it does not distribute
over WF or SF. For the specifications and refinement mappings that occur in

practice, including this one, simply replacing each WF,(A) by WF(A) and
each SF,(A4) by SFz(A) does give the right result. However, you don’t have to
depend on this. You can instead expand the definitions of WF and SF to get,

for example:

WFU(A) = OC—-ENABLED <A>v vV D<><A>v By definition of WF.

= OO—ENABLED (A), V OO0(A)y By distributivity of ~.
You can compute the ENABLED predicates “by hand” and then perform the
substitution. When computing ENABLED predicates, it suffices to consider only
states satisfying the safety part of the specification, which usually means that

ENABLED (A4), equals ENABLED A. You can then compute ENABLED predicates
using the following rules:

1. ENABLED (A V B) = (ENABLED A) V (ENABLED B), for any actions A
and B.

2. ENABLED (P A A) = P A (ENABLED A), for any state predicate P and
action A.

3. ENABLED (A A B) = (ENABLED A) A (ENABLED B), if A and B are actions
such that the same variable does not appear primed in both A and B.

4. ENABLED (2’ = exp) = TRUE and ENABLED (2’ € exp) = (exp # {}), for
any variable z and state function exp.

For example:

ENABLED (Do(p) V Rsp(p))

(ctl[p] = “rdy”) V (ctl[p] = “done”) By rules 1-4.
= (octl[p] = “rdy”) V (octl[p] = “done”) By the meaning of —.



116 CHAPTER 8. LIVENESS AND FAIRNESS

8.9.5 The Unimportance of Liveness

While philosophically important, in practice the liveness property of (8.39) is
not as important as the safety part, Init A O[Next]yqors. The ultimate purpose
of writing a specification is to avoid errors. Experience shows that most of the
benefit from writing and using a specification comes from the safety part. On
the other hand, the liveness property is usually easy enough to write. It typically
constitutes less than five percent of a specification. So, you might as well write
the liveness part. However, when looking for errors, most of your effort should
be devoted to examining the safety part.

8.9.6 Temporal Logic Considered Confusing

The most general type of specification I've discussed so far has the form
(8.42) Awvy,..., vy, : Init AO[Next]yars A Liveness

where Liveness is the conjunction of fairness properties of subactions of Next.
This is a very restricted class of temporal-logic formulas. Temporal logic is quite
expressive, and one can combine its operators in all sorts of ways to express a
wide variety of properties. This suggests the following approach to writing a
specification: express each property that the system must satisfy with a temporal
formula, and then conjoin all these formulas. For example, formula (8.41) above
expresses the property of the write-through cache that every request eventually
receives a response.

This approach is philosophically appealing. It has just one problem: it’s
practical for only the very simplest of specifications—and even for them, it sel-
dom works well. The unbridled use of temporal logic produces formulas that are
hard to understand. Conjoining several of these formulas produces a specifica-
tion that is impossible to understand.

The basic form of a TLA specification is (8.42). Most specifications should
have this form. We can also use this kind of specification as a building block.
Chapters 9 and 10 describe situations in which we write a specification as a
conjunction of such formulas. Section 10.7 introduces an additional temporal
operator > and explains why we might want to write a specification F > G,
where F' and G have the form (8.42). But such specifications are of limited
practical use. Most engineers need only know how to write specifications of the
form (8.42). Indeed, they can get along quite well with specifications of the form
(8.38) that express only safety properties and don’t hide any variables.



Chapter 9

Real Time

With a liveness property, we can specify that a system must eventually respond
to a request. We cannot specify that it must respond within the next 100 years.
To specify timely response, we must use a real-time property.

A system that does not respond within our lifetime isn’t very useful, so
we might expect real-time specifications to be common. They aren’t. Formal
specifications are most often used to describe what a system does rather than
how long it takes to do it. However, you may someday want to specify real-time
properties of a system. This chapter tells you how.

9.1 The Hour Clock Revisited

Let’s return to our specification of the simple hour clock in Chapter 2, which
asserts that the variable hr cycles through the values 1 through 12. We now add
the requirement that the clock keep correct time. For centuries, scientists have
represented the real-time behavior of a system by introducing a variable, tradi-
tionally ¢, whose value is a real number that represents time. A state in which
t = —17.51 represents a state of the system at time —17.51, perhaps measured
in seconds elapsed since 00:00 UT on 1 January 2000. In TLA* specifications, I
prefer to use the variable now rather than ¢. For linguistic convenience, I will
usually assume that the unit of time is the second, though we could just as well
choose any other unit.

Unlike sciences such as physics and chemistry, computer science studies sys-
tems whose behavior can be described by a sequence of discrete states, rather
than by states that vary continuously with time. We consider the hour clock’s
display to change directly from reading 12 to reading 1, and ignore the con-
tinuum of intermediate states that occur in the physical display. This means
that we pretend that the change is instantaneous (happens in 0 seconds). So, a

Remember that a
state is an assign-
ment of values to

all variables.

117



118 CHAPTER 9. REAL TIME

real-time specification of the clock might allow the step

hr = 12 hr =1

[now = \/2.47} - {now = \/2.47}
The value of now advances between changes to hr. If we wanted to specify how
long it takes the display to change from 12 to 1, we would have to introduce
an intermediate state that represents a changing display—perhaps by letting hr
assume some intermediate value such as 12.5, or by adding a Boolean-valued
variable chg whose value indicates whether the display is changing. We won’t
do this, but will be content to specify an hour clock in which we consider the
display to change instantaneously.

The value of now changes between changes to hr. Just as we represent a
continuously varying clock display by a variable whose value changes in discrete
steps, we let the value of now change in discrete steps. A behavior in which now
increases in femtosecond increments would be an accurate enough description of
continuously changing time for our specification of the hour clock. In fact, there’s
no need to choose any particular granularity of time; we can let now advance
by arbitrary amounts between clock ticks. (Since the value of hr is unchanged
by steps that change now, the requirement that the clock keep correct time will
rule out behaviors in which now changes by too much in a single step.)

What real-time condition should our hour clock satisfy? We might require
that it always display the time correctly to within p seconds, for some real
number p. However, this is not typical of the real-time requirements that arise
in actual systems. Instead, we require that the clock tick approximately once
per hour. More precisely, we require that the interval between ticks be one hour
plus or minus p seconds, for some positive number p. Of course, this requirement
allows the time displayed by the clock eventually to drift away from the actual
time. But that’s what real clocks do if they are not reset.

We could start our specification of the real-time clock from scratch. How-
ever, we still want the hour clock to satisfy the specification HC' of module
HourClock (Figure 2.1 on page 20). We just want to add an additional real-time
requirement. So, we will write the specification as the conjunction of HC and a
formula requiring that the clock tick every hour, plus or minus p seconds. This
requirement is the conjunction of two separate conditions: that the clock tick at
most once every 3600 — p seconds, and at least once every 3600 + p seconds.

To specify these requirements, we introduce a variable that records how much
time has elapsed since the last clock tick. Let’s call it ¢ for timer. The value of
t is set to 0 by a step that represents a clock tick—mamely, by an HCnaxt step.
Any step that represents the passing of s seconds should advance ¢ by s. A step
represents the passing of time iff it changes now, and such a step represents the
passage of now’ — now seconds. So, the change to the timer ¢ is described by
the action:

TNext = t' =1F HCnat THEN 0 ELSE &+ (now’ — now)



9.1. THE HOUR CLOCK REVISITED

119

We let t initially equal 0, so we consider the initial state to be one in which
the clock has just ticked. The specification of how ¢ changes is then a formula
asserting that ¢ initially equals 0, and that every step is a TNext step or else
leaves unchanged all relevant variables—mnamely, ¢, Ar, and now. This formula
is:

Timer = (t=0) A O[TNext] (s, hr, now)

The requirement that the clock tick at least once every 3600 + p seconds means
that it’s always the case that at most 3600 4+ p seconds have elapsed since the
last HCnzt step. Since t always equals the elapsed time since the last HCnaxt
step, this requirement is expressed by the formula:

MazTime = O(t < 3600 + p)

(Since we can’t measure time with perfect accuracy, it doesn’t matter whether
we use < or < in this formula. When we generalize from this example, it is a
bit more convenient to use <.)

The requirement that the clock tick at most once every 3600 — p seconds
means that, whenever an HCnxt step occurs, at least 3600 — p seconds have
elapsed since the previous HCnzt step. This suggests the condition

(9.1) O(HCnzt = (t > 3600 — p))

However, (9.1) isn’t a legal TLA formula because HCnat = ... is an action
(a formula containing primes), and a TLA formula asserting that an action is
always true must have the form O[A],. We don’t care about steps that leave hr
unchanged, so we can replace (9.1) by the TLA formula:

MinTime £ O[HCnat = (t > 3600 — p)]pr

The desired real-time constraint on the clock is expressed by the conjunction of
these three formulas:

HCTime = Timer A MaxTime A MinTime

Formula HCTime contains the variable ¢, and the specification of the real-time
clock should describe only the changes to hr (the clock display) and now (the
time). So, we have to hide ¢. Hiding is expressed in TLA™T by the temporal exis-
tential quantifier 3, introduced in Section 4.3 (page 41). However, as explained
in that section, we can’t simply write 3¢: HCTime. We must define HCTime
in a module that declares ¢, and then use a parametrized instantiation of that
module. This is done in Figure 9.1 on page 121. Instead of defining HCTime
in a completely separate module, I have defined it in a submodule named Inner
of the module RealTimeHourClock containing the specification of the real-time
hour clock. Note that all the symbols declared and defined in the main module

In the general-
ization, > will be
more convenient
than >.



120 CHAPTER 9. REAL TIME

up to that point can be used in the submodule. Submodule Inner is instantiated
in the main module with the statement

I(t) = INSTANCE Inner

The t in HCTime can then be hidden by writing 3¢ : I(¢)! HCTime.

The formula HC A (3t :I(t)! HCTime) describes the possible changes to the
value of hr, and relates those changes to the value of now. But it says very little
about how the value of now can change. For example, it allows the following

behavior:

hr =11 hr =11 hr =11

[now = 23.5} [now = 23.4} [now = 23.5}
Because time can’t go backwards, such a behavior doesn’t represent a physical
possibility. Everyone knows that time only increases, so there’s no need to forbid
this behavior if the only purpose of our specification is to describe the hour clock.
However, a specification should also allow us to reason about a system. If the
clock ticks approximately once per hour, then it can’t stop. However, as the
behavior above shows, the formula HC A (At:1(¢)! HCTime) by itself allows
the clock to stop. To infer that it can’t, we also need to state how now changes.

We define a formula RTnow that specifies the possible changes to now. This

formula does not specify the granularity of the changes to now; it allows a step to
advance now by a microsecond or by a century. However, we have decided that
a step that changes hr should leave now unchanged, which implies that a step
that changes now should leave hr unchanged. Therefore, steps that change now
are described by the following action, where Real is the set of all real numbers.

hr = 11 o
now = 23.4

NowNext = A now' € {’f’ € Real : r > now} now’ can equal any real number > now.
A UNCHANGED hr

Formula RTnow should also allow steps that leave now unchanged. The initial
value of now is an arbitrary real number (we can start the system at any time),
so the safety part of RTnow is:

(now € Real) N O[NowNext] o

The liveness condition we want is that now should increase without bound.
Simple weak fairness of the NowNext action isn’t good enough, because it allows Weak fairness is

“Zeno” behaviors such as: discglssed in Chap-
ter 8.

[now =.9] — [now =.99] — [now =.999] — [now =.9999] — ---

in which the value of now remains bounded. Weak fairness of the action
NowNezt A (now’ > r) implies that eventually a NowNext step will occur in
which the new value of now is greater than r. (This action is always enabled, so
weak fairness implies that infinitely many such actions must occur.) Asserting



9.1. THE HOUR CLOCK REVISITED 121

MODULE RealTimeHourClock

EXTENDS Reals, HourClock

VARIABLE now  The current time, measured in seconds.
CONSTANT Rho A positive real number.

ASSUME (Rho € Real) A (Rho > 0)

[ MODULE Inner |

VARIABLE t

TNext = t =17 HCnzt THEN 0 ELSE t+ (now' — now)

Timer = (t =0) A O[TNext] (s, hr, now) t is the elapsed time since the last HCnat step.
MazTime = O(t < 3600 + Rho) t is always at most 3600 + Rho.

MinTime = O[HCnat = t > 3600 — Rho]n, An HCnat step can occur only if ¢ > 3600 — Rho.
HCTime = Timer A MazTime A MinTime

L

I(t) = INSTANCE Inmer

NowNezt = A now' € {r € Real : v > now} A NowNext step can advance now by any amount
A UNCHANGED hr while leaving hr unchanged.
RTnow = A now € Real RTnow specifies how time may change.
A O[NowNext]nou
AV 71 € Real : WF,,,(NowNext A (now’ > 1))

RTHC = HC A RTnow A (3t:1(t)!HCTime) The complete specification.

Figure 9.1: The real-time specification of an hour clock that ticks every hour, plus or minus Rho
seconds.

this for all real numbers 7 implies that now grows without bound, so we take as
the fairness condition:!

Vr € Real : WF 00 (NowNext A (now’ > 1))

The complete specification RTHC of the real-time hour clock, with the definition
of formula RTnow, is in the RealTimeHourClock module of Figure 9.1 on this
page. That module extends the standard Reals module, which defines the set
Real of real numbers.

LAn equivalent condition is V7 € Real : O(now > r), but I like to express fairness with
WF and SF formulas.



122 CHAPTER 9. REAL TIME

9.2 Real-Time Specifications in General

In Section 8.4 (page 96), we saw that the appropriate generalization of the live-
ness requirement that the hour clock tick infinitely often is weak fairness of the
clock-tick action. There is a similar generalization for real-time specifications.
Weak fairness of an action A asserts that if A is continuously enabled, then an
A step must eventually occur. The real-time analog is that if A is continuously
enabled for € seconds, then an A step must occur. Since an HCnzt action is
always enabled, the requirement that the clock tick at least once every 3600 + p
seconds can be expressed in this way by letting A be HCnzt and € be 3600 + p.

The requirement that an HCnaxt action occur at most once every 3600 — p
seconds can be similarly generalized to the condition that an action A must be
continuously enabled for at least ¢ seconds before an A step can occur.

The first condition, the upper bound € on how long A can be enabled without
an A step occurring, is vacuously satisfied if € equals Infinity—a value defined
in the Reals module to be greater than any real number. The second condition,
the lower bound é on how long A must be enabled before an A step can occur, is
vacuously satisfied if § equals 0. So, nothing is lost by combining both of these
conditions into a single formula containing § and e as parameters. I now define
such a formula, which I call a real-time bound condition.

The weak-fairness formula WF, (A) actually asserts weak fairness of the ac-
tion (A4),, which equals A A (v’ # v). The subscript v is needed to rule out stut-
tering steps. Since the truth of a meaningful formula can’t depend on whether or
not there are stuttering steps, it makes no sense to say that an A step did or did
not occur if that step could be a stuttering step. For this reason, the correspond-
ing real-time condition must also be a condition on an action {(A),, not on an
arbitrary action A. In most cases of interest, v is the tuple of all variables that
occur in A. I therefore define the real-time bound formula RTBound(A, v, J, €)
to assert that:

e An (A), step cannot occur until (A}, has been continuously enabled for
at least § time units since the last (A4), step—or since the beginning of
the behavior.

e (A), can be continuously enabled for at most e time units before an (A),
step occurs.

RTBound(A, v, §, €) generalizes the formula 3¢ : I(¢t)! HCTime of the real-time
hour clock specification, and it can be defined in the same way, using a submod-

ule. However, the definition can be structured a little more compactly as: For the TLAT
specification, I
RTBound(A, v, D, E) = LET Timer(t) = ... have replaced
6 and € by D
and E.

IN 3¢ Timer(t) A ...



9.2. REAL-TIME SPECIFICATIONS IN GENERAL

123

We first define Timer(t) to be a temporal formula asserting that ¢ always equals
the length of time that ( A), has been continuously enabled since the last (A),
step. The value of ¢ should be set to 0 by an (A), step or a step that disables
(A),. A step that advances now should increment ¢ by now’ — now iff (4), is
enabled. Changes to t are therefore described by the action:

TNext(t) = t' =1 (A),V ~(ENABLED (4),)’
THEN 0
ELSE ¢+ (now’ — now)

We are interested in the meaning of Timer(t) only when v is a tuple whose
components include all the variables that may appear in A. In this case, a
step that leaves v unchanged cannot enable or disable (A),. So, the formula
Timer(t) should allow steps that leave ¢, v, and now unchanged. Letting the
initial value of ¢ be 0, we define:

Timer(t) = (t=0) A O[TNext(t)](t, v, now)

Formulas MazTime and MinTime of the real-time hour clock’s specification have
the obvious generalizations:

e MaxTime(t) asserts that ¢ is always less than or equal to E:
MazTime(t) = O(t < E)

e MinTime(t) asserts that an ( A), step can occur only if ¢ > D:

A

MinTime(t) = O[A= (t> D)],

(An equally plausible definition of MinTime(t) is O[(A), = (¢ > D)],,
but the two are, in fact, equivalent.)

We then define RTBound(A, v, D, F) to equal
It : Timer(t) A MazTime(t) N MinTime(t)

We must also generalize formula RTnow of the real-time hour clock’s specifica-
tion. That formula describes how now changes, and it asserts that hr remains
unchanged when now changes. The generalization is the formula RTnow(v),
which replaces hr with an arbitrary state function v that will usually be the tu-
ple of all variables, other than now, appearing in the specification. Using these
definitions, the specification RTHC' of the real-time hour clock can be written

HC A RTnow(hr) A RTBound(HCnat, hr, 3600 — Rho, 3600 + Rho)

The RealTime module, with its definitions of RTBound and RTnow, appears in
Figure 9.2 on page 125.

Strong fairness strengthens weak fairness by requiring an A step to occur not
just if action A is continuously enabled, but if it is repeatedly enabled. Being



124 CHAPTER 9. REAL TIME

repeatedly enabled includes the possibility that it is also repeatedly disabled. We
can similarly strengthen our real-time bound conditions by defining a stronger
formula SRTBound(A, v, §, €) to assert that:

e An (A), step cannot occur until (A4), has been enabled for a total of at
least 0 time units since the last (A), step—or since the beginning of the
behavior.

e (A), can be enabled for a total of at most € time units before an (4),
step occurs.

If € < Infinity, then RTBound(A, v, §, €) implies that an ( A}, step must occur
if (A), is continuously enabled for € seconds. Hence, if (A), is ever enabled
forever, infinitely many (A), steps must occur. Thus, RTBound(A, v, d, €)
implies weak fairness of A. More precisely, RTBound(A, v, d, €) and RTnow(v)
together imply WF,(A). However, SRTBound(A, v, d, €) does not similarly
imply strong fairness of A. It allows behaviors in which (4), is enabled infinitely
often but never executed—for example, A can be enabled for /2 seconds, then
for €/4 seconds, then for ¢/8 seconds, and so on. For this reason, SRTBound
does not seem to be of much practical use, so I won’t bother defining it formally.

9.3 A Real-Time Caching Memory

Let’s now use the RealTime module to write a real-time versions of the lineariz-
able memory specification of Section 5.3 (page 51) and the write-through cache
specification of Section 5.6 (page 54). We obtain the real-time memory spec-
ification by strengthening the specification in module Memory (Figure 5.3 on
page 53) to require that the memory responds to a processor’s requests within
Rho seconds. The complete memory specification Spec of module Memory was
obtained by hiding the variables mem, ctl, and buf in the internal specifica-
tion ISpec of module InternalMemory. It’s generally easier to add a real-time
constraint to an internal specification, where the constraints can mention the
internal (hidden) variables. So, we first add the timing constraint to ISpec and
then hide the internal variables.

To specify that the system must respond to a processor request within Rho
seconds, we add an upper-bound timing constraint for an action that becomes
enabled when a request is issued, and that becomes disabled (possibly by be-
ing executed) only when the processor responds to the request. In specification
ISpec, responding to a request requires two actions—Do(p) to perform the op-
eration internally, and Rsp(p) to issue the response. Neither of these actions is
the one we want; we have to define a new action for the purpose. There is a
pending request for processor p iff ctl[p] equals “rdy”. So, we assert that the



9.3. A REAL-TIME CACHING MEMORY 125

MODULE RealTime

This module declares the variable now, which represents real time, and defines operators for writing real-time
specifications. Real-time constraints are added to a specification by conjoining it with RTnow(v) and for-
mulas of the form RTBound(A, v, d, €) for actions A, where v is the tuple of all specification variables and

0 <6 <e< Infinity.

EXTENDS Reals

VARIABLE now  The value of now is a real number that represents the current time, in unspecified units.

RTBound(A, v, d, €) asserts that an (A), step can occur only after (A), has been continuously enabled for ¢
time units since the last (A), step (or the beginning of the behavior), and it must occur before (A), has been
continuously enabled for more than e time units since the last (A), step (or the beginning of the behavior).

RTBound(A, v, D, E) =
LET TNext(t) St =1F (A), V—(ENABLED (A),)’ Timer(t) asserts that ¢ is the length
THEN 0 of time <A>v has been continuously
ELSE t -+ (now/ . now) fir;agl?led without an (A), step occur-

Timer(t) = (t=0) A O[TNext(t)] (¢, v, now)

MaxTime(t) = O(t < E) Asserts that t is always < E.

MinTime(t) = O[A = (¢t > D)], Asserts that an (A), step can occur only if ¢ > D.

IN 3t Timer(t) A MaxTime(t) A MinTime(t)

RTnow(v) asserts that now is a real number that is increased without bound, in arbitrary increments, by steps
that leave v unchanged.

RTnow(v) = LET NowNext = A now’ € {r € Real : r > now}
A UNCHANGED v
IN A now € Real
A O[NowNext]pow
A Y1 € Real : WF,, 4, (NowNext A (now’” > 1))

Figure 9.2: The RealTime module for writing real-time specifications.

following action cannot be enabled for more than Rho seconds without being
executed:

Respond(p) = (ctip] # “rdy”) A (ctl'[p] = “rdy”)

The complete specification is formula RTSpec of module RTMemory in Fig-
ure 9.3 on the next page. To permit the hiding of variables mem, ctl,
and buf, module RTMemory contains a submodule Inner that extends the
InternalMemory module.

Having added a real-time constraint to the specification of a linearizable
memory, let’s strengthen the specification of the write-through cache so it sat-



126 CHAPTER 9. REAL TIME

MODULE RTMemory

A specification that strengthens the linearizable memory specification of Section 5.3 by requiring that a response
be sent to every processor request within Rho seconds.

EXTENDS Memorylnterface, RealTime
CONSTANT Rho
ASSUME (Rho € Real) A (Rho > 0)

I MODULE Inner

We introduce a submodule so we can hide the variables mem, ctl, and buf.

EXTENDS InternalMemory

Respond(p) = Respond(p) is enabled when a request is received from p; it is
(Ctl[p] 7& “rdy”) A (Ctl/[p] — “rdy”) disabled when a Respond(p) step issues the response.
RTISpec = A ISpec We assert an upper-bound delay
AV p € Proc : RTBound(Respond(p), ctl, 0, Rho) ©of Rho on Respond(p), for all
A RTnow({memlInt, mem, ctl, buf)) Lo

Inner(mem, ctl, buf) = INSTANCE Inner

RTSpec = Amem, ctl, buf : Inner(mem, ctl, buf)! RTISpec

Figure 9.3: A real-time version of the linearizable memory specification.

isfies that constraint. The object is not just to add any real-time constraint
that does the job—that’s easy to do by using the same constraint that we added
to the memory specification. We want to write a specification of a real-time
algorithm—a specification that tells an implementer how to meet the real-time
constraints. This is generally done by placing real-time bounds on the original
actions of the untimed specification, not by adding time bounds on a new ac-
tion, as we did for the memory specification. An upper-bound constraint on the
response time should be achieved by enforcing upper-bound constraints on the
system’s actions.

If we try to achieve a bound on response time by adding real-time bounds to
the write-through cache specification’s actions, we encounter the following prob-
lem. Operations by different processors “compete” with one another to enqueue
operations on the finite queue mem@. For example, when servicing a write re-
quest for processor p, the system must execute a Do Wr(p) action to enqueue the
operation to the tail of mem(@. That action is not enabled if mem(@ is full. The
DoWr(p) action can be continually disabled by the system performing DoWr
or RdMiss actions for other processors. That’s why, to guarantee liveness—that
each request eventually receives a response—in Section 8.7 (page 107) we had
to assert strong fairness of DoWr and RdMiss actions. The only way to ensure



9.3. A REAL-TIME CACHING MEMORY

127

that a DoWr(p) action is executed within some length of time is to use lower-
bound constraints on the actions of other processors to ensure that they cannot
perform DoWr or RdMiss actions too frequently. Although such a specification
is possible, it is not the kind of approach anyone is likely to take in practice.

The usual method of enforcing real-time bounds on accesses to a shared
resource is to schedule the use of the resource by different processors. So, let’s
modify the write-through cache to add a scheduling discipline to actions that
enqueue operations on mem(). We use round-robin scheduling, which is probably
the easiest one to implement. Suppose processors are numbered from 0 through
N — 1. Round-robin scheduling means that an operation for processor p is the
next one to be enqueued after an operation for processor ¢ iff there is not an
operation for any of the processors (¢+1) % N, (¢+2)% N, ..., (p—1)% N
waiting to be put on mem@.

To express this formally, we first let the set Proc of processors equal the
set 0.. (N — 1) of integers. We normally do this by defining Proc to equal
0 .. (N —1). However, we want to reuse the parameters and definitions from the
write-through cache specification, and that’s easiest to do by extending module
Write ThroughCache. Since Proc is a parameter of that module, we can’t define
it. We therefore let N be a new constant parameter and let Proc =0 .. (N —1)
be an assumption.?

To implement round-robin scheduling, we use a variable lastP that equals the
last processor whose operation was enqueued to mem@. We define the operator
position so that p is the position(p)*™® processor after lastP in the round-robin
order:

position(p) = CHOOSE i€ 1.. N : p= (lastP +i) % N

(Thus, position(lastP) equals N.) An operation for processor p can be the next
to access mem(@ iff there is no operation for a processor ¢ with position(q) <
position(p) ready to access it—that is, iff canGoNext(p) is true, where

canGoNext(p) = Y q € Proc : (position(q) < position(p)) =
= ENABLED (RdMiss(q) V DoWr(q))

We then define RTRdMiss(p) and RTDoWr(p) to be the same as RdMiss(p) and
DoWr(p), respectively, except that they have the additional enabling condition
canGoNext(p), and they set lastP to p. The other subactions of the next-state
action are the same as before, except that they must also leave lastP unchanged.

For simplicity, we assume a single upper bound of Epsilon on the length
of time any of the actions of processor p can remain enabled without being
executed—except for the Evict(p, a) action, which we never require to happen.
In general, suppose Ay, ..., Ay are actions such that (i) no two of them are

2We could also instantiate module Write ThroughCache with 0 .. (N — 1) substituted for
Proc; but that would require declaring the other parameters of Write ThroughCache, including
the ones from the MemorylInterface module.



128 CHAPTER 9. REAL TIME

ever simultaneously enabled, and (ii) once any A; becomes enabled, it must be
executed before another A; can be enabled. In this case, a single RTBound
constraint on Ay V...V Ay is equivalent to separate constraints on all the A;.
We can therefore place a single constraint on the disjunction of all the actions of
processor p, except that we can’t use the same constraint for both DoRd(p) and
RTRdMiss(p) because an Evict(p, a) step could disable DoRd(p) and enable
RTRdAMiss(p). We therefore use a separate constraint for RTRdMiss(p).

We assume an upper bound of Delta on the time MemQWr or Mem@QRd can
be enabled without dequeuing an operation from mem(). The variable mem(@
represents a physical queue between the bus and the main memory, and Delta
must be large enough so an operation inserted into an empty queue will reach
the memory and be dequeued within Delta seconds.

We want the real-time write-through cache to implement the real-time mem-
ory specification. This requires an assumption relating Delta, Epsilon, and Rho
to assure that the memory specification’s timing constraint is satisfied—mnamely,
that the delay between when the memory receives a request from processor p
and when it responds is at most Rho. Determining this assumption requires
computing an upper bound on that delay. Finding the smallest upper bound is
hard; it’s easier to show that

2% (N + 1) * Epsilon + (N + QLen) * Delta

is an upper bound. So we assume that this value is less than or equal to Rho.

The complete specification appears in Figure 9.3 on the following two pages.
The module also asserts as a theorem that the specification RT'Spec of the real-
time write-through cache implements (implies) the real-time memory specifica-
tion, formula RTSpec of module RTMemory.

9.4 Zeno Specifications

I have described the formula RTBound(HCnat, hr, 6, €) as asserting that an
HCnat step must occur within € seconds of the previous HCnaxt step. However,
implicit in this description is a notion of causality that is not present in the
formula. It would be just as accurate to describe the formula as asserting that
now cannot advance by more than e seconds before the next HCnxt step occurs.
The formula doesn’t tell us whether this condition is met by causing the clock
to tick or by preventing time from advancing. Indeed, the formula is satisfied
by a “Zeno” behavior?

hr = 11}

hr = 11
now = 0

hr =11
now = €/2

hr = 11 o
now = 3e/4

{now = Te/8

3The Greek philosopher Zeno posed the paradox that an arrow first had to travel half the
distance to its target, then the next quarter of the distance, then the next eighth, and so on;
thus it should not be able to land within a finite length of time.



9.4. ZENQO SPECIFICATIONS 129

MODULE RTWriteThroughCache
EXTENDS WriteThroughCache, RealTime

CONSTANT N We assume that the set Proc of processors
ASSUME (N € Nat) A (Proc =0 .. N —1) cwals0--N—=1

CONSTANTS Delta, Epsilon, Rho Some real-time bounds on actions.

ASSUME A (Delta € Real) A (Delta > 0)
A (Epsilon € Real) N (Epsilon > 0)
A (Rho € Real) A (Rho > 0)
A 2% (N + 1) % Epsilon + (N + QLen) * Delta < Rho

We modify the write-through cache specification to require that operations for different processors are enqueued
on mem( in round-robin order.

VARIABLE lastP  The last processor to enqueue an operation on memG@.

RTInit = Init A (lastP € Proc) Initially, lastP can equal any processor.

. N
pOSZtZO’rL(p) = p is the position(p)*™ processor after lastP in the round-robin order.

CHOOSE i € 1 .. N : p = (lastP +1i) % N

canGoNewt(p) = True if processor p can be the next to enqueue an operation on mem@.
Vg € Proc : (position(q) < position(p)) = = ENABLED (RdMiss(q) V DoWr(q))

RTRdMiss(p) 2 A canGoNext(p) Actions RTRdMiss(p) and RTDoWr(p) are the same as RdMiss(p)
A RdMiSS(p) and DoWr(p) except that they are not enabled unless p is the next
A lastP! — J’ processor in the round-robin order ready to enqueue an operation
on mem(@, and they set lastP to p.

RTDoWr(p) = A canGoNext(p)

A DoWr(p)
A lastP’ = p
RTNext = v dp € Proc : RTRdMiss(p) V RTDoWr(p) The next-state action RT'Next

V AV 3dp€E Proc: Vv Req(p) Vi Rsp(p) Vi DORd(p) is the same as Next except with

. . RTRdMiss(p) and RTDoWr(p)
Vv 3a € Adr EmCt(p’ a') replaced by RdMiss(p) and

vV MemQWr Vv MemQRd DoWr(p), and with other ac-
A UNCHANGED lastP tions modified to leave lastP un-
changed.

vars = (memlInt, wmem, buf, ctl, cache, mem@, lastP)

Figure 9.4a: A real-time version of the write-through cache (beginning).



130 CHAPTER 9. REAL TIME

RTSpeC = ‘We put an upper-bound de-
. lay of Delta on Mem@QWr and
A RTInit A D[RTNeIt]Uars Mem@QRd actions (which dequeue
A RTBound(MemQWr \V MemQRd, vars, 0, Delta) operations from mem(@), and an

AN p € Proc : N RTBound(RTDoWr(p) V DoRd(p) V Rsp(p), upper-bound delay of Epsilon on
vars, 0, Epsilon) other actions.
A RTBound(RTRdIMiss(p), vars, 0, Epsilon)
A RTnow(vars)

RTM £ INSTANCE RTMemory
THEOREM RTSpec = RTM ! RTSpec

Figure 9.4b: A real-time version of the write-through cache (end).

in which e seconds never pass. We rule out such Zeno behaviors by conjoining
to our specification the formula RTnow(hr)—more precisely by conjoining its
liveness conjunct

Vr € Real : WF 4, (Next A (now’ > 1))

which implies that time advances without bound. Let’s call this formula NZ
(for NonZeno).

Zeno behaviors pose no problem; they are trivially forbidden by conjoining
NZ. A problem does exist if a specification allows only Zeno behaviors. For
example, suppose we conjoined to the untimed hour-clock’s specification the
condition RTBound(HCnat, hr, 6, €) for some ¢ and e with § > e. This would
assert that the clock must wait at least J seconds before ticking, but must tick
within a shorter length of time. In other words, the clock could never tick. Only
a Zeno behavior, in which e seconds never elapsed, can satisfy this specification.
Conjoining NZ to this specification yields a formula that allows no behaviors—
that is, a formula equivalent to FALSE.

This example is an extreme case of what is called a Zeno specification. A
Zeno specification is one for which there exists a finite behavior o that satisfies
the safety part but cannot be extended to an infinite behavior that satisfies both
the safety part and NZ.* In other words, the only complete behaviors satisfying
the safety part that extend o are Zeno behaviors. A specification that is not
Zeno is, naturally enough, said to be nonZeno. By the definition of machine
closure (in Section 8.9.2 on page 111), a specification is nonZeno iff it is machine
closed. More precisely, it is nonZeno iff the pair of properties consisting of the
safety part of the specification (the conjunction of the untimed specification, the

4Recall that, on page 112, a finite behavior o was defined to satisfy a safety property P iff
adding infinitely many stuttering steps to the end of o produces a behavior that satisfies P.



9.4. ZENQO SPECIFICATIONS

131

real-time bound conditions, and the safety part of the RTnow formula) and NZ
is machine closed.

A Zeno specification is one in which the requirement that time increases
without bound rules out some finite behaviors that would otherwise be allowed.
Such a specification is likely to be incorrect because the real-time bound condi-
tions are probably constraining the system in unintended ways. In this respect,
Zeno specifications are much like other non-machine closed specifications.

Section 8.9.2 mentions that the conjunction of fairness conditions on subac-
tions of the next-state relation produces a machine closed specification. There
is an analogous result for RTBound conditions and nonZeno specifications. A
specification is nonZeno if it is the conjunction of (i) a formula of the form
Init A O[Next]yars, (i) the formula RTnow(vars), and (iii) a finite number of
formulas of the form RTBound(A;, vars, §;, €;), where for each i:

e 0<9; <¢ < Infinity
e A, is a subaction of the next-state action Next.
e No step is both an A; and an A; step, for any A; with j # 1.

In particular, this implies that the specification RTSpec of the real-time write-
through cache in module RTWriteThroughCache is nonZeno.

This result does not apply to the specification of the real-time memory in
module RTMemory (Figure 9.3 on page 126) because the action Respond(p) is
not a subaction of the next-state action INext of formula ISpec. The specifi-
cation is nonetheless nonZeno, because any finite behavior ¢ that satisfies the
specification can be extended to one in which time advances without bound. For
example, we can first extend o to respond to all pending requests immediately
(in 0 time), and then extend it to an infinite behavior by adding steps that just
increase now.

It’s easy to construct an example in which conjoining an RTBound formula
for an action that is not a subaction of the next-state action produces a Zeno
specification. For example, consider the formula

(9.2) HC A RTBound(hr' = hr —1, hr, 0, 3600) A RTnow(hr)

where HC is the specification of the hour clock. The next-state action HCnuxt
of HC asserts that hr is either incremented by 1 or changes from 12 to 1. The
RTBound formula asserts that now cannot advance for 3600 or more seconds
without an hr’ = hr — 1 step occurring. Since HC asserts that every step
that changes hr is an HCnat step, the safety part of (9.2) is satisfied only by
behaviors in which now increases by less than 3600 seconds. Since the complete
specification (9.2) contains the conjunct NZ, which asserts that now increases
without bound, it is equivalent to FALSE, and is thus a Zeno specification.
When a specification describes how a system is implemented, the real-time
constraints are likely to be expressed as RTBound formulas for subactions of

The definition of a
subaction appears
on page 111.

INext is defined
on page 53



132 CHAPTER 9. REAL TIME

the next-state action. These are the kinds of formulas that correspond fairly
directly to an implementation. For example, module RT Write ThroughCache
describes an algorithm for implementing a memory, and it has real-time bounds
on subactions of the next-state action. On the other hand, more abstract, higher-
level specifications—ones describing what a system is supposed to do rather than
how to do it—are less likely to have real-time constraints expressed in this way.
Thus, the high-level specification of the real-time memory in module RTMemory
contains an RTBound formula for an action that is not a subaction of the next-
state action.

9.5 Hybrid System Specifications

A system described by a TLAT specification is a physical entity. The specifica-
tion’s variables represent some part of the physical state—the display of a clock,
or the distribution of charge in a piece of silicon that implements a memory cell.
In a real-time specification, the variable now is different from the others because
we are not abstracting away the continuous nature of time. The specification
allows now to assume any of a continuum of values. The discrete states in a
behavior mean that we are observing the state of the system, and hence the
value of now, at a sequence of discrete instants.

There may be physical quantities other than time whose continuous nature
we want to represent in a specification. For an air traffic control system, we
might want to represent the positions and velocities of the aircraft. For a system
controlling a nuclear reactor, we might want to represent the physical parameters
of the reactor itself. A specification that represents such continuously varying
quantities is called a hybrid system specification.

As an example, consider a system that, among other things, controls a switch
that influences the one-dimensional motion of some object. Suppose the object’s
position p obeys one of the following laws, depending on whether the switch is
off or on:

(9.3) d%p/dt?> + cxdp/dt + f[t] = 0
d?*p/dt? + cxdp/dt + f[t] + kxp = 0

where ¢ and k are constants, f is some function, and ¢ represents time. At
any instant, the future position of the object is determined by the object’s
current position and velocity. So, the state of the object is described by two
variables—namely, its position p and its velocity w. These variables are related
by w = dp/dt.

We describe this system with a TLA™ specification in which the variables p
and w are changed only by steps that change now—that is, steps representing
the passage of time. We specify the changes to the discrete system state and any
real-time constraints as before. However, we replace RTnow(v) with a formula



9.5. HYBRID SYSTEM SPECIFICATIONS

133

having the following next-state action, where Integrate and D are explained
below, and v is the tuple of all discrete variables:

A now’ € {r € Real : r > now}
A{p',w") = Integrate(D, now, now’, (p, w))
/A UNCHANGED v The discrete variables change instantaneously.

The second conjunct asserts that p’ and w’ equal the expressions obtained by
solving the appropriate differential equation for the object’s position and veloc-
ity at time now’, assuming that their values at time now are p and w. The
differential equation is specified by D, while Integrate is a general operator for
solving (integrating) an arbitrary differential equation.

To specify the differential equation satisfied by the object, let’s suppose that
switchOn is a Boolean-valued state variable that describes the position of the
switch. We can then rewrite the pair of equations (9.3) as

d*p/dt* + cxdp/dt + f[t] + (1F switchOn THEN k*p ELSE 0) = 0
We then define the function D so this equation can be written as
D[t, p, dp/dt, d*p/dt*] = 0

Using the TLA™ notation for defining functions of multiple arguments, which is
explained in Section 16.1.7 on page 301, the definition is:

Dl[t, p0, pl, p2 € Real] =
p2 + c¢*pl + f[t] + (IF switchOn THEN k % p0 ELSE 0)

We obtain the desired specification if the operator Integrate is defined so that
Integrate(D, to, t1, (z0,...,2Zn—1)) is the value at time ¢; of the n-tuple

(z, dz/dt, ..., d" "1 /dt"")
where z is a solution to the differential equation
D[t, z, dx/dt, ..., d"z/ct"] =0

whose 0" through (n — 1) derivatives at time tq are zg, ..., 2,,_1. The defini-
tion of Integrate appears in the DifferentialEquations module of Section 11.1.3
(page 11.1.3).

In general, a hybrid-system specification is similar to a real-time specifica-
tion, except that the formula RTnow(v) is replaced by one that describes the
changes to all variables that represent continuously changing physical quanti-
ties. The Integrate operator will allow you to specify those changes for many
hybrid systems. Some systems will require different operators. For example,
describing the evolution of some physical quantities might require an operator
for describing the solution to a partial differential equation. However, if you can
describe the evolution mathematically, then it can be specified in TLAT.

Hybrid system specifications still seem to be of only academic interest, so I
won’t say any more about them. If you do have occasion to write one, this brief
discussion should indicate how you can do it.



134 CHAPTER 9. REAL TIME

9.6 Remarks on Real Time

Real-time constraints are used most often to place an upper bound on how long
it can take the system to do something. In this capacity, they can be considered
a strong form of liveness, specifying not just that something must eventually
happen, but when it must happen. In very simple specifications, such as the
hour clock and the write-through cache, real-time constraints usually replace
liveness conditions. More complicated specifications can assert both real-time
constraints and liveness properties.

The real-time specifications I have seen have not required very complicated
timing constraints. They have been specifications either of fairly simple algo-
rithms in which timing constraints are crucial to correctness, or of more compli-
cated systems in which real time appears only through the use of simple timeouts
to ensure liveness. I suspect that people don’t build systems with complicated
real-time constraints because it’s too hard to get them right.

I've described how to write a real-time specification by conjoining RTnow
and RTBound formulas to an untimed specification. One can prove that all
real-time specifications can be written in this form. In fact, it suffices to use
RTBound formulas only for subactions of the next-state action. However, this
result is of theoretical interest only because the resulting specification can be
incredibly complicated. The operators RTnow and RTBound solve all the real-
time specification problems that I have encountered; but I haven’t encountered
enough to say with confidence that they’re all you will ever need. Still, I am
quite confident that, whatever real-time properties you have to specify, it will
not be hard to express them in TLAT.



Chapter 10

Composing Specifications

Systems are usually described in terms of their components. In the specifications
we’ve written so far, the components have been represented as separate disjuncts
of the next-state action. For example, the FIFO system pictured on page 35 is
specified in module InnerFIFO on page 38 by representing the three components
with the following disjuncts of the next-state action:

Sender: I msg € Message : SSend(msg)
Buffer:  BufRcv V BufSend
Receiver: RRcv

In this chapter, we learn how to specify the components separately and compose
their specifications to form a single system specification. Most of the time,
there’s no point doing this. The two ways of writing the specification differ by
only a few lines—a trivial difference in a specification of hundreds or thousands
of lines. Still, you may encounter a situation in which it’s better to specify a
system as a composition.

First, we must understand what it means to compose specifications. We usu-
ally say that a TLA formula specifies the correct behavior of a system. However,
as explained in Section 2.3 (page 18), a behavior actually represents a possible
history of the entire universe, not just of the system. So, it would be more
accurate to say that a TLA formula specifies a universe in which the system
behaves correctly. Building a system that implements a specification F' means
constructing the universe so it satisfies F. (Fortunately, correctness of the sys-
tem depends on the behavior of only a tiny part of the universe, and that’s the
only part we must build.) Composing two systems whose specifications are F
and G means making the universe satisfy both F' and G, which is the same
as making it satisfy F' A G. Thus, the specification of the composition of two
systems is the conjunction of their specifications.



136 CHAPTER 10. COMPOSING SPECIFICATIONS

Writing a specification as the composition of its components therefore means
writing the specification as a conjunction, each conjunct of which can be viewed
as the specification of a component. While the basic idea is simple, the details
are not always obvious. To simplify the exposition, I begin by considering only
safety properties, ignoring liveness and largely ignoring hiding. Liveness and
hiding are discussed in Section 10.6.

10.1 Composing Two Specifications

Let’s return once again to the simple hour clock, with no liveness or real-time
requirement. In Chapter 2, we specified such a clock whose display is represented
by the variable hr. We can write that specification as

(hr €1..12) A O[HCN (hr)]pr
where HCN is defined by:

A

HCN(h) 2 b = (h%12)+1

Now let’s write a specification TwoClocks of a system composed of two separate
hour clocks, whose displays are represented by the variables z and y. (The two
clocks are not synchronized and are completely independent of one another.) We
can just define TwoClocks to be the conjunction of the two clock specifications:

TwoClocks = A (z€1..12) A O[HCN(z)],
A(yel..12) A O[HCN(y)ly

The following calculation shows how we can rewrite TwoClocks in the usual form
as a “monolithic” specification with a single next-state action:!

Two Clocks
=Azel..12)A(yel..12)

A O[HCN (z)], A O[HCN (y)],

=AN@el..12)A(yel..12) Because O(F A G) = (OF) A (OG).
A B ([HCN(z)]. N [HCN(y)ly )
ANzel..12) A(yel..12) By definition of [...]; and [...]y.

AO(ANHCN(z)V z' ==z
ANHCN(y) Vy' =y)

IThis calculation is informal because it contains formulas that are not legal TLA—mnamely,
ones of the form OA where A is an action that doesn’t have the syntactic form [B],. However,
it can be done rigorously.



10.1. COMPOSING TWO SPECIFICATIONS

137

=Azel..12)A(yel..12) Because:

AV A V A AB
O(v HCN(z) A HCN(y) v\ _ [vainz,
V HCN(z) AN (v =y) AVB1] = | VvAanB
V HCN(y) A (' = z) Vv B2 V A2 A B2
V' =z)A (Y =y))

=A(zel..12) A(yel.. 12) By definition of [...](; -
O[Vv HCN(z) AN HCN (y)
V HON(z) A\ (y' = y)
V HCON(y) A (2" =) |(a,y)

Thus, TwoClocks is equivalent to Init A O[TCNut], ,, where the next-state
action TCNzt is:

TCnzt = Vv HCN(z) A HCN(y)
V HCN(z) A (y' = y)
V HCN (y) A (z' = z)

This next-state action differs from the ones we are used to writing because of the
disjunct HCN (xz) A HCN (y), which represents the simultaneous advance of the
two displays. In the specifications we have written so far, different components
never act simultaneously.

Up until now, we have been writing what are called interleaving specifica-
tions. In an interleaving specification, each step represents an operation of only
one component. For example, in our FIFO specification, a (nonstuttering) step
represents an action of either the sender, the buffer, or the receiver. For want of a
better term, we describe as noninterleaving a specification that, like TwoClocks,
does permit simultaneous actions by two components.

Suppose we want to write an interleaving specification of the two-clock sys-
tem as the conjunction of two component specifications. One way is to replace
the next-state actions HCN (z) and HCN (y) of the two components by two ac-
tions HCNz and HCNy so that, when we perform the analogous calculation to
the one above, we get

(/\(xel..12)/\D[HCNx]z) A(fvel 12) A (yel..12)

(
Ay €l..12) A O[HCNy, D[V HCNz A Ey y)

V HONy A (2" = ) J(a, )

From the calculation above, we see that this equivalence holds if the following
three conditions are satisfied: (i) HCNz implies HCN (z), (ii) HCNy implies
HCN (y), and (iii) HCNx A HCNy implies ' = z or y' = y. (Condition (iii)
implies that the disjunct HCNxz A HCNy of the next-state action is subsumed by
one of the disjuncts HCNz A (y' = y) and HCNy A (z' = z).) The common way



138 CHAPTER 10. COMPOSING SPECIFICATIONS

of satisfying these conditions is to let the next-state action of each clock assert
that the other clock’s display is unchanged. We do this by defining:

HCNz = HCN(z)A(y' =y) HCNy = HCN(y)A(z' =)
Another way to write an interleaving specification is simply to disallow si-
multaneous changes to both clock displays. We can do this by taking as our
specification the formula:

TwoClocks A O[(z' = z) V (v = y)](x,y)

The second conjunct asserts that any step must leave z or y (or both) unchanged.
Everything we have done for the two-clock system generalizes to any system
comprising two components. The same calculation as above shows that if

(’Ull = Ul) A (1)2/ = 1)2) = (U/ = U) This asserts that v is unchanged iff both v; and vg are.
then

NI N Iy
(10.1) (/\ I A D[Nl]vl> _ | ABlvNAN,
’ A Iy N D[NQ]UQ V N1 A (UQ/ = 1)2)
V No A (v1” =v1) ]y

for any state predicates I; and I and any actions N1 and N5. The left-hand side
of this equivalence represents the composition of two component specifications
if v, is a tuple containing the variables that describe the k" component, for
k =1,2, and v is the tuple of all the variables.

The equivalent formulas in (10.1) represent an interleaving specification if
the first disjunct in the next-state action of the right-hand side is redundant, so
it can be removed. This is the case if N3 A Ns implies that v, or v, is unchanged.
The usual way to ensure that this condition is satisfied is by defining each Ny so
it implies that the other component’s tuple is left unchanged. Another way to
obtain an interleaving specification is by conjoining the formula O[(v1’ = v1) V
(v2" = v2)]o.

10.2 Composing Many Specifications

We can generalize (10.1) to the composition of any set C' of components. Be-
cause universal quantification generalizes conjunction, the following rule is a
generalization of (10.1):

Composition Rule For any set C| if

(Vk e C : ’Uk’ = Uk) = (’U/ = 1)) This asserts that v is unchanged iff all the vy are.



10.2. COMPOSING MANY SPECIFICATIONS

139

then

(Vke C: Iy AO[N,,) =

ANVEe O : I
A O VidkeC : Ny A (VZGC\{]{)}UZ/:UJ

for some actions Fj;.

The second disjunct of the next-state action is redundant, and we have an in-
terleaving specification, if each N; implies that v; is unchanged, for all j # .
However, for this to hold, /N; must mention v; for components j other than .
You might object to this approach—either on philosophical grounds, because
you feel that the specification of one component should not mention the state of
another component, or because mentioning other component’s variables compli-
cates the component’s specification. An alternative approach is simply to assert
interleaving. You can do this by conjoining the following formula, which states
that no step changes both v; and v;, for any 7 and j with 4 # j:

O[3ke C:Vie C\{k}: v/ =uv],

This conjunct can be viewed as a global condition, not attached to any compo-
nent’s specification.

For the left-hand side of the conclusion of the Composition Rule to represent
the composition of separate components, the vi need not be composed of sep-
arate variables. They could contain different “parts” of the same variable that
describe different components. For example, our system might consist of a set
Clock of separate, independent clocks, where clock k’s display is described by
the value of hr[k]. Then vy would equal hr[k]. It’s easy to specify such an array
of clocks as a composition. Using the definition of HCN on page 136 above, we
can write the specification as:

(10.2) ClockArray = Yk € Clock : (hr[k] € 1 ..12) A O[HCN (hr[k])]pr s

This is a noninterleaving specification, since it allows simultaneous steps by
different clocks.

Suppose we wanted to use the Composition Rule to express ClockArray as
a monolithic specification. What would we substitute for v? Our first thought
is to substitute hr for v. However, the hypothesis of the rule requires that v
must be left unchanged iff Ar[k] is left unchanged, for all k£ € Clock. However,
as explained in Section 6.5 on page 72, specifying the values of hr[k] for all
k € Clock does not specify the value of hr. It doesn’t even imply that hr is a
function. We must substitute for v the function hrfcn defined by

(10.3) hrfen = [k € Clock — hr[k]]



140 CHAPTER 10. COMPOSING SPECIFICATIONS

The function Arfcn equals hr iff hr is a function with domain Clock. Formula
ClockArray does not imply that Ar is always a function. It specifies the possible
values of hr[k], for all k € Clock, but it doesn’t specify the value of hr. Even if we
changed the initial condition to imply that Ar is initially a function with domain
Clock, formula ClockArray would not imply that hr is always a function. For
example, it would still allow “stuttering” steps that leave each hr[k] unchanged,
but change hr in unknown ways.

We might prefer to write a specification in which Ar is a function with domain
Clock. One way of doing this is to conjoin to the specification the formula
OlsFenOn(hr, Clock), where IsFenOn(hr, Clock) asserts that hr is an arbitrary
function with domain Clock. The operator IsFenOn is defined by

IsFenOn(f, S) = f=[z €S — flz]]
We can view the formula OIsFenOn(hr, Clock) as a global constraint on hr,
while the value of hr[k] for each component £ is described by that component’s
specification.

Now, suppose we want to write an interleaving specification of the array of
clocks as the composition of specifications of the individual clocks. In general,
the conjunction in the Composition Rule is an interleaving specification if each
Ny, implies that v; is unchanged, for all i # k. So, we want the next-state action
Ni. of clock k to imply that hr[i] is unchanged for every clock ¢ other than k.
The most obvious way to do this is to define Ny to equal

A hr'[k] = (hr[k] % 12) +1
AY i€ Clock\{k} : hr'[i] = hr[i]
We can express this formula more compactly using the EXCEPT construct. This The ExcepT con-

construct applies only to functions, so we must choose whether or not to require ?tTISICt is eXPgained
hr to be a function. If hr is a function, then we can let N} equal in Section 5.2 on

page 48.
(10.4) hr' = [hr EXCEPT ![k] = (hr[k] % 12) + 1]

As noted above, we can ensure that hr is a function by conjoining the formula
OIsFenOn(hr, Clock) to the specification. Another way is to define the state
function hrfen by (10.3) on the preceding page and let N (k) equal

hrfen” = [hrfen EXCEPT ![k] = (hr[k] % 12) + 1]

A specification is just a mathematical formula; as we’ve seen before, there are
often many equivalent ways of writing a formula. Which one you choose is
usually a matter of taste.

10.3 The FIFO

Let’s now specify the FIFO, described in Chapter 4, as the composition of its
three components—the Sender, the Buffer, and the Receiver. We start with the



10.3. THE FIFO

141

internal specification, in which the variable ¢ occurs—that is, ¢ is not hidden.
First, we decide what part of the state describes each component. The variables
in and out are channels. Recall that the Channel module (page 30) specifies
a channel chan to be a record with wval, rdy, and ack components. The Send
action, which sends a value, modifies the val and rdy components; the Rcv
action, which receives a value, modifies the ack component. So, the components’
states are described by the following state functions:

Sender: (in.val, in.rdy)
Buffer: (in.ack, ¢, out.val, out.rdy)
Receiver: out.ack

Unfortunately, we can’t reuse the definitions from the InnerFIFO module on
page 38 for the following reason. The variable ¢, which is hidden in the final
specification, is part of the Buffer component’s internal state. Therefore, it
should not appear in the specifications of the Sender or Receiver component.
The Sender and Receiver actions defined in the InnerFIFO module all mention ¢,
so we can’t use them. We therefore won’t bother reusing that module. However,
instead of starting completely from scratch, we can make use of the Send and
Rcv actions from the Channel module on page 30 to describe the changes to in
and out.

Let’s write a noninterleaving specification. The next-state actions of the
components are then the same as the corresponding disjuncts of the Next ac-
tion in module InnerFIFO, except that they do not mention the parts of the
states belonging to the other components. These contain Send and Rcv actions,
instantiated from the Channel module, which use the EXCEPT construct. As
noted above, we can apply EXCEPT only to functions—and to records, which are
functions. We therefore add to our specification the conjunct

O(IsChannel(in) A IsChannel(out))

where IsChannel(c) asserts that ¢ is a channel—that is a record with wval,
ack, and rdy fields. Since a record with val, ack, and rdy fields is a func-
tion whose domain is {“val”, “ack”, “rdy”}, we can define IsChannel(c) to equal
IsFenOn(e, {“val”, “ack”, “rdy”}). However, it’s just as easy to define formula
IsChannel(c) directly by

IsChannel(c¢) = ¢ = lack — c.ack, val — c.val, rdy — c.rdy]

In writing this specification, we face the same problem as in our original FIFO
specification of introducing the variable ¢ and then hiding it. In Chapter 4, we
solved this problem by introducing ¢ in a separate InnerFIFO module, which
is instantiated by the FIFO module that defines the final specification. We
do essentially the same thing here, except that we introduce ¢ in a submodule

Section 5.2 on
page 48 explains
why records are
functions.



142 CHAPTER 10. COMPOSING SPECIFICATIONS

instead of in a completely separate module. All the symbols declared and defined
at the point where the submodule appears can be used within it. The submodule
itself can be instantiated in the containing module anywhere after it appears.
(Submodules are used in the RealTimeHourClock and RTMemory specifications
on pages 121 and 126 of Chapter 9.)

There is one small problem to be solved before we can write a composite
specification of the FIFO—how to specify the initial predicates. It makes sense
for the initial predicate of each component’s specification to specify the initial
values of its part of the state. However the initial condition includes the require-
ments in.ack = in.rdy and out.ack = out.rdy, each of which relates the initial
states of two different components. (These requirements are stated in module
InnerFIFO by the conjuncts InChan!Init and OutChan!Init of the initial pred-
icate Init.) There are three ways of expressing a requirement that relates the
initial states of multiple components:

e Assert it in the initial conditions of all the components. Although sym-
metric, this seems needlessly redundant.

e Arbitrarily assign the requirement to one of the components. This intu-
itively suggests that we are assigning to that component the responsibility
of ensuring that the requirement is met.

e Assert the requirement as a conjunct separate from either of the component
specifications. This intuitively suggests that it is an assumption about
how the components are put together, rather than a requirement of either
component.

When we write an open-system specification, as described in Section 10.7 below,
the intuitive suggestions of the last two approaches can be turned into formal
requirements. I've taken the last approach and added

(in.ack = in.rdy) A (out.ack = out.rdy)

as a separate condition. The complete specification is in module Composite FIFO
of Figure 10.1 on the next page. Formula Spec of this module is a noninterleaving
specification; for example, it allows a single step that is both an InChan!Send
step (the sender sends a value) and an OutChan!Rcv step (the receiver acknowl-
edges a value). Hence, it is not equivalent to the interleaving specification Spec
of the FIFO module on page 41, which does not allow such a step.

10.4 Composition with Shared State

Thus far, we have been considering disjoint-state compositions—ones in which
the components are represented by disjoint parts of the state, and a compo-



10.4. COMPOSITION WITH SHARED STATE 143

: MODULE Composite FIFO

EXTENDS Naturals, Sequences
CONSTANT Message
VARIABLES n, out

!

I

InChan £ INSTANCE Channel WITH Data «— Message, chan — in
A

OutChan INSTANCE Channel WITH Data < Message, chan «— out
|

SenderInit = (in.rdy € {0, 1}) A (in.val € Message) The Sender’s
Sender = SenderInit A O[3 msg € Message : InChan!Send(msg) ] (in.vat, in.rdy) IR,

!

I

: MODULE InnerBuf

VARIABLE ¢q
Bufferlnit = A in.ack € {0, 1} Ihe Buffor's internal
specification, with ¢
Nq= <> visible.
A (out.rdy € {0, 1}) A (out.val € Message)
BufRcv = InChan! Rcv

q' = Append(q, in.val)
UNCHANGED (out.val, out.rdy)

AN
AN
A

BufSend = A q# ()
A OutChan!Send(Head(q))
A ¢ = Tail(q)
A UNCHANGED in.ack

InnerBuffer = BufferInit A O[BufRcv V BufSend]in.ack, g, out.val, out.rdy)

L
Buf(q) £ INSTANCE InnerBuf The Buffer’s external specification

_Bujfer = 3¢ : Buf(q)!InnerBuffer with ¢ hidden.

Recewerlnit = out.ack € {0, 1} The Receiver’s

_ Receiver = ReceiverInit A O[OutChan! Rev)out. ack cipEeilen o

IsChannel(c) = ¢ = [ack — c.ack, val — c.val, rdy — c.rdy]

Spec N O(IsChannel(in) A IsChannel(out)) Asserts that in and out are always records.
A (in.ack = in.rdy) A (out.ack = out.rdy) Relates different components’ initial states.

A Sender N Buffer N Receiver Conjoins the three specifications.

Figure 10.1: A noninterleaving composite specification of the FIFO.



144 CHAPTER 10. COMPOSING SPECIFICATIONS

nent’s next-state action describes changes only to its part of the state.? We now
consider the case when this may not be possible.

10.4.1 Explicit State Changes

We first examine the situation in which some part of the state cannot be parti-
tioned among the different components, but the state change that each compo-
nent performs is completely described by the specification. As an example, let’s
again consider a Sender and a Receiver that communicate with a FIFO buffer.
In the system we studied in Chapter 4, sending or receiving a value required two
steps. For example, the Sender executes a Send step to send a value, and it must
then wait until the buffer executes a Rcv step before it can send another value.
We simplify the system by replacing the Buffer component with a variable buf
whose value is the sequence of values sent by the Sender but not yet received
by the Receiver. This replaces the three-component system pictured on page 35
with this two-component one:

buf

Receiver

Y

Sender

The Sender sends a value by appending it to the end of buf; the Receiver receives
a value by removing it from the head of buf.

In general, the Sender performs some computation to produce the values
that it sends, and the Receiver does some computation on the values that it
receives. The system state consists of buf and two tuples s and r of variables
that describe the Sender and Receiver states. In a monolithic specification, the
system’s next-state action is a disjunction Sndr V Rcvr, where Sndr and Rcuvr
describe steps taken by the Sender and Receiver, respectively. These actions are
defined by

Sndr = Revr 2
VA buf’ = Append(buf, ...) VA buf # ()
A SComm A buf’ = Tail (buf)
A UNCHANGED r A RComm
VvV A SCompute A UNCHANGED s
A UNCHANGED (buf, ) V' A RCompute

A UNCHANGED (buf,s)

2In an interleaving composition, a component specification may assert that the state of
other components is not changed.



10.4. COMPOSITION WITH SHARED STATE

145

for some actions SComm, SCompute, RComm, and RCompute. For simplicity,
we assume that neither Sndr nor Rcur allows stuttering actions, so SCompute
changes s and RCompute changes r. We now write the specification as the
composition of separate specifications of the Sender and Receiver.

Splitting the initial predicate is straightforward. The initial conditions on
s belong to the Sender’s initial predicate; those on r belong to the Receiver’s
initial predicate; and the initial condition buf = () can be assigned arbitrarily
to either of them.

Now let’s consider the next-state actions NS and NR of the Sender and
Receiver components. The trick is to define them by

NS = SndrV (oA (s =5)) NR = Revur V (pA(r' =)

where o and p are actions containing only the variable buf. Think of o as
describing possible changes to buf that are not caused by the Sender, and p as
describing possible changes to buf that are not caused by the Receiver. Thus,
NS permits any step that is either a Sndr step or one that leaves s unchanged
and is a change to buf that can’t be “blamed” on the Sender.

Suppose o and p satisfy the following three conditions:

o Vd : (buf’ = Append(buf,d)) = p
A step that appends a value to buf is not caused by the Receiver.

o (buf # () A (buf’ = Tail(buf)) = o
A step that removes a value from the head of buf is not caused by the
Sender.

o (oA p)= (buf’ = buf)
A step that is caused by neither the Sender nor the Receiver cannot change

buf .
Using obvious relations such as®
(buf" = buf) A (buf # () A (buf’ = Tail(buf)) = FALSE
a computation like the one by which we derived (10.1) shows
O[NST(buf, sy A DINR](buf,ry = O[SndrV Reor]puf, s, r

Thus, NS and NR are suitable next-state actions for the components, if we
choose ¢ and p to satisfy the three conditions above. There is considerable
freedom in that choice. The strongest possible choices of o and p are ones that
describe exactly the changes permitted by the other component:

(buf # ()) A (buf’ = Tail(buf))
3d : buf’ = Append(buf, d)

g

p

e 1>

3These relations are true only if buf is a sequence. A rigorous calculation requires the use
of an invariant to assert that buf actually is a sequence.



146 CHAPTER 10. COMPOSING SPECIFICATIONS

We can weaken these definitions any way we want, so long as we maintain the
condition that o A p implies that buf is unchanged. For example, we can define
o as above and let p equal —o. The choice is a matter of taste.

I’ve been describing an interleaving specification of the Sender/Receiver sys-
tem. Now let’s consider a noninterleaving specification—one that allows steps
in which both the Sender and the Receiver are computing. In other words, we
want the specification to allow SCompute A RCompute steps that leave buf un-
changed. Let SSndr be the action that is the same as Sndr except it doesn’t
mention r, and let RRcvur be defined analogously. We then have:

Sndr = SSndr A (r' =) Rcor = RRcur A (s' = s)
A monolithic noninterleaving specification has the next-state action
Sndr vV Rcor V (SSndr A RRevr A (buf’ = buf))

It is the conjunction of component specifications having the next-state actions
NS and NR defined by

NS = SSndr V (o A(s' =s)) NR = RReur V (pA(r' =7))

where o and p are as above.

This two-process situation generalizes to the composition of any set C of
components that share a variable or tuple of variables w. The interleaving
case generalizes to the following rule, in which N} is the next-state action of
component k, the action uj describes all changes to w that are attributed to
some component other than k, the tuple v, describes the private state of k, and
v is the tuple formed by all the vy.

Shared-State Composition Rule The four conditions
1. VEe C v/ =wv) = (vVV=1)
v is unchanged iff the private state vy of every component is unchanged.

2. VZ,kGC : Nk/\(’t#k)é(’l)/:’l)l)

The next-state action of any component k leaves the private state v; of all
other components ¢ unchanged.

3. Vi,ke C: NyA(w £Zw)A(i £ k)=

A step of any component k that changes w is a u; step, for any other compo-
nent 1.

4. Vke C : u) = (v =w)
A step is caused by no component iff it does not change w.
imply
(Vk eC : I N D[Nk V (,uk A (Uk/ = ’U]Q)](wmk))
= (VkeC: L) AD[EFkeEC : Nyl o



10.4. COMPOSITION WITH SHARED STATE

147

Assumption 2 asserts that we have an interleaving specification. If we drop that
assumption, then the right-hand side of the conclusion may not be a sensible
specification, since a disjunct Ni may allow steps in which a variable of some
other component assumes arbitrary values. However, if each Ny correctly deter-
mines the new values of component k’s private state vy, then the left-hand side
will be a reasonable specification, though possibly a noninterleaving one (and
not necessarily equivalent to the right-hand side).

10.4.2 Composition with Joint Actions

Consider the linearizable memory of Chapter 5. As shown in the picture on
page 45, it is a system consisting of a collection of processors, a memory, and
an interface represented by the variable memInt. We now take it to be a two-
component system, where the set of processors forms one component, called the
environment, and the memory is the other component. Let’s neglect hiding for
now and consider only the internal specification, with all variables visible. We
want to write the specification in the form

(10.5) (IE A O[NE]yg) A (IM A O[NM],)

where E refers to the environment component (the processors) and M to the
memory component. The tuple vE of variables includes memlInt and the vari-
ables of the environment component; the tuple vM includes memiInt and the
variables of the memory component. We must choose the formulas IE, NFE,
etc. so that (10.5), with internal variables hidden, is equivalent to the memory
specification Spec of module Memory on page 53.

In the memory specification, communication between the environment and
the memory is described by an action of the form

Send(p, d, memlInt, memlInt') or Reply(p, d, memInt, memlInt')

where Send and Reply are unspecified operators declared in the MemorylInterface
module (page 48). The specification says nothing about the actual value of
memlInt. So, not only do we not know how to split memlInt into two parts that
are each changed by only one of the components, we don’t even know exactly
how memlInt changes.

The trick to writing the specification as a composition is to put the Send
and Reply actions in the next-state actions of both components. We represent
the sending of a value over memlint as a joint action performed by both the
memory and the environment. The next-state actions have the following form:

NM dp € Proc : MRgst(p) V MRsp(p) V MlInternal(p)
NE = 3pe Proc : ERgst(p) V ERsp(p)



148 CHAPTER 10. COMPOSING SPECIFICATIONS

where an MRgst(p)A\ERqst(p) step represents the sending of a request by proces-
sor p (part of the environment) to the memory, an MRsp(p)AERsp(p) step repre-
sents the sending of a reply by the memory to processor p, and an MInternal(p)
step is an internal step of the memory component that performs the request.
(There are no internal steps of the environment.)

The sending of a reply is controlled by the memory, which chooses what
value is sent and when it is sent. The enabling condition and the value sent are
therefore specified by the MRsp(p) action. Let’s take the internal variables of
the memory component to be the same variables mem, ctl, and buf as in the
internal monolithic memory specification of module InternalMemory on pages
52 and 53. We can then let MRsp(p) be the same as the action Rsp(p) defined
in that module. The ERsp(p) action should always be enabled, and it should
allow any legal response to be sent. A legal response is an element of Val or the
special value NoVal, so we can define ERsp(p) to equal:*

A drsp € Val U {NoVal} : Reply(p, rsp, memlInt, memlInt’)
VAN

where the “...” describes the new values of the environment’s internal variables.

The sending of a request is controlled by the environment, which chooses
what value is sent and when it is sent. Hence, the enabling condition should
be part of the ERgst(p) action. In the monolithic specification of the Internal-
Memory module, that enabling condition was ctl[p] = “rdy”. However, if ctl
is an internal variable of the memory, it can’t also appear in the environment
specification. We therefore have to add a new variable whose value indicates
whether a processor is allowed to send a new request. Let’s use a Boolean
variable rdy, where rdy[p] is true iff processor p can send a request. The value
of rdy[p] is set false when p sends a request and is set true again when the
corresponding response to p is sent. We can therefore define FRgst(p), and
complete the definition of ERsp(p), as follows:

ERgst(p) = A rdy[p]
A dreq € MReq : Send(p, req, memlInt, memlInt’)
A rdy’ = [rdy EXCEPT ![p] = FALSE]

ERsp(p) = A 3rsp € ValU{NoVal} :
Reply(p, rsp, memlInt, memlInt’)
A rdy’ = [rdy EXCEPT ![p] = TRUE]

The memory’s MRgst(p) action is the same as the Req(p) action of the Internal-
Memory module, except without the enabling condition ctl[p] = “rdy”.

4The bound on the 3 isn’t necessary. We can let the processor accept any value, not just
a legal one, by taking I rsp : Reply(p, rsp, memInt, memlInt’) as the first conjunct. However,
it’s generally better to use bounded quantifiers when possible.



10.4. COMPOSITION WITH SHARED STATE

149

Finally, the memory’s internal action MInternal(p) is the same as the Do(p)
action of the InternalMemory module.

The rest of the specification is easy. The tuples vE and vM are {memlInt, rdy)
and (memlInt, mem, ctl, buf), respectively. Defining the initial predicates IE
and IM is straightforward, except for the decision of where to put the initial
condition memlInt € InitMemlInt. We can put it in either IE or IM, in both,
or else in a separate conjunct that belongs to neither component’s specifica-
tion. Let’s put it in IM, which then equals the initial predicate IInit from the
InternalMemory module. The final environment specification is obtained by hid-
ing rdy in its internal specification; the final memory component specification
is obtained by hiding mem, ctl, and buf in its internal specification. The com-
plete specification appears in Figure 10.2 on the next page. I have not bothered
to define IM, MRsp(p), or MInternal(p), since they equal IInit, Rsp(p), and
Do(p) from the InternalMemory module, respectively.

What we’ve just done for the environment-memory system generalizes nat-
urally to joint-action specifications of any two-component system in which part
of the state cannot be considered to belong to either component. It also gen-
eralizes to systems in which any number of components share some part of the
state. For example, suppose we want to write a composite specification of the
linearizable memory system in which each processor is a separate component.
The specification of the memory component would be the same as before. The
next-state action of processor p would now be

ERgst(p) V ERsp(p) V OtherProc(p)

where ERgst(p) and ERsp(p) are the same as above, and an OtherProc(p) step
represents the sending of a request by, or a response to, some processor other
than p. Action OtherProc(p) represents p’s participation in the joint action by
which another processor ¢ communicates with the memory component. It is
defined to equal:

Jq € Proc\{p} : V Ireq € MReq : Send(q, req, memlInt, memInt’)

V 3rsp € Val U {NoVal} :
Reply(q, rsp, memlInt, memlInt’)

This example is rather silly because each processor must participate in com-
munication actions that concern only other components. It would be better to
change the interface to make memlint an array, with communication between
processor p and the memory represented by a change to memlInt[p]. A sensible
example would require that a joint action represent a true interaction between
all the components—for example, a barrier synchronization operation in which
the components wait until they are all ready and then perform a synchronization
step together.



150 CHAPTER 10. COMPOSING SPECIFICATIONS

MODULE JointActionMemory

EXTENDS MemorylInterface
[ MODULE InnerEnvironmentComponent

VARIABLE rdy

IE = rdy = [p € Proc — TRUE]

ERqst(p) = A rdy[p]
A dreq € MReq : Send(p, req, memlInt, memlInt’)
A rdy’ = [rdy EXCEPT ![p] = FALSE]

ERsp(p) = A Jrsp € ValU{NoVal} : Reply(p, rsp, memInt, memlInt’)
A rdy" = [rdy EXCEPT ![p] = TRUE]

NE £ 3p e Proc : ERgst(p) V ERsp(p)

A

| IESp@C = IEA D[NE](memInt,rdy)

[ MODULE InnerMemoryComponent |
EXTENDS InternalMemory
MRgst(p) = A Jreq € MReq : A Send(p, req, memlInt, memlInt')
A buf’ = [buf EXCEPT ![p] = req]
A ctl’ = [etl EXCEPT ![p] = “busy”]
/A UNCHANGED mem
NM = 3pe Proc : MRgst(p) V Do(p) V Rsp(p)

l IMSpec = IInit A D[NM]<memInt, mem, ctl, buf )

IEnv(rdy) = INSTANCE InnerEnvironmentComponent
IMem(mem, ctl, buf) £ INSTANCE InnerMemoryComponent

Spec = A Ardy : IEnv(rdy)! IESpec
A Imem, ctl, buf : IMem(mem, ctl, buf)!IMSpec

Figure 10.2: A joint-action specification of a linearizable memory.

10.5 A Brief Review

The basic idea of composing specifications is simple: a composite specification
is the conjunction of formulas, each of which can be considered to be the speci-
fication of a separate component. This chapter has presented several techniques
for writing a specification as a composition. Before going further, let’s put these
techniques in perspective.



10.5. A BRIEF REVIEW

151

10.5.1 A Taxonomy of Composition

We have seen three different ways of categorizing composite specifications:

Interleaving versus noninterleaving. An interleaving specification is one in
which each (nonstuttering) step can be attributed to exactly one compo-
nent. A noninterleaving specification allows steps that represent simulta-
neous operations of two or more different components.

Disjoint-state versus shared-state. A disjoint-state specification is one in
which the state can be partitioned, with each part belonging to a separate
component. A part of the state can be a variable v, or a “piece” of that
variable such as v.c or v[c] for some fixed ¢. Any change to a component’s
part of the state is attributed to that component. In a shared-state speci-
fication, some part of the state can be changed by steps attributed to more
than one component.

Joint-action versus separate-action. A joint-action specification is a nonin-
terleaving one in which some step attributed to one component must occur
simultaneously with a step attributed to another component. A separate-
action specification is simply one that is not a joint-action specification.

These are independent ways of classifying specifications, except that a joint-
action specification must be noninterleaving.

10.5.2 Interleaving Reconsidered

Should we write interleaving or noninterleaving specifications? We might try to
answer this question by asking, can different components really take simultane-
ous steps? However, this question makes no sense. A step is a mathematical
abstraction; real components perform operations that take a finite amount of
time. Operations performed by two different components could overlap in time.
We are free to represent this physical situation either with a single simultaneous
step of the two components, or with two separate steps. In the latter case, the
specification usually allows the two steps to occur in either order. (If the two
operations must occur simultaneously, then we have written a joint-action spec-
ification.) It’s up to you whether to write an interleaving or a noninterleaving
specification. You should choose whichever is more convenient.

The choice is not completely arbitrary if you want one specification to imple-
ment another. A noninterleaving specification will not, in general, implement an
interleaving one because the noninterleaving specification will allow simultane-
ous actions that the interleaving specification prohibits. So, if you want to write
a lower-level specification that implements a higher-level interleaving specifica-
tion, then you’ll have to use an interleaving specification. As we’ve seen, it’s easy

The word inter-
leaving is stan-
dard; there is no
common terminol-
ogy for the other
concepts.



152 CHAPTER 10. COMPOSING SPECIFICATIONS

to turn a noninterleaving specification into an interleaving one by conjoining an
interleaving assumption.

10.5.3 Joint Actions Reconsidered

The reason for writing a composite specification is to separate the specifications
of the different components. The mixing of actions from different components
in a joint-action specification destroys this separation. So, why should we write
such a specification?

Joint-action specifications arise most often in highly abstract descriptions of
inter-component communication. In writing a composite specification of the lin-
earizable memory, we were led to use joint actions because of the abstract nature
of the interface. In real systems, communication occurs when one component
changes the state and another component later observes that change. The inter-
face described by the MemorylInterface module abstracts away those two steps,
replacing them with a single one that represents instantaneous communication—
a fiction that does not exist in the real world. Since each component must re-
member that the communication has occurred, the single communication step
has to change the private state of both components. That’s why we couldn’t
use the approach of Section 10.4.1 (page 144), which requires that any change
to the shared interface change the nonshared state of just one component.

The abstract memory interface simplifies the specification, allowing commu-
nication to be represented as one step instead of two. But this simplification
comes at the cost of blurring the distinction between the two components. If we
blur this distinction, it may not make sense to write the specification as the con-
junction of separate component specifications. As the memory system example
illustrates, decomposing the system into separate components communicating
with joint actions may require the introduction of extra variables. There may
occasionally be a good reason for adding this kind of complexity to a specifica-
tion, but it should not be done as a matter of course.

10.6 Liveness and Hiding

10.6.1 Liveness and Machine Closure

Thus far, the discussion of composition has neglected liveness. In composite
specifications, it is usually easy to specifying liveness by placing fairness con-
ditions on the actions of individual components. For example, to specify an
array of clocks that all keep ticking forever, we would modify the specification



10.6. LIVENESS AND HIDING

153

ClockArray of (10.2) on page 139 to equal:

Vk € Clock :
(hr(k] € 1..12) A O[HCN (hr[k])]nrie) A WE pppi) (HCN (hr[k]))

When writing a weak or strong fairness formula for an action A of a compo-
nent ¢, there arises the question of what the subscript should be. The obvious
choices are (i) the tuple v describing the entire specification state, and (ii) the
tuple v, describing that component’s state. The choice can matter only if the
safety part of the specification allows the system to reach some state in which an
A step could leave v. unchanged while changing v. Although unlikely, this could
conceivably be the case in a joint-action specification. If it is, we probably don’t
want the fairness condition to be satisfied by a step that leaves the component’s
state unchanged, so we would use the subscript v..

Fairness conditions for composite specifications do raise one important ques-
tion: if each component specification is machine closed, is the composite spec-
ification necessarily machine closed? Suppose we write the specification as
Vke C:8; A L, where each pair Si, L is machine closed. Let S be the con-
junction of the Sy and L the conjunction of the Ly, so the specification equals
S A L. The conjunction of safety properties is a safety property,® so S is a safety
property. Hence, we can ask if the pair S, L is machine closed.

In general, S, L need not be machine closed. But, for an interleaving compo-
sition, it usually is. Liveness properties are usually expressed as the conjunction
of weak and strong fairness properties of actions. As stated on page 112, a spec-
ification is machine closed if its liveness property is the conjunction of fairness
properties for subactions of the next-state action. In an interleaving compo-
sition, each Sy usually has the form Iy A O[Ng],, where the v satisfy the
hypothesis of the Composition Rule (page 138), and each N implies v;’ = v,
for all 4 in C'\ {k}. In this case, the Composition Rule implies that a subaction
of N}, is also a subaction of the next-state action of S. Hence, if we write an
interleaving composition in the usual way, and we write machine-closed compo-
nent specifications in the usual way, then the composite specification is machine
closed.

It is not so easy to obtain a machine-closed noninterleaving composition—
especially with a joint-action composition. We have actually seen an example
of a joint-action specification in which each component is machine closed but
the composition is not. In Chapter 9, we wrote a real-time specification by
conjoining one or more RTBound formulas and an RTnow formula to an untimed
specification. A pathological example was the following, which is formula (9.2)
on page 131:

HC A RTBound(hr' = hr — 1, hr, 0, 3600) A RTnow(hr)

5Recall that a safety property is one that is violated by a behavior iff it is violated at some
particular point in the behavior. A behavior violates a conjunction of safety properties Sy iff
it violates some particular Sy, and that Sj is violated at some specific point.

Machine clo-

sure is defined

in Section 8.9.2 on
page 111.

HC' is the hour-
clock specification
from Chapter 2



154 CHAPTER 10. COMPOSING SPECIFICATIONS

We can view this formula as the conjunction of three component specifications:
1. HC specifies a clock, represented by the variable hr.

2. RTBound(hr’ = hr — 1, hr, 0, 3600) specifies a timer, represented by the
hidden (existentially quantified) timer variable.

3. RTnow(hr) specifies real time, represented by the variable now.
The formula is a joint-action composition, with two kinds of joint actions:

e Joint actions of the first and second components that change both hr and
the timer.

e Joint actions of the second and third components that change both the
timer and now.

The first two specifications are trivially machine closed because they assert no
liveness condition, so their liveness property is TRUE. The third specification’s
safety property asserts that now is a real number that is changed only by steps
that increment it and leave hr unchanged; its liveness property NZ asserts that
now increases without bound. Any finite behavior satisfying the safety property
can easily be extended to an infinite behavior satisfying the entire specification,
so the third specification is also machine closed. However, as we observed in
Section 9.4, the composite specification is Zeno, meaning that it’s not machine
closed.

10.6.2 Hiding

Suppose we can write a specification S as the composition of two component
specifications S; and S5. Can we write A h : S, the specification S with variable h
hidden, as a composition—that is, as the conjunction of two separate component
specifications? If h represents state that is accessed by both components, then
the answer is no. If the two components communicate through some part of
the state, then that part of the state cannot be made internal to the separate
components.

The simplest situation in which A doesn’t represent shared state is when it
occurs in only one of the component specifications—say, So. If h doesn’t occur
in Sy, then the equivalence

@h: 81 AS) = S1A@AR:S,)

provides the desired decomposition.

Now suppose that h occurs in both component specifications, but does not
represent state accessed by both components. This can be the case only if
different “parts” of h occur in the two component specifications. For example,



10.6. LIVENESS AND HIDING

155

h might be a record with components h.cl and h.c2, where S; mentions only
h.cl and S5 mentions only h.c2. In this case, we have

@h:S1ASy) = @hl: Ty) A (3h2: T»)

where T is obtained from S by substituting the variable k1 for the expression
h.cl, and Ts is defined similarly. Of course we can use any variables in place of
h1l and h2; in particular, we can replace them both by the same variable.

We can generalize this result as follows to the composition of any finite
number® of components:

Compositional Hiding Rule If the variable h does not occur in the
formula T;, and S, is obtained from T'; by substituting h[i] for ¢, then

3h:VielC:8;) = VieC:3q: T,
for any finite set C.

The assumption that h does not occur in T'; means that the variable h occurs in
formula S; only in the expression h[:]. This in turn implies that the composition
Vie C:8,; does not determine the value of h, just of its components h[i] for
1 € C. As noted in Section 10.2 on page 138, we can make the composite speci-
fication determine the value of h by conjoining the formula OIsFenOn(h, C') to
it, where IsFenOn is defined on page 140. The hypotheses of the Compositional
Hiding Rule imply:

(3h : OIsFenOn(h, C) AYVie C : S;)) = (VieC :3q: Ty)

Now consider the common case in which Vi € C': §; is an interleaving com-
position, where each specification S; describes changes to h[i] and asserts that
steps of component 7 leave h[j] unchanged for j # i. We cannot apply the Com-
positional Hiding Rule because S; must mention other components of /4 besides
hli]. For example, it probably contains an expression of the form

(10.6) A" = [h EXCEPT ![i] = exp)

which mentions all of h. However, we can transform S; into a specification g:
that describes only the changes to h[i] and makes no assertions about other
components. For example, we can replace (10.6) with h'[i] = ezp, and we can
replace an assertion that h is unchanged by the assertion that A[¢] is unchanged.
The composition Vi € C': 3\1 may allow steps that change two different com-
ponents h[i] and h[j], while leaving all other variables unchanged, making it
a noninterleaving specification. It will then not be equivalent to Vi € C': S,
which requires that the changes to h[i] and A[j] be performed by different steps.
However, it can be shown that hiding h hides this difference, making the two
specifications equivalent. We can then apply the Compositional Hiding Rule
with S; replaced by §;.

6The Compositional Hiding Rule is not true in general if C is an infinite set; but the
examples in which it doesn’t hold are pathological and don’t arise in practice.



156 CHAPTER 10. COMPOSING SPECIFICATIONS

10.7 Open-System Specifications

A specification describes the interaction between a system and its environment.
For example, the FIFO buffer specification of Chapter 4 specifies the interaction
between the buffer (the system) and an environment consisting of the sender and
receiver. So far, all the specifications we have written have been complete-system
specifications, meaning that they are satisfied by a behavior that represents the
correct operation of both the system and its environment. When we write such a
specification as the composition of an environment specification F and a system
specification M, it has the form E A M.

An open-system specification is one that can serve as a contract between a Open-system
user of the system and its implementer. An obvious choice of such a specification ~specifications are
is the formula M that describes the correct behavior of the system component izgegt;ranfjnﬁlﬁ
by itself. However, such a specification is unimplementable. It asserts that the ,ssume-guarantee
system acts correctly no matter what the environment does. A system cannot specifications.
behave as expected in the face of arbitrary behavior of its environment. It would
be impossible to build a buffer that satisfies the buffer component’s specification
regardless of what the sender and receiver did. For example, if the sender sends
a value before the previous value has been acknowledged, then the buffer could
read the value while it is changing, causing unpredictable results.

A contract between a user and an implementer should require the system to
act correctly only if the environment does. If M describes correct behavior of the
system and E describes correct behavior of the environment, such a specification
should require that M be true if E is. This suggests that we take as our open-
system specification the formula £ = M, which is true if the system behaves
correctly or the environment behaves incorrectly. However, E = M is too weak
a specification for the following reason. Consider again the example of a FIFO
buffer, where M describes the buffer and E the sender and receiver. Suppose
now that the buffer sends a new value before the receiver has acknowledged the
previous one. This could cause the receiver to act incorrectly, possibly modifying
the output channel in some way not allowed by the receiver’s specification. This
situation is described by a behavior in which both E and M are false—a behavior
that satisfies the specification £ = M. However, the buffer should not be
considered to act correctly in this case, since it was the buffer’s error that caused
the receiver to act incorrectly. Hence, this behavior should not satisfy the buffer’s
specification.

An open-system specifications should assert that the system behaves cor-
rectly at least as long as the environment does. To express this, we introduce a
new temporal operator >, where E Y> M asserts that M remains true at least
one step longer than E does, remaining true forever if E does. Somewhat more
precisely, E *> M asserts that:

e F implies M.



10.7. OPEN-SYSTEM SPECIFICATIONS

157

e If the safety property of F is not violated by the first n states of a behavior,
then the safety property of M is not violated by the first n+1 states, for any
natural number n. (Recall that a safety property is one that, if violated,
is violated at some definite point in the behavior.)

A more precise definition of *> appears in Section 16.2.4 (page 314). If E
describes the desired behavior of the environment and M describes the desired
behavior of the system, then we take as our open-system specification the formula
E *» M.

Once we write separate specifications of the components, we can usually
transform a complete-system specification into an open-system one by simply
replacing conjunction with *>. This requires first deciding whether each con-
junct of the complete-system specification belongs to the specification of the
environment, of the system, or of neither. As an example, consider the com-
posite specification of the FIFO buffer in module CompositeFIFO on page 143.
We take the system to consist of just the buffer, with the sender and receiver
forming the environment. The closed-system specification Spec has three main
conjuncts:

Sender N\ Buffer N\ Receiver
The conjuncts Sender and Receiver are clearly part of the environment
specification, and Buffer is part of the system specification.

(in.ack = in.rdy) A (out.ack = out.rdy)
These two initial conjuncts can be assigned to either, depending on which
component we want to blame if they are violated. Let’s assign to the
component sending on a channel ¢ the responsibility for establishing that
c.ack = c.rdy holds initially. We then assign in.ack = in.rdy to the
environment and out.ack = out.rdy to the system.

O(IsChannel(in) A IsChannel(out))
This formula is not naturally attributed to either the system or the en-
vironment. We regard it as a property inherent in our way of modeling
the system, which assumes that in and out are records with ack, val, and
rdy components. We therefore take the formula to be a separate conjunct
of the complete specification, not belonging to either the system or the
environment.

We then have the following open-system specification for the FIFO buffer:

A O(IsChannel(in) A IsChannel(out))
A (in.ack = in.rdy) A Sender A Receiver >
(out.ack = out.rdy) N Buffer

As this example suggests, there is little difference between writing a composite
complete-system specification and an open-system specification. Most of the



158 CHAPTER 10. COMPOSING SPECIFICATIONS

specification doesn’t depend on which we choose. The two differ only at the
very end, when we put the pieces together.

10.8 Interface Refinement

An interface refinement is a method of obtaining a lower-level specification by
refining the variables of a higher-level specification. Let’s start with two exam-
ples and then discuss interface refinement in general.

10.8.1 A Binary Hour Clock

In specifying an hour clock, we described its display with a variable hr whose
value (in a behavior satisfying the specification) is an integer from 1 to 12.
Suppose we want to specify a binary hour clock. This is an hour clock for use
in a computer, where the display consists of a four-bit register that displays the
hour as one of the twelve values 0001, 0010, ..., 1100. We can easily specify
such a clock from scratch. But suppose we want to describe it informally to
someone who already knows what an hour clock is. We would simply say that a
binary hour clock is the same as an ordinary hour clock, except that the value
of the display is represented in binary. We now formalize that description.
We begin by describing what it means for a four-bit value to represent a
number. There are several reasonable ways to represent a four-bit value math-
ematically. We could use a four-element sequence, which in TLA™ is a function
whose domain is 1 .. 4. However, a mathematician would find it more natural to
represent an (n + 1)-bit number as a function from 0 .. n to {0, 1}, the function We can also write
b representing the number b[0] * 20 + b[1] 21 + ...+ b[n]*2". In TLAY, we can {0;1}as0..1.
define BitArrayVal(b) to be the numerical value of such a function b by:

BitArrayVal(b) =
LET n = CHOOSE i € Nat : DOMAIND = 0 .. i
val[i €0 .. n) 2 Defines val[i] to equal b[0] * 20 + ... + b[d] * 2°.
IF i =0 THEN b[0] 2% ELSE b[i] * 2 + val[i — 1]
IN  wal[n]

To specify a binary hour clock whose display is described by the variable bits,
we would simply say that BitArrayVal(bits) changes the same way that the
specification HC' of the hour clock allows hr to change. Mathematically, this
means that we obtain the specification of the binary hour clock by substituting
BitArrayVal(bits) for the variable hr in HC. In TLA™, substitution is expressed
with the INSTANCE statement. Writing

B = INSTANCE HourClock WITH hr « BitArrayVal(bits)



10.8. INTERFACE REFINEMENT

159

defines (among other things) B!HC to be the formula obtained from HC by
substituting BitArrayVal(bits) for hr.

Unfortunately, this specification is wrong. The value of BitArrayVal(b) is
specified only if b is a function with domain 0 .. n for some natural number n.
We don’t know what BitArrayVal({“abc”}) equals. It might equal 7. If it did,
then B!HC would allow a behavior in which the initial value of bits is {“abc”}.
We must rule out this possibility by substituting for hr not BitArrayVal(bits),
but some expression HourVal(bits) whose value is an element of 1 .. 12 only if
b is a function in [(0 .. 3) — {0,1}]. For example, we can write

HourVal(b) = 1 be[(0..3)— {0,1}] THEN BitArrayVal(b)
ELSE 99

B = INSTANCE HourClock WITH hr «— Hour Val(bits)

This defines B!HC to be the desired specification of the binary hour clock.
Because HC' is not satisfied by a behavior in which hr ever assumes the value
99, B!HC is not satisfied by any behavior in which bits ever assumes a value
not in the set [(0 .. 3) — {0,1}].

There is another way to use the specification HC of the hour clock to specify
the binary hour clock. Instead of substituting for Ar in the hour-clock specifi-
cation, we first specify a system consisting of both an hour clock and a binary
hour clock that keep the same time, and we then hide the hour clock. This
specification has the form

(10.7) 3hr : IR A HC

where IR is a temporal formula that is true iff bits is always the four-bit value
representing the value of hr. This formula asserts that bits is the representation
of hr as a four-bit array, for some choice of values for hr that satisfies HC.
Using the definition of HourVal given above, we can define IR simply to equal
O(h = HourVal(b)).

If HC is defined as in module HourClock, then (10.7) can’t appear in a TLAT
specification. For HC' to be defined in the context of the formula, the variable
hr must be declared in that context. If Ar is already declared, then it can’t be
used as the bound variable of the quantifier 3. As usual, this problem is solved
with parametrized instantiation. The complete TLAT specification BHC' of the
binary hour clock appears in module BinaryHourClock of Figure 10.3 on the
next page.

10.8.2 Refining a Channel

As our second example of interface refinement, consider a system that interacts
with its environment by sending numbers from 1 through 12 over a channel.
We refine it to a lower-level system that is the same, except it sends a number



160 CHAPTER 10. COMPOSING SPECIFICATIONS

MODULE BinaryHourClock
EXTENDS Naturals
VARIABLE bits
H(hr) = INSTANCE HourClock
BitArrayVal(b) = LET n = CHOOSE i € Nat : DOMAINb = 0 .. i

val[i €0 .. n] =  Defines valli] to equal b[0] 20 + ... + b[i] * 2°.

IF i =0 THEN b[0] %20 BLSE (b[i]*2°) + val[i — 1]
IN  wval[n]

HourVal(b) = 17 be(0..3) — {0,1}] THEN BitArrayVal(b)

ELSE 99
A

IR(b,h) = O(h = HourVal(b))

A

BHC = 3hr : IR(bits,hr) N H(hr)!HC

Figure 10.3: A specification of a binary hour clock.

as a sequence of four bits. Each bit is sent separately, starting with the left-
most (most significant) one. For example, to send the number 5, the lower-level
system sends the sequence of bits 0, 1, 0, 1. We specify both channels with the
Channel module of Figure 3.2 on page 30, so each value that is sent must be
acknowledged before the next one can be sent.

Suppose HSpec is the higher-level system’s specification, and its channel is
represented by the variable h. Let [ be the variable representing the lower-level
channel. We write the lower-level system’s specification as

(10.8) 3 h : IR N HSpec

where IR specifies the sequence of values sent over h as a function of the values
sent over [. The sending of the fourth bit on [ is interpreted as the sending of
the complete number on h; the next acknowledgment on [ is interpreted as the
sending of the acknowledgment on h; and any other step is interpreted as a step
that doesn’t change h.

To define IR, we instantiate module Channel for each of the channels: Data is the set of
values that can
H £ INSTANCE Channel WITH chan «— h, Data — 1 .. 12 be sent over the
channel.
L = INSTANCE Channel WITH chan « I, Data « {0, 1}

Sending a value d over channel [ is thus represented by an L!Send(d) step, and
acknowledging receipt of a value on channel A is represented by an H!Rcv step.
The following behavior represents sending and acknowledging a 5, where I have



10.8. INTERFACE REFINEMENT 161

omitted all steps that don’t change I:

L!Send(0) L!'Rcv L!Send(1) L!Rcv L!Send(0)
S0 — §1 — 82 — 83 —— 84 —

L!Rcv L!Send(1) L!Rcv
S5 —— Sg¢ — S7 —— 88 —— -

This behavior will satisfy IR iff s — s7 is an H!Send(5) step, sy — ss is an
H!Rcv step, and all the other steps leave h unchanged.

We want to make sure that (10.8) is not satisfied unless I represents a correct
lower-level channel—for example, (10.8) should be false if [ is set to some bizarre
value. We will therefore define IR so that, if the sequence of values assumed by
[ does not represent a channel over which bits are sent and acknowledged, then
the sequence of values of h does not represent a correct behavior of a channel
over which numbers from 1 to 12 are sent. Formula HSpec, and hence (10.8),
will then be false for such a behavior.

Formula IR will have the standard form for a TLA specification, with an
initial condition and a next-state action. However, it specifies h as a function of
[; it does not constrain [. Therefore, the initial condition does not specify the
initial value of [, and the next-state action does not specify the value of I’. (The
value of [ is constrained implicitly by IR, which asserts a relation between the
values of h and [, together with the conjunct HSpec in (10.8), which constrains
the value of h.) For the next-state action to specify the value sent on h, we
need an internal variable that remembers what has been sent on [ since the last
complete number. We let the variable bitsSent contain the sequence of bits sent
so far for the current number. For convenience, bitsSent contains the sequence
of bits in reverse order, with the most recently-sent bit at the head. This means
that the high-order bit of the number, which is sent first, is at the tail of bitsSent.

The definition of IR appears in module ChannelRefinement of Figure 10.4 on
the next page. The module first defines ErrorVal to be an arbitrary value that is
not a legal value of h. Next comes the definition of the function BitSeqToNat. If
s is a sequence of bits, then BitSeqToNat[s] is its numeric value interpreted
as a binary number whose low-order bit is at the head of s. For example
BitSeqToNat[(0, 1, 1)] equals 6. Then come the two instantiations of module
Channel.

There follows a submodule that defines the internal specification—the one The use of a sub-
with the internal variable bitsSent visible. The internal specification’s initial module to define
predicate Init asserts that if [ has a legal initial value, then h can have any legal ?élc :tllts;nggzlﬁf'
initial value; otherwise h has an illegal value. Initially bitsSent is the empty troduced in the
sequence (). The internal specification’s next-state action is the disjunction of real-time hour

three actions: clock specification
of Section 9.1.

SendBit A SendBit step is one in which a bit is sent on [. If bitsSent has
fewer than three elements, so fewer than three bits have already
been sent, then the bit is prepended to the head of bitsSent and h



162 CHAPTER 10. COMPOSING SPECIFICATIONS

MODULE ChannelRefinement

This module defines an interface refinement from a higher-level channel h, over which numbers in 1 .. 12 are
sent, to a lower-level channel [ in which a number is sent as a sequence of four bits, each separately acknowl-
edged. (See the Channel module in Figure 3.2 on page 30.) Formula IR is true iff the sequence of values as-
sumed by h represents the higher-level view of the sequence of values sent on [. If the sequence of values as-
sumed by [ doesn’t represent the sending and acknowledging of bits, then h assumes an illegal value.

EXTENDS Naturals, Sequences

VARIABLES h, [

ErrorVal = CHOOSE v : v ¢ [val:1 .. 12, rdy:{0,1}, ack:{0,1}]

BitSeqToNat[s € Seq({0,1})] = BitSeqToNat[(bo, b1, bz, bg)] = bo + 2 (b1 + 2 * (ba + 2 % b3))
IF s = () THEN 0 ELSE Head(s)+ 2 * BitSeqToNat[Tail(s)]

H 2 INSTANCE Channel WITH chan < h, Data < 1 .. 12 H is a channel for sending numbers

in 1..12; L is a channel for sending
L INSTANCE Channel WITH chan «— [, Data — {0,1}  pit.

1>

MODULE Inner

VARIABLE bitsSent The sequence of the bits sent so far for the current number.

Init = A bitsSent = ()

A IF L!Init THEN H!Init Defines the initial value of h as a function of [.
ELSE h = ErrorVal
SendBit = Jb e {0, 1} : Sending one of the first three bits

A Ll Send(b) on [ prepends it to the front of

/ bitsSent and leaves h unchanged;
A IF  Len(bitsSent) < 3 ; .

] ) . sending the fourth bit resets
THEN A bitsSent’ = <b> o bitsSent bitsSent and sends the complete
A UNCHANGED h number on h.

ELSE A bitsSent’ = ()
A H!Send(BitSeqToNat[{b) o bitsSent])

RcvBit 2 A L!Rcv A Rcv action on [ causes a Rcv
A IF bitsSent = <> THEN H!Rcv action on h iff it follows the
ELSE UNCHANGED h sending of the fourth bit.
A UNCHANGED bitsSent

Error = AT # 1 An illegal action on I sets h to ErrorVal.
A =((3be€{0,1} : L!Send(b))V L! Rev)
A b' = ErrorVal

Next = SendBit V RevBit V Error

A

 InmerIR = Init A O[Newt] (1, h, bitsSent)

I(bitsSent) = INSTANCE Inner

IR = TbitsSent : I(bitsSent)! InnerlR

Figure 10.4: Refining a channel.



10.8. INTERFACE REFINEMENT

163

is left unchanged. Otherwise, the value represented by the four bits
sent so far, including the current bit, is sent on h and bitsSent is
reset to ().

RcvBit A RcvBit step is one in which an acknowledgment is sent on [. It
represents the sending of an acknowledgment on A iff this is an
acknowledgment of the fourth bit, which is true iff bitsSent is the
empty sequence.

Error  An Error step is one in which an illegal change to [ occurs. It sets
h to an illegal value.

The inner specification InnerIR has the usual form. (There is no liveness require-
ment.) The outer module then instantiates the inner submodule with bitsSent
as a parameter, and it defines IR to equal InnerIR with bitsSent hidden.

Now suppose we have a module HigherSpec that defines a specification HSpec
of a system that communicates by sending numbers from 1 through 12 over a
channel hchan. We obtain, as follows, a lower-level specification LSpec in which
the numbers are sent as sequences of bits on a channel Ichan. We first declare
lchan and all the variables and constants of the HigherSpec module except hchan.
We then write:

HS(hchan) = INSTANCE HigherSpec
CR(h)

= INSTANCE ChannelRefinement WITH [ < Ichan
LSpec = 3h : CR(h)'IR A HS(h)!HSpec

10.8.3 Interface Refinement in General

In the examples of the binary clock and of channel refinement, we defined a
lower-level specification LSpec in terms of a higher-level one HSpec as:

(10.9) LSpec = 3h : IR A HSpec

where h is a free variable of HSpec and IR is a relation between h and the lower-
level variable [ of LSpec. We can view the internal specification IR A HSpec as
the composition of two components, as shown here:

— IR HSpec

We can regard IR as the specification of a component that transforms the lower-
level behavior of [ into the higher-level behavior of h. Formula IR is called an
interface refinement.



164 CHAPTER 10. COMPOSING SPECIFICATIONS

In both examples, the interface refinement is independent of the system spec-
ification. It depends only on the representation of the interface—that is, on how
the interaction between the system and its environment is represented. In gen-
eral, for an interface refinement IR to be independent of the system using the
interface, it should ascribe a behavior of the higher-level interface variable h to
any behavior of the lower-level variable [. In other words, for any sequence of
values for [, there should be some sequence of values for h that satisfy IR. This
is expressed mathematically by the requirement that the formula 3 h : IR should
be valid—that is, true for all behaviors.

So far, I have discussed refinement of a single interface variable h by a single
variable [. This generalizes in the obvious way to the refinement of a collection
of higher-level variables hq,...,h, by the variables [1,...,[,,. The interface
refinement IR specifies the values of the A; in terms of the values of the [; and
perhaps of other variables as well. Formula (10.9) is replaced by

LSpec = 3hy,..., hy : IR A HSpec

A particularly simple type of interface refinement is a data refinement, in
which IR has the form OP, where P is a state predicate that expresses the
values of the higher-level variables h1,..., h, as functions of the values of the
lower-level variables [i,...,[l,,. The interface refinement in our binary clock
specification is a data refinement, where P is the predicate hr = HourVal(bits).
As another example, the two specifications of an asynchronous channel inter-
face in Chapter 3 can each be obtained from the other by an interface refine-
ment. The specification Spec of the Channel module (page 30) is equivalent to
the specification obtained as a data refinement of the specification Spec of the
AsynchInterface module (page 27) by letting P equal:

(10.10) chan = [val — val, rdy — rdy, ack — ack]

This formula asserts that chan is a record whose val field is the value of the vari-
able val, whose rdy field is the value of the variable rdy, and whose ack field is the
value of the variable ack. Conversely, specification Spec of the AsynchInterface
module is equivalent to a data refinement of the specification Spec of the Channel
module. In this case, defining the state predicate P is a little tricky. The obvious
choice is to let P be the formula GoodVals defined by:

GoodVals = A val = chan.val
A rdy = chan.rdy
A ack = chan.ack

However, this can assert that wval, rdy, and ack have good values even if chan
has an illegal value—for example, if it is a record with more than three fields.
Instead, we let P equal

IF chan € [val: Data, rdy:{0,1}, ack:{0,1}] THEN GoodVals
ELSE BadVals



10.8. INTERFACE REFINEMENT

165

where BadVals asserts that val, rdy, and ack have some illegal values—that
is, values that are impossible in a behavior satisfying formula Spec of module
AsynchInterface. (We don’t need such a trick when defining chan as a function
of wal, rdy, and ack because (10.10) implies that the value of chan is legal iff
the values of all three variables val, rdy, and ack are legal.)

Data refinement is the simplest form of interface refinement. In a more
complicated interface refinement, the value of the higher-level variables cannot
be expressed as a function of the current values of the lower-level variables. In
the channel refinement example of Section 10.8.2, the number being sent on the
higher-level channel depends on the values of bits that were previously sent on
the lower-level channel, not just on the lower-level channel’s current state.

We often refine both a system and its interface at the same time. For ex-
ample, we may implement a specification H of a system that communicates by
sending numbers over a channel with a lower-level specification LImpl of a sys-
tem that sends individual bits. In this case, LImpl is not itself obtained from
HSpec by an interface refinement. Rather, LImpl implements some specification
LSpec that is obtained from HSpec by an interface refinement IR. In that case,
we say that LImpl implements HSpec under the interface refinement IR.

10.8.4 Open-System Specifications

So far, we have considered interface refinement for complete-system specifica-
tions. Let’s now consider what happens if the higher-level specification HSpec
is the kind of open-system specification discussed in Section 10.7 above. For
simplicity, we consider the refinement of a single higher-level interface variable
h by a single lower-level variable . The generalization to more variables will be
obvious.

Let’s suppose first that HSpec is a safety property, with no liveness condition.
As explained in Section 10.7, the specification attributes each change to h either
to the system or to the environment. Any change to a lower-level interface
variable [ that produces a change to h is therefore attributed to the system or
the environment. A bad change to h that is attributed to the environment makes
HSpec true; a bad change that is attributed to the system makes HSpec false.
Thus, (10.9) defines LSpec to be an open-system specification. For this to be
a sensible specification, the interface refinement IR must ensure that the way
changes to [ are attributed to the system or environment is sensible.

If HSpec contains liveness conditions, then interface refinement can be more
subtle. Suppose IR is the interface refinement defined in the ChannelRefinement
module of Figure 10.4 on page 162, and suppose that HSpec requires that the
system eventually send some number on h. Consider a behavior in which the
system sends the first bit of a number on [, but the environment never acknowl-
edges it. Under the interface refinement IR, this behavior is interpreted as one
in which A never changes. Such a behavior fails to satisfy the liveness condition



166 CHAPTER 10. COMPOSING SPECIFICATIONS

of HSpec. Thus, if LSpec is defined by (10.9), then failure of the environment to
do something can cause LSpec to be violated, through no fault of the system.
In this example, we want the environment to be at fault if it causes the
system to halt by failing to acknowledge any of the first three bits of a number
sent by the system. (The acknowledgment of the fourth bit is interpreted by IR
as the acknowledgment of a value sent on h, so blame for its absence is properly
assigned to the environment.) Putting the environment at fault means making
LSpec true. We can achieve this by modifying (10.9) to define LSpec as follows:

(10.11) LSpec = Liveness = 3h : IR A\ HSpec

where Liveness is a formula requiring that any bit sent on [, other than the last
bit of a number, must eventually be acknowledged. However, if [ is set to an
illegal value, then we want the safety part of the specification to determine who
is responsible. So, we want Liveness to be true in this case.

We define Liveness in terms of the inner variables h and bitsSent, which
are related to [ by formula InnerIR from the Inner submodule of module
ChannelRefinement. (Remember that [ should be the only free variable of
LSpec.) The action that acknowledges receipt of one of the first three bits
of the number is RevBit A (bitsSent # ()). Weak fairness of this action asserts
that the required acknowledgments must eventually be sent. For the case of
illegal values, recall that sending a bad value on [ causes h to equal ErrorVal.
We want Liveness to be true if this ever happens, which means if it eventually
happens. We therefore add the following definition to the submodule Inner of
the ChannelRefinement module:

InnerLiveness = A InnerlR
AV WFU; h, bitsSent) (RcuBit A (bitsSent # ()))
V & (h = ErrorVal)

To define Liveness, we have to hide A and bitsSent in InnerLiveness. We can
do this, in a context in which [ is declared, as follows:

ICR(h) = INSTANCE ChannelRefinement
Liveness = 3h, bitsSent : ICR(h)!I(bitsSent)! InnerLiveness

Now, suppose it is the environment that sends numbers over h and the system
is supposed to acknowledge their receipt and then process them in some way. In
this case, we want failure to acknowledge a bit to be a system error. So, LSpec
should be false if Liveness is. The specification should then be

LSpec = Liveness A (3h : IR A HSpec)
Since h does not occur free in Liveness, this definition is equivalent to

LSpec = 3h : Liveness A IR A HSpec



10.9. SHOULD YOU COMPOSE?

167

which has the form (10.9) if the interface refinement IR of (10.9) is taken to be
Liveness A IR. In other words, we can we make the liveness condition part of
the interface refinement. (In this case, we can simplify the definition by adding
liveness directly to InnerIR.)

In general, if HSpec is an open-system specification that describes liveness as
well as safety, then an interface refinement may have to take the form (10.11).
Both Liveness and the liveness condition of IR may depend on which changes
to the lower-level interface variable [ are attributed to the system and which to
the environment. For the channel refinement, this means that they will depend
on whether the system or the environment is sending values on the channel.

10.9 Should You Compose?

When specifying a system, should we write a monolithic specification with a
single next-state action, a closed-system composition that is the conjunction of
specifications of individual components, or an open-system specification? The
answer is, it usually makes little difference. For a real system, the definitions of
the components’ actions will take hundreds or thousands of lines. The different
forms of specification differ only in the few lines where we assemble the initial
predicates and next-state actions into the final formula.

If you are writing a specification from scratch, it’s probably better to write
a monolithic specification. It is usually easier to understand. Of course, there
are exceptions. We write a real-time specification as the conjunction of an un-
timed specification and timing constraints; describing the changes to the system
variables and the timers with a single next-state action usually makes the spec-
ification harder to understand.

Writing a composite specification may be sensible when you are starting from
an existing specification. If you already have a specification of one component,
you may want to write a separate specification of the other component and
compose the two specifications. If you have a higher-level specification, you may
want to write a lower-level version as an interface refinement. However, these
are rather rare situations. Moreover, it’s likely to be just as easy to modify
the original specification or re-use it in another way. For example, instead of
conjoining a new component to the specification of an existing one, you can
simply include the definition of the existing component’s next-state action, with
an EXTENDS or INSTANCE statement, as part of the new specification.

Composition provides a new way of writing a complete-system specification;
it doesn’t change the specification. The choice between a composite specification
and a monolithic one is therefore ultimately a matter of taste. Disjoint-state
compositions are generally straightforward and present no problems. Shared-
state compositions can be tricky and require care.

Open-system specifications introduce a mathematically different kind of spec-



168 CHAPTER 10. COMPOSING SPECIFICATIONS

ification. A closed-system specification E A M and its open-system counterpart
E *»> M are not equivalent. If we really want a specification to serve as a legal
contract between a user and an implementer, then we have to write an open-
system specification. We also need open-system specifications if we want to
specify and reason about systems built by composing off-the-shelf components
with pre-existing specifications. All we can assume about such a component is
that it satisfies a contract between the system builder and the supplier, and such
a contract can be formalized only as an open-system specification. However, you
are unlikely to encounter off-the-shelf component specifications during the early
part of the twenty-first century. In the near future, open-system specifications
are likely to be of theoretical interest only.



Chapter 11

Advanced Examples

It would be nice to provide an assortment of typical examples that cover most
of the specification problems that arise in practice. However, there is no such
thing as a typical specification. Every real specification seems to pose its own
problems. But we can partition all specifications into two classes, depending on
whether or not they contain VARIABLE declarations.

A specification with no variables defines data structures and operations on
those structures. For example, the Sequences module defines various operations
on sequences. When specifying a system, you may need some kind of data
structure other than the ones provided by the standard modules like Sequences
and Bags, described in Chapter 18. Section 11.1 gives some examples of data
structure specifications.

A system specification contains variables that represent the system’s state.
We can further divide system specifications into two classes—high-level specifi-
cations that describe what it means for a system to be correct, and lower-level
specifications that describe what the system actually does. In the memory ex-
ample of Chapter 5, the linearizable memory specification of Section 5.3 is a
high-level specification of correctness, while the write-through cache specifica-
tion of Section 5.6 describes how a particular algorithm works. This distinction
is not precise; whether a specification is high- or low-level is a matter of per-
spective. But it can be a useful way of categorizing system specifications.

Lower-level system specifications tend to be relatively straightforward. Once
the level of abstraction has been chosen, writing the specification is usually just a
matter of getting the details right when describing what the system does. Spec-
ifying high-level correctness can be much more subtle. Section 11.2 considers a
high level specification problem—formally specifying a multiprocessor memory.

169



170 CHAPTER 11. ADVANCED EXAMPLES

11.1 Specifying Data Structures

Most of the data structures required for writing specifications are mathemat-
ically simple and are easy to define in terms of sets, functions, and records.
Section 11.1.2 describes the specification of one such structure—a graph. On
rare occasions, a specification will require sophisticated mathematical concepts.
The only examples I know of are hybrid system specifications, discussed in Sec-
tion 9.5. There, we used a module for describing the solutions to differential
equations. That module is specified in Section 11.1.3 below. Section 11.1.4
considers the tricky problem of defining operators for specifying BNF gram-
mars. Although not the kind of data structure you're likely to need for a system
specification, specifying BNF grammars provides a nice little exercise in “math-
ematization”. The module developed in that section is used in Chapter 15 for
specifying the grammar of TLAT. But, before specifying data structures, you
should know how to make local definitions.

11.1.1 Local Definitions

In the course of specifying a system, we write lots of auxiliary definitions. A
system specification may consist of a single formula Spec, but we define dozens
of other identifiers in terms of which we define Spec. These other identifiers often
have fairly common names—for example, the identifier Next is defined in many
specifications. The different definitions of Next don’t conflict with one another
because, if a module that defines Next is used as part of another specification,
it is usually instantiated with renaming. For example, the Channel module is
used in module InnerFIFO on page 38 with the statement:

InChan 2 INSTANCE Channel WITH ...

The action Next of the Channel module is then instantiated as InChan!Next,
so its definition doesn’t conflict with the definition of Next in the InnerFIFO
module.

A module that defines operations on a data structure is likely to be used
in an EXTENDS statement, which does no renaming. The module might define
some auxiliary operators that are used only to define the operators in which
we're interested. For example, we need the DifferentialEquations module only
to define the single operator Integrate. However, Integrate is defined in terms
of other defined operators with names like Nbhd and IsDeriv. We don’t want
these definitions to conflict with other uses of those identifiers in a module that
extends DifferentialEquations. So, we want the definitions of Nbhd and IsDeriv
to be local to the DifferentialEquations module.!

IWe could use the LET construct to put these auxiliary definitions inside the definition of
Integrate, but that trick wouldn’t work if the DifferentialEquations module exported other
operators besides Integrate that were defined in terms of Nbhd and IsDeriv.



11.1. SPECIFYING DATA STRUCTURES

171

TLAT provides a LOCAL modifier for making definitions local to a module.
If a module M contains the definition

LOCAL Foo(z) =

then Foo can be used inside module M just like any ordinary defined identifier.
However, a module that extends or instantiates M does not obtain the definition
of Foo. That is, the statement EXTENDS M in another module does not define
Foo in that module. Similarly, the statement

N £ INSTANCE M

does not define N!Foo. The LOCAL modifier can also be applied to an instanti-
ation. The statement

LOCAL INSTANCE Sequences

in module M incorporates into M the definitions from the Sequences module.
However, another module that extends or instantiates M does not obtain those
definitions. Similarly, a statement like

LOCAL P(z) = INSTANCE N

makes all the instantiated definitions local to the current module.

The LOCAL modifier can be applied only to definitions and INSTANCE state-
ments. It cannot be applied to a declaration or to an EXTENDS statement, so
you cannot write either of the following:

LOCAL CONSTANT N These are not legal

tatements.
LOCAL EXTENDS Sequences o c o

If & module has no CONSTANT or VARIABLE declarations and no submodules,
then extending it and instantiating it are equivalent. Thus, the two statements

EXTENDS Sequences INSTANCE Sequences

are equivalent.

In a module that defines general mathematical operators, I like to make all
definitions local except for the ones that users of the module would expect. For
example, users expect the Sequences module to define operators on sequences,
such as Append. They don’t expect it to define operators on numbers, such
as +. The Sequences module uses + and other operators defined in the Naturals
module. But instead of extending Naturals, it defines those operators with the
statement

LOCAL INSTANCE Naturals

The definitions of the operators from Naturals are therefore local to Sequences.
A module that extends the Sequences module could then define + to mean
something other than addition of numbers.



172 CHAPTER 11. ADVANCED EXAMPLES

11.1.2 Graphs

A graph is an example of the kind of simple data structure often used in specifica-
tions. Let’s now write a Graphs module for use in writing system specifications.

We must first decide how to represent a graph in terms of data structures
that are already defined—either built-in TLA™T data structures like functions,
or ones defined in existing modules. Our decision depends on what kind of
graphs we want to represent. Are we interested in directed graphs or undirected
graphs? Finite or infinite graphs? Graphs with or without self-loops (edges
from a node to itself)? If we are specifying graphs for a particular specification,
the specification will tell us how to answer these questions. In the absence of
such guidance, let’s handle arbitrary graphs. My favorite way of representing
both directed and undirected graphs is to specify arbitrary directed graphs,
and to define an undirected graph as a directed graph that contains an edge iff
it contains the opposite-pointing edge. Directed graphs have a pretty obvious
representation: a directed graph consists of a set of nodes and a set of edges,
where an edge from node m to node n is represented by the ordered pair (m, n).

In addition to deciding how to represent graphs, we must decide how to
structure the Graphs module. The decision depends on how we expect the
module to be used. For a specification that uses a single graph, it is most
convenient to define operations on that specific graph. So, we want the Graphs
module to have (constant) parameters Node and Edge that represent the sets of
nodes and edges of a particular graph. A specification could use such a module
with a statement

INSTANCE Graphs WITH Node < ..., FEdge «— ...

“

where the “...”s are the sets of nodes and edges of the particular graph ap-
pearing in the specification. On the other hand, a specification might use many
different graphs. For example, it might include a formula that asserts the exis-
tence of a subgraph, satisfying certain properties, of some given graph G. Such
a specification needs operators that take a graph as an argument—for exam-
ple, a Subgraph operator defined so Subgraph(G) is the set of all subgraphs of
a graph G. In this case, the Graphs module would have no parameters, and
specifications would incorporate it with an EXTENDS statement. Let’s write this
kind of module.

An operator like Subgraph takes a graph as an argument, so we have to decide
how to represent a graph as a single value. A graph G consists of a set N of
nodes and a set F of edges. A mathematician would represent G as the ordered
pair (N, E). However, G.node is more perspicuous than G[1], so we represent
G as a record with node field N and edge field E.

Having made these decisions, it’s easy to define any standard operator on
graphs. We just have to decide what we should define. Here are some generally
useful operators:



11.1. SPECIFYING DATA STRUCTURES

173

IsDirectedGraph(G)
True iff G is an arbitrary directed graph—that is, a record with node field
N and edge field F such that F is a subset of N x N. This operator
is useful because a specification might want to assert that something is
a directed graph. (To understand how to assert that G is a record with
node and edge fields, see the definition of IsChannel in Section 10.3 on
page 140.)

DirectedSubgraph(G)
The set of all subgraphs of a directed graph G. Alternatively, we could
define IsDirectedSubgraph(H, G) to be true iff H is a subgraph of G. How-
ever, it’s easy to express IsDirectedSubgraph in terms of DirectedSubgraph:

IsDirectedSubgraph(H, G) = H € DirectedSubgraph(G)

On the other hand, it’s awkward to express DirectedSubgraph in terms of
IsDirectedSubgraph:

DirectedSubgraph(G) =
CHOOSE S : VH : (H € S) = IsDirectedSubgraph(H, G)

Section 6.1 explains why we can’t define a set of all directed graphs, so we
had to define the IsDirectedGraph operator.

IsUndirectedGraph(G)

UndirectedSubgraph( Q)
These are analogous to the operators for directed graphs. As mentioned
above, an undirected graph is a directed graph G such that for every
edge (m, n) in G.edge, the inverse edge (n, m) is also in G.edge. Note
that DirectedSubgraph(G) contains directed graphs that are not undirected
graphs—except for certain “degenerate” graphs G, such as graphs with no
edges.

Path(G)
The set of all paths in G, where a path is any sequence of nodes that can
be obtained by following edges in the direction they point. This definition
is useful because many properties of a graph can be expressed in terms of
its set of paths. It is convenient to consider the one-element sequence (n)
to be a path, for any node n.

AreConnectedIn(m, n, Q)
True iff there is a path from node m to node n in G. The utility of this
operator becomes evident when you try defining various common graph
properties, like connectivity.

There are any number of other graph properties and classes of graphs that we
might define. Let’s define these two:



174 CHAPTER 11. ADVANCED EXAMPLES

IsStronglyConnected (G)
True iff G is strongly connected, meaning that there is a path from any
node to any other node. For an undirected graph, strongly connected is
equivalent to the ordinary definition of connected.

IsTree WithRoot( G, r)
True iff G is a tree with root r, where we represent a tree as a graph
with an edge from each nonroot node to its parent. Thus, the parent of a
nonroot node n equals:

CHOOSE m € G.node : (n, m) € G.edge

The Graphs module appears on the next page. By now, you should be able to
work out for yourself the meanings of all the definitions.

11.1.3 Solving Differential Equations

Section 9.5 on page 132 describes how to specify a hybrid system whose state in-
cludes a physical variable satisfying an ordinary differential equation. The speci-
fication uses an operator Integrate such that Integrate(D, tq, t1, (Zo,-. ., Tn-1))
is the value at time t; of the n-tuple

(z,dx/dt, ..., d" tz/dt"")
where z is a solution to the differential equation
Dlt, z, dx/dt, ..., d"z/dt"] =0

whose 0*"" through (n—1)* derivatives at time tq are g, ..., T,_1. We assume
that there is such a solution, and it is unique. Defining Integrate illustrates how
to express sophisticated mathematics in TLAT.

We start by defining some mathematical notation that we will use to define
the derivative. As usual, we obtain from the Reals module the definitions of the
set Real of real numbers and of the ordinary arithmetic operators. Let PosReal
be the set of all positive reals:

PosReal = {r € Real : >0}

and let Openlnterval(a, b) be the open interval from a to b (the set of numbers
greater than « and less than b):

Openlnterval(a,b) = {s € Real : (a < s)A(s < b)}

(Mathematicians usually write this set as (a, b).) Let’s also define Nbhd(r, e)
to be the open interval of width 2e centered at 7:

Nbhd(r,e) = Openlnterval(r — e,r + e)



11.1. SPECIFYING DATA STRUCTURES 175

[ MODULE Graphs |

A module that defines operators on graphs. A directed graph is represented as a record
whose node field is the set of nodes and whose edge field is the set of edges, where an edge
is an ordered pair of nodes.

LOCAL INSTANCE Naturals
LOCAL INSTANCE Sequences

1
I
IsDirectedGraph(G) £ Trueiff G is a directed graph.

A G = [node — G.node, edge — G.edge]
A G.edge C (G.node x G.node)

DirectedSubgmph(G) £ The set of all (directed) subgraphs of a directed graph.

{H € [node : SUBSET G.node, edge : SUBSET (G.node x G.node)] :
IsDirectedGraph(H) N H.edge C G.edge}

1 |

Is UndirectedGmph( G) = An undirected graph is a directed graph in which every
A IsDirectedGmph( G) edge has an oppositely-directed one.
AVee G.edge : (e]2], e[l]) € G.edge

UndirectedSubgmph(G) = The set of (undirected) subgraphs of an undirected graph.
{H € DirectedSubgraph(G) : IsUndirectedGraph(H)}

| |
1

r
N
Path(G) = The set of paths in G, where a path is represented as a sequence of nodes.

{p € Seq(G.node) : N p# ()
AViel..(Len(p)—1) : (p[i], p[i + 1]) € G.edge}

AreConnectedIn(m, n, G) = True iff there is a path from m to n in graph G.
Ip € Path(G) = (p[l] = m) A (p[Len(p)] = n)

IsStronglyConnected (G) 2 Trueiff graph G is strongly connected.
V'm, n € G.node : AreConnectedIn(m, n, G)

| |
r 1

IsTree WithROOt(G, T’) £ Trueif G is a tree with root r, where edges point
A IsDirectedGmph(G) from child to parent.
AVe€ G.edge : N ell] #r
AYf e G.edge : (e[]l] = f[1]) = (e=f)
AV n € G.node : AreConnectedIn(n, r, G)

Figure 11.1: A module for specifying operators on graphs.



176 CHAPTER 11. ADVANCED EXAMPLES

To explain the definitions, we need some notation for the derivative of a function.
It’s rather difficult to make mathematical sense of the usual notation df /dt for
the derivative of f. (What exactly is t7) So, let’s use a mathematically simpler
notation and write the n'* derivative of the function f as f(™). (We don’t have
to use TLA™ notation because differentiation will not appear explicitly in our
definitions.) Recall that f(°), the 0*" derivative of f, equals f.

We can now start to define Integrate. If a and b are numbers, InitVals is
an n-tuple of numbers, and D is a function from (n + 2)-tuples of numbers to
numbers, then

Integrate(D, a, b, InitVals) = (fO[o], ..., f@=Y[b])
where f is the function satisfying the following two conditions:

o D[r, fOr], fO[r], ..., f™[r]] = 0, for all r in some open interval con-
taining a and b.

o (fO[a], ..., f®=V[a]) = InitVals

We want to define Integrate(D, a, b, InitVals) in terms of this function f, which
we can specify using the CHOOSE operator. It’s easiest to choose not just f, but
its first 7 derivatives as well. So, we choose a function g such that g[i] = f(*) for
1 € 0 ..n. The function ¢ maps numbers in 0 .. n into functions. More precisely,
g is an element of

[0 .. n — [OpenInterval(a — e, b+ €) — Real]]

for some positive e. It is the function in this set that satisfies the following
conditions:

1. g[i] is the i*h derivative of g[0], for all i € 0 .. n.
2. D[r, g[0][r], ..., g[n][r]] = 0, for all r in Openlnterval(a — e, b+ e).
3. (g[0][a], ..., g[n — 1][a]) = InitVals

We now have to express these conditions formally.

To express the first condition, we will define IsDeriv so that IsDeriv(i, df, f)
is true iff df is the i*? derivative of f. More precisely, this will be the case if f is
a real-valued function on an open interval; we don’t care what IsDeriv(i, df, f)
equals for other values of f. Condition 1 is then:

Viel..n: IsDeriw(i, g[i], g[0])

To express the second condition formally, without the “...” we reason as follows:

> 9[0)[r], -, g[nllr])] See page 50.
o <g[0] 7”], ey g[n] [r] > ] Tuples are sequences
[



11.1. SPECIFYING DATA STRUCTURES 177

The third condition is simply:
Viel..n: g[i—1][a] = InitVals]i]
We can therefore write the formula specifying ¢ as:

de € PosReal : A g € [0 .. n — [Openlnterval(a — e, b+ e¢) — Real] ]
AYiel..n: A IsDeri(i, g[i], g[0])
A gli — 1][a] = InitVals[i]
AV r € Openlnterval(a — e, b+ ¢€) :
D[(r)oliel..(n+1)—g[i—1][r]]] =0

where n is the length of InitVals. The value of Integrate(D, a, b, InitVals) is
the tuple (g[0][d], ..., g[n — 1][b]), which can be written formally as

[iel..n— g[i—1]b]]

To complete the definition of Integrate, we now define the operator IsDeriv.
It’s easy to define the i** derivative inductively in terms of the first derivative.
So, we define IsFirstDeriv(df, ) to be true iff df is the first derivative of f,
assuming that f is a real-valued function whose domain is an open interval.
Our definition actually works if the domain of f is any open set.? Elementary
calculus tells us that df[r] is the derivative of f at r iff

] — i L
s—r s—T
The classical “d-¢” definition of the limit states that this is true iff, for every
€ > 0, there is a 6 > 0 such that 0 < |s — r| < § implies:
df[’/’] _ f[S] — f[T] <€

s—r
Stated formally, this condition is:

Ve € PosReal :
39 € PosReal :
y Wi
s € Nbhd(r, 6)\{r} : p—— € Nbhd(df]r], €)
We define IsFirstDeriv(df, f) to be true iff the domains of df and f are equal,
and this condition holds for all r in their domain.

The definitions of Integrate and all the other operators introduced above
appear in the DifferentialFquations module of Figure 11.2 on the next page.
The LOCAL construct described in Section 11.1.1 above is used to make all these
definitions local to the module, except for the definition of Integrate.

2A set S is open iff for every r € S there exists an € > 0 such that the interval from 7 — €
to r + € is contained in S.



178 CHAPTER 11. ADVANCED EXAMPLES

[ MODULE Differential Equations |

This module defines the operator Integrate for specifying the solution to a differential equation. If a and b are
reals with a < b; InitVals is an n-tuple of reals; and D is a function from (n-+1)-tuples of reals to reals; then this
is the n-tuple of values

d n—1 f

daf
<f[b]7 E[b]v e din—1 [b]>
where f is the solution to the differential equation
af anf
DIty fiy = 0o =] = 0
t, f dt dt™ }
such that
daf =ty )
(flal, E[a], 2000 [a]) = InitVals
LOCAL INSTANCE Reals The INSTANCE statement and
LOCAL INSTANCE Sequences these definitions are local, so a

N module that extends this one
LOCAL PosReal = {r € Real : r > 0} obtains only the definition of

I .
LOCAL OpenInterval(a,b) = {s & Real : (a < s)A (s <b)} ntegrate

LOCAL Nbhd(r,e) = Openlnterval(r — e,r + e)

LOCAL IsFirstDeriv(df, f) = Assuming DOMAIN f is an open subset of Real, this is true iff
f is differentiable and df is its first derivative. Recall that the
A df € [DOMAIN f - Rea” derivative of f at r is the number df[r] satisfying the following
AVr1 € DOMAIN f : condition: for every e there exists a § such that 0 < |s —r| < §
Ve € PosReal : implies |df[r] — (f[s] = fIr])/(s = )| <e.

3d € PosReal :
Vs € Nohd(r, d)\{r} : (f[s] — f[r])/(s — r) € Nbhd(df[r], e)

LOCAL IsDeriv(n, daf, f) 2 True iff f is n times differentiable and df is its nt® derivative.

LET IsD[k €0 .. n, g € [DOMAIN f — Real]] =  IsD[k,g] = IsDeriv(k, g, f)
IF k=0 THEN g=f
ELSE Jgg € [DOMAIN f — Real] : A IsFirstDeriv(g, gg)
A IsD[k — 1, gg]
IN  IsD[n, df]

! |
I 1

Integrate(D, a, b, InitVals) =
LET n Len(InitVals)
g9 = CHOOSE g : de € PosReal : A g € [0 .. n — [OpenInterval(a — e, b+ e) — Real]]
AViel..n: A IsDeriw(i,gli], g[0])
A gli — 1][a] = InitVals[i]
AV r € Openlnterval(a — e, b+ ¢€) :
D[(r)oliel..(n+1)—gli—1][r]]] =0

e >

IN [i€l..nw— gg[i—1][b]]

Figure 11.2: A module for specifying the solution to a differential equation.



11.1. SPECIFYING DATA STRUCTURES

179

11.1.4 BNF Grammars

BNF, which stands for Backus-Naur Form, is a standard way of describing the
syntax of computer languages. This section develops the BNFGrammars mod-
ule, which defines operators for writing BNF grammars. A BNF grammar isn’t
the kind of data structure that arises in system specification, and TLAT is not
particularly well suited to specifying one. Its syntax doesn’t allow us to write
BNF grammars exactly the way we’d like, but we can come reasonably close.
Moreover, 1 think it’s fun to use TLAT to specify its own syntax. So, module
BNFGrammars is used in Chapter 15 to specify part of the syntax of TLA™T, as
well as in Chapter 14 to specify the syntax of the TLC model checker’s config-
uration file.

Let’s start by reviewing BNF grammars. Consider the little language SE of
simple expressions described by the BNF grammar

expr = ident | expr op expr | (expr) | LET def IN expr
def ::= ident == expr

where op is some class of infix operators like 4+, and ident is some class of
identifiers such as abc and x. The language SE contains expressions like

abc + (LET z ==y + abc IN z * 1)
Let’s represent this expression as the sequence
< LLabC77 , “Jr” , LL(” , LLLET?’ , LLX77 , “==77 ,
Wy, “ ” [14 9 “ ” Wy [13%2 Wy Wy
y ) + ) abc ) IN 3 X ) * ) X ) ) >

of strings. The strings such as “abc” and “4” appearing in this sequence are
usually called lezemes. In general, a sequence of lexemes is called a sentence;
and a set of sentences is called a language. So, we want to define the language
SE to consist of the set of all such sentences described by the BNF grammar.3

To represent a BNF grammar in TLAT, we must assign a mathematical
meaning to nonterminal symbols like def, to terminal symbols like op, and to
the grammar’s two productions. The method that I find simplest is to let the
meaning of a nonterminal symbol be the language that it generates. Thus, the
meaning of ezpr is the language SE itself. I define a grammar to be a function G
such that, for any string “str”, the value of G[“str”] is the language generated by
the nonterminal str. Thus, if G is the BNF grammar above, then G[“expr”] is the
complete language SE, and G[“def’] is the language defined by the production
for def, which contains sentences like

Wy

€, U e « »
<Y>_—7qq7*;WXyZ>

3BNF grammars are also used to specify how an expression is parsed—for example that
a+ bxcis parsed as a + (b * ¢) rather than (a + b) * c. By considering the grammar to specify
only a set of sentences, we are deliberately not capturing that use in our TLAT representation
of BNF grammars.



180 CHAPTER 11. ADVANCED EXAMPLES

Instead of letting the domain of G consist of just the two strings “expr’ and
“def”, it turns out to be more convenient to let its domain be the entire set
STRING of strings, and to let G[s] be the empty language (the empty set) for all
strings s other than “expr” and “def”’. So, a grammar is a function from the set
of all strings to the set of sequences of strings. We can therefore define the set
Grammar of all grammars by

Grammar = [STRING — SUBSET Seq(STRING)]

In describing the mathematical meaning of records, Section 5.2 explained
that r.ack is an abbreviation for r[“ack”]. This is the case even if r isn’t a
record. So, we can write G.op instead of G[“op”]. (A grammar isn’t a record
because its domain is the set of all strings rather than a finite set of strings.)

A terminal like ident can appear anywhere to the right of a “:=" that a
nonterminal like expr can, so a terminal should also be a set of sentences. Let’s
represent a terminal as a set of sentences, each of which is a sequence consisting
of a single lexeme. Let a token be a sentence consisting of a single lexeme, so a
terminal is a set of tokens. For example, the terminal ident is a set containing
tokens such as ( “abc”), (“x”), and (“qq” ). Any terminal appearing in the BNF
grammar must be represented by a set of tokens, so the == in the grammar for

SE is the set {(“==")}. Let’s define the operator tok by tok is short for
token.
tok(s) = {{s)}
so we can write this set of tokens as tok(“==").

A production expresses a relation between the values of G.str for some gram-
mar G and some strings “str”. For example, the production

def := ident == expr

asserts that a sentence s is in G.def iff it has the form i o (“==") o e for some
token 4 in ident and some sentence e in G.expr. In mathematics, a formula
about G must mention G (perhaps indirectly by using a symbol defined in terms
of G). So, we can try writing this production in TLA™ as

G.def == ident tok(“==") G.expr

In the expression to the right of the ::=, adjacency is expressing some operation.
Just as we have to make multiplication explicit by writing 2 % z instead of 2z,
we must express this operation by an explicit operator. Let’s use &, so we can
write the production as

(11.1) G.def == ident & tok(“==") & G.expr

This expresses the desired relation between the sets G.def and G.expr of sen-
tences if ::= is defined to be equality and & is defined so that L & M is the



11.1. SPECIFYING DATA STRUCTURES 181

set of all sentences obtained by concatenating a sentence in L with a sentence
in M:

L&M = {sot:secl,tec M}

The production

expr == ident | expr op expr | (expr) | LET def IN expr
can similarly be expressed as The precedence
rules of TLAT im-
(11.2) G.expr := ident ply that a | b & ¢

is interpreted as

| G.expr & op & G.expr

| tok(“(”) & G.exp & tok(“)") al (b & c).
| tok(“LET”) & G.def & tok(“IN”) & G.expr
This expresses the desired relation if | (which means or in the BNF grammar)
is defined to be set union (U).
We can also define the following operators that are sometimes used in BNF
grammars:
e Nil is defined so that Nil & S equals S for any set S of sentences:
Nit = {()}
e ITequals L | L& L | L& L&L | ...: n+1 copies LT is typed L~+
— d L* is typed
Lt £ LET LL[n € Nat] = LLln]=L | ... | L&...L. i{l*. =P

IF n=0 THEN L
ELSE LL[n—1] | LLln—1] & L
IN  UNION {LL[n] : n € Nat}

e [*equals Nil | L |L& L |L&L&L| ...:
L* = Nil | Lt

The BNF grammar for SE consists of two productions, expressed by the TLA™
formulas (11.1) and (11.2). The entire grammar is the single formula that is the
conjunction of these two formulas. We must turn this formula into a mathemat-
ical definition of a grammar GSE, which is a function from strings to languages.
The formula is an assertion about a grammar G. We define GSE to be the small-
est grammar G satisfying the conjunction of (11.1) and (11.2), where grammar
G smaller than G2 means that Gi[s] C Ga[s] for every string s. To express
this in TLA™, we define an operator LeastGrammar so that LeastGrammar(P)
is the smallest grammar G satisfying P(G):

=

LeastGrammar(P(-))
CHOOSE G € Grammar :
A P(G)
AY H € Grammar : P(H) = (Vs € STRING : G[s] C H[s])



182 CHAPTER 11. ADVANCED EXAMPLES

Letting P(G) be the conjunction of (11.1) and (11.2), we can define the grammar
GSE to be LeastGrammar(P). We can then define the language SE to equal
GSE.expr. The smallest grammar G satisfying a formula P must have G|[s]
equal to the empty language for any string s that doesn’t appear in P. Thus,
GSE|[s] equals the empty language {} for any string s other than “expr” and
“def”.

To complete our specification of GSE, we must define the sets ident and
op of tokens. We can define the set op of operators by enumerating them—for
example:

Op é tok(“+77) | tok(“_77) | tok,(“*ﬂ) ‘ tok_(u/”)

To express this a little more compactly, let’s define Tok(S) to be the set of all
tokens formed from elements in the set S of lexemes:

Tok(S) = {(s):se€S}
We can then write
op A2 TOk’({“+”, cciu’ 44*777 u/n})

Let’s define ident to be the set of tokens whose lexemes are words made
entirely of lower-case letters, such as “abc”, “qq”, and “x”. To learn how to do
that, we must first understand what strings in TLA™ really are. In TLA™T, a
string is a sequence of characters. (We don’t care, and the semantics of TLAT See Section
doesn’t specify, what a character is.) We can therefore apply the usual sequence 16.1.10 on page

70« 9 Uy 0 « 9 «ga” 307 for more
operators on them. For example, Tail(“abc”) equals “bc”, and “abc” o “de )
. ” about strings. Re-

equals “abcde”. member that we

The operators like & that we just defined for expressing BNF were applied take sequence and

to sets of sentences, where a sentence is a sequence of lexemes. These operators tuple to be syn-
can be applied just as well to sets of sequences of any kind—including sets "

of strings. For example, {“one”, “two”} & {“s”} equals {“ones”, “twos”}, and

{“ab”}T is the set consisting of all the strings “ab”, “abab”, “ababab”, etc. So,

we can define ident to equal Tok(Letter™), where Letter is the set of all lexemes

consisting of a single lower-case letter:

A
Letter = {“3”7 Léb”’ ceey “Z”}

Writing this definition out in full (without the “...”) is tedious. We can make
this a little easier as follows. We first define OneOf(s) to be the set of all
one-character strings made from the characters of the string s:

OneOf(s) = {(s[i]) : i € DOMAIN s}
We can then define

Letter = One Of (“abcdefghijklmnopgrstuvwxyz”)



11.2. OTHER MEMORY SPECIFICATIONS

183

GSE = LET op = TOk( {LL_’_??) 44_77’ u*n’ cn/w} )
ident = Tok( OneOf (“abcdefghijkimnopgrstuvwxyz”) ™)
P(G) = A G.expr == ident

| G.expr & op & G.expr
| tok(“(") & G.expr & tok(“)”)

| tok(“LET”) & G.def & tok(“IN”) & G.expr

A G.def == ident & tok(“==") & G.expr
IN  LeastGrammar(P)

Figure 11.3: The definition of the grammar GSE for the language SE.

The complete definition of the grammar GSE appears in Figure 11.3 on this
page.

All the operators we’ve defined here for specifying grammars are grouped
into module BNFGrammars, which appears in Figure 11.4 on the next page.

Using TLAT to write ordinary BNF grammars is a bit silly. However, or-
dinary BNF grammars are not very convenient for describing the syntax of a
complicated language like TLAT. In fact, they can’t describe the alignment
rules for its bulleted lists of conjuncts and disjuncts. Using TLA™ to specify
such a language is not so silly. In fact, a TLAT specification of the complete
syntax of TLAT was written as part of the development of the Syntactic Ana-
lyzer, described in Chapter 12. Although valuable when writing a TLA™T parser,
this specification isn’t very helpful to an ordinary user of TLAY, so it does not
appear in this book.

11.2 Other Memory Specifications

Section 5.3 specifies a multiprocessor memory. The specification is unrealistically
simple for three reasons: a processor can have only one outstanding request at a
time, the basic correctness condition is too restrictive, and only simple read and
write operations are provided. (Real memories provide many other operations,
such as partial-word writes and cache prefetches.) We now specify a memory
that allows multiple outstanding requests and has a realistic, weaker correctness
condition. To keep the specification short, we still consider only the simple
operations of reading and writing one word of memory.

11.2.1 The Interface

The first thing we must do to specify a memory is determine the interface. The
interface we choose depends on the purpose of the specification. There are many
different reasons why we might be specifying a multiprocessor memory. We could



184 CHAPTER 11. ADVANCED EXAMPLES

[ MODULE BNFGrammars

A sentence is a sequence of strings. (In standard terminology, the term “lexeme” is used
instead of “string”.) A token is a sentence of length one—that is, a one-element sequence
whose single element is a string. A language is a set of sentences.

LOCAL INSTANCE Naturals
LOCAL INSTANCE Sequences

OPERATORS FOR DEFINING SETS OF TOKENS
OneOf(s) = {(s[i]) : i € DOMAIN s}

If s is a string, then OneOf(s) is the set of strings formed from the individual characters
of s. For example, OneOf (“abc”) = {“a”, “b”, “c”}.

A

tOk(S) = {<S>} If s is a string, then tok(s) is the set containing only the
a ) token made from s. If S is a set of strings, then Tok(S) is

TOk(S) - {<8> SRS S} the set of tokens made from elements of S.

OPERATORS FOR DEFINING LANGUAGES

Nil 2 {< >} The language containing only the “empty” sentence.

L&M= {sot:s€ L, t€ M} Al concatenations of sentences in L and M.
L|M =2 LUuM

It 2 L[|L&L|L&L&L]...

LET LL[n € Nat] 2 IF n=0 THEN L
ELSE LL[n—1] | LL[n —1] & L
IN  UNION {LL[n] : n € Nat}
L* = Nil | Lt
L:=M = L=M
Grammar = [STRING — SUBSET Seq(STRING)]
LeastGmmmar(P(_)) £ The smallest grammar G such that P(G) is true.
CHOOSE G € Grammar :
A P(@G)
AV H € Grammar : P(H) = Vs € STRING : G[s] C H|[s]

Figure 11.4: The module BNFGrammars.



11.2. OTHER MEMORY SPECIFICATIONS

185

be specifying a computer architecture, or the semantics of a programming lan-
guage. Let’s suppose we are specifying the memory of an actual multiprocessor
computer.

A modern processor performs multiple instructions concurrently. It can begin
new memory operations before previous ones have been completed. The memory
responds to a request as soon as it can; it need not respond to different requests
in the order that they were issued.

A processor issues a request to a memory system by setting some register. We
assume that each processor has a set of registers through which it communicates
with the memory. Each register has three fields: an adr field that holds an
address, a val field that holds a word of memory, and an op field that indicates
what kind of operation, if any, is in progress. The processor can issue a command
using a register whose op field equals “Free”. It sets the op field to “Rd” or “Wr”
to indicate the operation; it sets the adr field to the address of the memory word;
and, for a write, it sets the val field to the value being written. (On a read, the
processor can set the val field to any value.) The memory responds by setting
the op field back to “Free” and, for a read, setting the val field to the value read.
(The memory does not change the val field when responding to a write.)

Module RegisterInterface in Figure 11.5 on the next page contains some
declarations and definitions for specifying the interface. It declares the constants
Adr, Val, and Proc, which are the same as in the memory interface of Section 5.1,
and the constant Reg, which is the set of registers. (More precisely, Reg is a
set of register identifiers.) A processor has a separate register corresponding to
each element of Reg. The variable regFile represents the processors’ registers,
regFile[p][r] being register r of processor p. The module also defines the sets of
requests and register values, as well as a type invariant for regFile.

11.2.2 The Correctness Condition

Section 5.3 specifies what is called a linearizable memory. In a linearizable mem-
ory, a processor never has more than one outstanding request. The correctness
condition for the memory can be stated as:

The result of any execution is the same as if the operations of all the
processors were executed in some sequential order, and each opera-
tion is executed between the request and the response.

The second clause, which requires the system to act as if each operation were
executed between its request and its response, is both too weak and too strong
for our specification. It’s too weak because it says nothing about the execution
order of two operations from the same processor unless one is issued after the
other’s response. For example, suppose a processor p issues a write and then a
read to the same address. We want the read to obtain either the value p just
wrote, or a value written by another processor—even if p issues the read before



186 CHAPTER 11. ADVANCED EXAMPLES

MODULE RegisterInterface

CONSTANT Adr, The set of memory addresses.
Val, The set of memory-word values.
Proc, The set of processors.
Reg The set of registers used by a processor.

VARIABLE regFile regFile[p][r] represents the contents of register  of processor p.

RdRequest = [adr: Adr, val: Val, op:{“Rd”}]
WrRequest = [adr: Adr, val : Val, op: {“Wr"}]
FreeRegValue = [adr: Adr, val : Val, op: {“Free”}]

Request = RdRequest U WrRequest  The set of all possible requests.
RegValue =

) . A
RegFile Typelnvariant =  The type correctness invariant for regFile.

Request U FreeRegValue  The set of all possible register values.

regFile € [Proc — [Reg — RegValue]]

Figure 11.5: A module for specifying a register interface to a memory.

receiving the response for the write. This isn’t guaranteed by the condition. The
second clause is too strong because it places unnecessary ordering constraints
on operations issued by different processors. If operations A and B are issued
by two different processors, then we don’t need to require that A precedes B in
the execution order just because B was requested after A’s response.

We modify the second clause to require that the system act as if operations
of each individual processor were executed in the order that they were issued,
obtaining the condition:

The result of any execution is the same as if the operations of all
the processors were executed in some sequential order, and the op-
erations of each individual processor appear in this sequence in the
order in which the requests were issued.

In other words, we require that the values returned by the reads can be explained
by some total ordering of the operation executions that is consistent with the
order in which each processor issued its requests. There are a number of different
ways of formalizing this condition; they differ in how bizarre the explanation
may be. The differences can be described in terms of whether or not certain
scenarios are permitted. In the scenario descriptions, Wr,(a,v) represents a
write operation of value v to address a by processor p, and Rd,(a, v) represents
a read of a by p that returns the value v.

The first decision we must make is whether all operations in an infinite
behavior must be ordered, or if the ordering must exist only at each finite point



11.2. OTHER MEMORY SPECIFICATIONS

187

during the behavior. Consider a scenario in which each of two processors writes
its own value to the same address and then keeps reading that value forever:

Processor p: Wry(a,vl), Rd,(a,vl), Rdy(a,vl), Rdy(a,vl), ...
Processor q: Wry(a,v2), Rdg(a,v2), Rdy(a,v2), Rdy(a,v2), ...

At each point in the execution, we can explain the values returned by the reads
with a total order in which all the operations of either processor precede all the
operations of the other. However, there is no way to explain the entire infinite
scenario with a single total order. In this scenario, neither processor ever sees
the value written by the other. Since a multiprocessor memory is supposed to
allow processors to communicate, we disallow this scenario.

The second decision we must make is whether the memory is allowed to
predict the future. Consider this scenario:

Processor p: Wry(a,vl), Rd,(a,v2)
Processor ¢: Wrq(a,v2)

Here, ¢ issues its write of v2 after p has obtained the result of its read. The
scenario is explained by the ordering Wr,(a, vl), Wr,(a, v2), Rd,(a,v2). How-
ever, this is a bizarre explanation because, to return the value v2 for p’s read,
the memory had to predict that another processor would write v2 some time in
the future. Since a real memory can’t predict what requests will be issued in
the future, such a behavior cannot be produced by a correct implementation.
We can therefore rule out the scenario as unreasonable. Alternatively, since no
correct implementation can produce it, there’s no need to outlaw the scenario.

If we don’t allow the memory to predict the future, then it must always be
able to explain the values read in terms of the writes that have been issued so
far. In this case, we have to decide whether the explanations must be stable.
For example, suppose a scenario begins as follows:

Processor p: Wrp(al,vl), Rdy(al,v3)
Processor g: Wrg(a2,v2), Wrqy(al,v3)

At this point, the only explanation for p’s read Rd,(al,v3) is that ¢’s write
Wr4(al, v3) preceded it, which implies that ¢’s other write Wry(a2,v2) also
preceded the read. Hence, if p now reads a2, it must obtain the value v2. But
suppose the scenario continues as follows, with another processor r joining in:

Processor p: Wrp(al,vl), Rdy(al,v3), Rd,(a2,v0)
Processor g: Wry(a2,v2), Wrqy(al,v3)
Processor r: Wr,(al,v3)

We can explain this scenario with the following ordering of the operations:

Wrp(al,vl), Wrp(al,v3), Rd,(al,v3),
Rd,(a2,v0), Wr,(a2,v2), Wry(al,v3)

In these scenar-
ios, values and
addresses with dif-
ferent names are
assumed to be dif-
ferent.



188 CHAPTER 11. ADVANCED EXAMPLES

In this explanation, processor r provided the value of al read by p, and p read
the initial value v0 of memory address a2. The explanation is bizarre because the
write that provided the value of al to p was actually issued after the completion
of p’s read operation. But, because the explanation of that value changed in
mid-execution, the system never predicted the existence of a write that had not
yet occurred. When writing a specification, we must decide whether or not to
allow such changes of the explanation.

11.2.3 A Serial Memory

We first specify a memory that cannot predict the future and cannot change its
explanations. There seems to be no standard name for such a memory; I'll call
it a serial memory.

Our informal correctness condition is in terms of the sequence of all opera-
tions that have ever been issued. There is a general method of formalizing such
a condition that works for specifying many different kinds of systems. We add
an internal variable op@ that records the history of the execution. For each
processor p, the value of opQ|p] is a sequence whose i*!* element, opQ[p][i], de-
scribes the " request issued by p, the response to that request (if it has been
issued), and any other information about the operation needed to express the
correctness condition. If necessary, we can also add other internal variables to
record information not readily associated with individual requests.

For a system with the kind of register interface we are using, the next-state
action has the form

(11.3) Vv Iproc € Proc, reg € Reg :
V Jreq € Request : IssueRequest(proc, req, reg)

V RespondToRequest(proc, reg)
V Internal

where the component actions are:

IssueRequest(proc, req, reg)
The action with which processor proc issues a request req in register reg.

RespondToRequest(proc, reg)
The action with which the system responds to a request in processor proc’s
register reg.

Internal
An action that changes only the internal state.

Liveness properties are asserted by fairness conditions on the RespondToRequest
and Internal actions.



11.2. OTHER MEMORY SPECIFICATIONS

189

A general trick for writing the specification is to choose the internal state so
the safety part of the correctness condition can be expressed by the formula OP
for some state predicate P. We guarantee that P is always true by letting P’
be a conjunct of each action. I'll use this approach to specify the serial memory,
taking for P a state predicate Serializable.

We want to require that the value returned by each read is explainable as
the value written by some operation already issued, or as the initial value of the
memory. Moreover, we don’t want this explanation to change. We therefore add
to the op@ entry for each completed read a source field that indicates where the
value came from. This field is set by the RespondToRequest action.

We want all operations in an infinite behavior eventually to be ordered. This
means that, for any two operations, the memory must eventually decide which
one precedes the other—and it must stick to that decision. We introduce an
internal variable opOrder that describes the ordering of operations to which the
memory has already committed itself. An Internal step changes only opOrder,
and it can only enlarge the ordering.

The predicate Serializable used to specify the safety part of the correctness
condition describes what it means for opOrder to be a correct explanation. It
asserts that there is some consistent total ordering of the operations that satisfies
the following conditions:

e It extends opOrder.

e It orders all operations from the same processor in the order that they
were issued.

e It orders operations so that the source of any read is the latest write to
the same address that precedes the read, and is the initial value iff there
is no such write.

We now translate this informal sketch of the specification into TLAT. We
first choose the types of the variables op@ and opOrder. To do this, we define
a set opld of values that identify the operations that have been issued. An
operation is identified by a pair (p, i) where p is a processor and ¢ is a position
in the sequence opQ[p]. (The set of all such positions ¢ is DOMAIN opQ[p].) We
let the corresponding element of opld be the record with proc field p and idz
field ¢. Writing the set of all such records is a bit tricky because the possible
values of the idz field depend on the proc field. We define opldto be a subset of
the set of records whose idz field can be any value:

opld = {oiv € [proc : Proc, idz : Nat] :
o0iv.idx € DOMAIN opQ[oiv.proc]}

For convenience, we define opIdQ(oi) to be the value of the op@ entry identified
by an element oi of opld:

opldQ(oi) = opQoi.proc]|oi.idx]



190 CHAPTER 11. ADVANCED EXAMPLES

The source of a value need not be an operation; it can also be the initial contents
of the memory. The latter possibility is represented by letting the source field
of the op@ entry have the special value Init Wr. We then let op@ be an element

of [Proc — Seq(opVal)], where opVal is the union of three sets: The sets Request,
WrRequest, and
[req : Request, reg : Reg] RdRequest are
Represents an active request in the register of the requesting processor —defined in module
.o RegisterInterface
indicated by the reg field. on page 186.

[req : WrRequest, reg : { Done}]
Represents a completed write request, where Done is a special value that
is not a register.

[req : RdRequest, reg : {Done}, source : opId U {InitWr}]
Represents a completed read request whose value came from the operation
indicated by the source field, or from the initial value of the memory
location if the source field equals Init Wr.

Note that opld and opVal are state functions whose values depend upon the
value of the variable op@.

We need to specify the initial contents of memory. A program generally
cannot assume anything about the memory’s initial contents, except that every
address does contain a value in Val. So, the initial contents of memory can be
any element of [Adr — Val]. We declare an “internal” constant InitMem, whose
value is the memory’s initial contents. In the final specification, InitMem will be
hidden along with the internal variables op@ and opOrder. We hide a constant
with ordinary existential quantification 3. The requirement that InitMem is a
function from addresses to values could be made part of the initial predicate,
but it’s more natural to express it in the quantifier. The final specification will
therefore have the form:

3 InitMem € [Adr — Val] : 3opQ, opOrder : ...

For later use, we define goodSource(oi) to be the set of plausible values for

the source of a read operation oi in opld. A plausible value is either InitWr

or a write to the same address that oi reads. It will be an invariant of the

specification that the source of any completed read operation oi is an element

of goodSource(oi). Moreover, the value returned by a completed read operation

must come from its source. If the source is InitWr, then the value must come Section 5.2 on
from InitMem; otherwise, it must come from the source request’s val field. To page 48 explains
express this formally, observe that the op@ entries only of completed reads have ;hzltnit?giordhls

a source field. Since a record has a source field iff the string “source” is in its gomain is ;V Se?cszf
domain, we can write this invariant as: strings.



11.2. OTHER MEMORY SPECIFICATIONS 191

(11.4) Yoi € opld :
(“source” € DOMAIN opldQ(oi)) =
A opldQ(oi).source € goodSource(oi)
A opldQ(oi).req.val = 1F opldQ)(oi).source = InitWr
THEN InitMem/[opldQ(oi).Teq.adr]
ELSE opldQ(opldQ(oi).source).req.val

We now choose the type of opOrder. We usually denote an ordering relation by
an operator such as <, writing A < B to mean that A precedes B. However, the
value of a variable cannot be an operator. So, we must represent an ordering The difference
relation as a set or a function. Mathematicians usually describe a relation < on between oper-
a set S as a set R of ordered pairs of elements in S, with (A4, B) in R iff A < B. Zt;rf: ;ngisf:l?:s'e d
So, we let opOrder be a subset of opld x opId, where (oi, 0j) € opOrder means i, Section 6.4 on
that oi precedes oj. page 69.
Our internal state is redundant because, if register r of processor p contains
an uncompleted operation, then there is an op@ entry that points to the regis-
ter and contains the same request. This redundancy means that the following
relations among the variables are invariants of the specification:

e If an op@Q entry’s reg field is not equal to Done, then it denotes a register
whose contents is the entry’s req field.

e The number of op@ entries pointing to a register equals 1 if the register
contains an active operation, otherwise it equals 0.

In the specification, we combine this condition, formula (11.4), and the type
invariant into a single state predicate Datalnvariant.

Having chosen the types of the variables, we can now define the initial pred-
icate Init and the predicate Serializable. The definition of Initj is easy. We
define Serializable in terms of totalOpOrder, the set of all total orders of opld.
A relation < is a total order of opld iff it satisfies the following three conditions,
for any o1, oj, and ok in opld.

Totality: Either 0i = 0j, 0i < oj, or 0j < o1.
Transitivity: oi < oj and 0j < ok imply oi < ok.
Irreflexivity: oi £ oi.

The predicate Serializable asserts that there is a total order of opld satisfying
the three conditions on page 189. We can express this formally as the assertion
that there exists an R in totalOpOrder satisfying:

A opOrder C R R extends opOrder

A Yoi, o] € opld : R correctly orders operations from the same processor.

(oi.proc = oj.proc) A (oi.idz < of.idz) = ((oi, 0j) € R)



192 CHAPTER 11. ADVANCED EXAMPLES

A Yoi € opld : For every completed read oi in opld, there is no write
(“source” € DOMAIN opldQ(oi)) 0j to the same address that (i) precedes oi and
. . (ii) follows the source if that source is not InitWr.
= —(Joj € goodSource(oi) :
A (0j,0i) € R
A (opldQ(oi).source # InitWr) =
((opldQ(ot).source, 05) € R))

We allow each step to extend opOrder to any relation on opld that satisfies
Serializable. We do this by letting every subaction of the next-state action
specify opOrder’ with the conjunct UpdateOpOrder, defined by:

UpdateOpOrder = A opOrder’ C (opld’ x opld’)
A opOrder C opOrder’
A Serializable’

The next-state action has the generic form of formula (11.3) on page 188. We
split the RespondToRequest action into the disjunction of separate RespondToWr
and RespondToRd actions that represent responding to writes and reads, respec-
tively. RespondToRd is the most complicated of the next-state action’s subac-
tions, so let’s examine its definition. The definition has the form:

RespondToRd(proc, reg) =

LET req regFile[proc][reg]

idc = CHOOSE i € DOMAIN opQ|proc] : opQ[proc][i].reg = reg

IN

This defines req to be the request in the register and idx to be an element in
the domain of opQ[proc] such that opQ[proc][idz].reg equals reg. If the register
is not free, then there is exactly one such value idz; and opQ[proc|[idx].req, the
idz*™ request issued by proc, equals req. (We don’t care what idz equals if the
register is free.) The IN expression begins with the enabling condition:

A reg.op = “Rd”

which asserts that the register is not free and it contains a read request. The
next conjunct of the IN expression is:

A Jsre € goodSource([proc — proc, idz — idz)) :
LET val = 1F src = InitWr THEN InitMem/[req.adr]
ELSE opldQ(src).req.val
IN

It asserts the existence of a value src, which will be the source of the value
returned by the read; and it defines val to be that value. If the source is the
initial contents of memory, then the value is obtained from InitMem; otherwise,



11.2. OTHER MEMORY SPECIFICATIONS

193

it is obtained from the source request’s val field. The inner IN expression has
two conjuncts that specify the values of regFile’ and opQ’. The first conjunct
asserts that the register’s val field is set to val and its op field is set to “Free”,
indicating that the register is made free.

A regFile’ = [regFile EXCEPT ![proc][reg|.val = wval,
![proc][regl.op = “Free”]

The second conjunct of the inner IN expression describes the new value of op@.
Only the idz*® element of op@Q[proc] is changed. It is set to a record whose req
field is the same as the original request req, except that its val field is equal to
val; whose reg field equals Done; and whose source field equals src.

A opQ' = [opQ EXCEPT
[proc][idzx] = [req — [req EXCEPT !.val = val],
reg — Done,
source +— src]]

Finally, the outer IN clause ends with the conjunct
A UpdateOpOrder

that determines the value of opOrder’. It also implicitly determines the possible
choices of the source of the read—that is, the value of opQ’[proc][idz].source.
For some choices of this value allowed by the second outer conjunct, there will be
no value of opOrder’ satisfying UpdateOpOrder. The conjunct UpdateOpOrder
rules out those choices for the source.

The definitions of the other subactions IssueRequest, RespondToWr, and
Internal of the next-state action are simpler, and I won’t explain them.

Having finished the initial predicate and the next-state action, we must deter-
mine the liveness conditions. The first condition is that the memory must eventu-
ally respond to every operation. The response to a request in register reg of pro-
cessor proc is produced by a RespondTo Wr(proc, reg) or RespondToRd(proc, reg)
action. So, the obvious way to express this condition is:

V proc € Proc, reg € Reg :
WEFy(RespondToWr(proc, reg) V RespondToRd(proc, reg))
For this fairness condition to imply that the response is eventually issued,
a RespondToWr(proc, reg) or RespondToRd(proc, reg) step must be enabled
whenever there is an uncompleted operation in proc’s register reg. It isn’t com-
pletely obvious that a RespondToRd(proc, reg) step is enabled when there is a
read operation in the register, since the step is enabled only if there exist a
source for the read and a value of opOrder’ that satisfy Serializable’. The re-
quired source and value do exist because Serializable, which holds in the first



194 CHAPTER 11. ADVANCED EXAMPLES

state of the step, implies the existence of a correct total order of all the oper-
ations; this order can be used to choose a source and a relation opOrder’ that
satisfy Serializability’.

The second liveness condition asserts that the memory must eventually com-
mit to an ordering for every pair of operations. It is expressed as a fairness
condition, for every pair of distinct operations o7 and oj in opld, on an Internal
action that makes o7 either precede or follow oj in the order opOrder’. A first
attempt at this condition is

(11.5) Y oi, oj € opld :
(0i # 0j) = WF( (A Internal
A ({oi,07) € opOrder’) vV ({oj, 0i) € opOrder’))

However, this isn’t correct. In general, a formula Vz € S: F is equivalent to
Vz:(z€S)= F. Hence, (11.5) is equivalent to the assertion that the following
formula holds, for all constant values oi and oj:

(0i € opld) N (0j € opld) =
(0i # 0f) =
WEF (A Internal
A ({oi,0f) € opOrder’) vV ({oj, 0i) € opOrder’))

In a temporal formula, a predicate with no temporal operators is an assertion
about the initial state. Hence, (11.5) asserts that the fairness condition is true
for all pairs of distinct values oi and oj in the initial value of opld. But opld
is initially empty, so this condition is vacuously true. Hence, (11.5) is trivially
implied by the initial predicate. We must instead assert fairness for the action

(11.6) A (o0i € opld) A (0 € opld)
A Internal
A ({oi, 0f) € opOrder’) vV ({0f, 0i) € opOrder’))

for all distinct values o7 and oj. It suffices to assert this only for oi and oj of
the right type. Since it’s best to use bounded quantifiers whenever possible, let’s
write this condition as:

Y 0i, 0j € [proc: Proc, idx: Nat] :  All operations are eventually ordered.
(0i # 0j) = WF( (A (0i € opld) A (0j € opld)
A Internal

A ({0i,0f) € opOrder’) vV ({0f, 0i) € opOrder’))

For this formula to imply that any two operations are eventually ordered by
opOrder, action (11.6) must be enabled if 0i and oj are unordered operations
in opld. It is, because Serializable is always enabled, so it is always possible to
extend opOrder to a total order of all issued operations.



11.2. OTHER MEMORY SPECIFICATIONS

195

The complete inner specification, with InitMem, op@, and opOrder visible, is
in module InnerSerial on pages 196-198. I have made two minor modifications
to allow the specification to be checked by the TLC model checker. (Chap-
ter 14 describes TLC and explains why these changes are needed.) Instead of
the definition of opld given on page 189, the specification uses the equivalent
definition:

opld = UNION {[proc : p, idx : DOMAIN 0pQ|[p]] : p € Proc}
In the definition of UpdateOpOrder, the first conjunct is changed from
opOrder’ C opld’ x opld’
to the equivalent
opOrder’ € SUBSET (opld’ x opld")

For TLC’s benefit, I also ordered the conjuncts of all actions so UpdateOpOrder
follows the “assignment of a value to” op@’. This resulted in the UNCHANGED
conjunct not being the last one in action Internal.

The complete specification is written, as usual, with a parametrized instan-
tiation of InnerSerial to hide the constant InmitMem and the variables op@ and
opOrder:

[ MODULE SerialMemory
EXTENDS RegisterInterface
Inner(InitMem, 0pQ, opOrder) = INSTANCE InnerSerial

Spec = 3 InitMem € [Adr — Val] :
JopQ, opOrder : Inner(InitMem, op@, opOrder)! Spec

11.2.4 A Sequentially Consistent Memory

The serial memory specification does not allow the memory to predict future
requests. We now remove this restriction and specify what is called a sequentially
consistent memory. The freedom to predict the future can’t be used by any real
implementation,* so there’s little practical difference between a serial and a
sequentially consistent memory. However, the sequentially consistent memory
has a simpler specification. This specification is surprising and instructive.
The next-state action of the sequential memory specification has the same
structure as that of the serial memory specification, with actions IssueRequest,

4The freedom to change explanations, which a sequentially consistent memory allows, could
conceivably be used to permit a more efficient implementation, but it’s not easy to see how.



196 CHAPTER 11. ADVANCED EXAMPLES

: MODULE InnerSerial
EXTENDS RegisterInterface, Naturals, Sequences, FiniteSets

CONSTANT InitMem The initial contents of memory, which will be an element of [Proc — Adr].

VARIABLE 0p@, opQ[p][i] is the ith operation issued by processor p.
op Order  The order of operations, which is a subset of opld X opId. (opld is defined below).

opld = UNION {[proc : {p}, idz : DOMAIN opQ[p]] : p € Proc}  [proc — p, idz > i] identifies
opldQ(oi) S opQ|oi.proc][oi.idx] operation % of processor p.
InitWr £ CHOOSE v : v ¢ [proc : Proc, idz : Nat] The source for an initial memory value.

Done 2 CHOOSE v : v ¢ Reg The reg field value for a completed operation.

op Val £ Possible values of opQ[p][i]-
[req . Request, reg : Reg] An active request using register reg.
U [req : WrRequest, reg : {Done}| A completed write.
U [req : RdRequest, reg : {Done}, source : opld U{InitWr}] A completed read of source value.

goodSource(oi) =
{InitWr} U {o € opld : A opldQ(0).req.op = “Wr”
A opldQ(o).req.adr = opldQ(oi).req.adr}

!

Datalnvariant =

A RegFile Typelnvariant Simple type invariants for regFile,

A opQ € [Proc — Seq(opVal)] op@, and

A opOrder C (opld x opld) opOrder.

A VY oi € opld :

N (“SOU rce” € DOMAIN OpIdQ(O’i)) = The source of any completed read is either InitWr
A opIdQ(oi).source c goodSource(oi) or a write operation to the same address.
A opldQ(ot).req.val = 1F opldQ(oi).source = InitWr A read’s value comes
THEN InitMem[opldQ(oi).req.adr] from its source.

ELSE opldQ(opldQ(oi).source).req.val
N (OpIdQ(Oi).Teg 7& Done) = op(Q correctly describes the register contents.
(opIdQ(oi).req = regFile[oi.proc][opIdQ(oi).reg])
AYp € Proc, r € Reg Only nonfree registers have corresponding op(@ entries.

Cardinality({i € DOMAIN opQIp] : opQ[p][i].reg =1}) =
IF regFile[p][r].op = “Free” THEN 0 ELSE 1

Figure 11.6a: Module InnerSerial (beginning).



11.2. OTHER MEMORY SPECIFICATIONS 197

Init =  The initial predicate.
A regFile € [Proc — [Reg — FreeRegValue]] Every register is free.

A opQ = [p € Proc — <>] There are no operations in op@.
A opOrder = {} The order relation opOrder is empty.

totalOpOrder 2 The set of all total orders on the set opld.

{R € SUBSET (opld x opld) :
A Y oi, 0f € opld : (0i = 0j) V ({0i, 0j) € R) V ({0j, 0i) € R)
A Y oi, of, ok € opld : ({07, 0j) € R) A ({0f, ok) € R) = ({oi, ok) € R)
AV oi € opld : {oi, 0i) ¢ R}

Lo A
Serializable = Asserts that there exists a total order R of all operations that extends
. opOrder, orders the operations of each processor correctly, and makes the
R € totalOpOrder source of each read the most recent write to the address.
A opOrder C R

A Y oi, 0j € opld : (oi.proc = oj.proc) A (oi.ide < oj.idx) = ({0i, 0j) € R)
A Y oi € opld : (“source” € DOMAIN opldQ(oi)) =
= (3 oj € goodSource(oi) :
A (oj,0i) € R
A (opldQ(oi).source # InitWr) = ({opIdQ(oi).source, 0j) € R))

UpdateOpOrder 2 An action that chooses the new value of opOrder, allowing

A opOrder’ € SUBSET (OpId/ X Opfdl) it to be any relation that equals or extends the current value
of opOrder and satisfies Serializable. This action is used in

/
N opOrder C opOrder defining the subactions of the next-state action.
A Serializable’

IssueRequest(pmc, req, reg) = Processor proc issues request req in register reg.
A regFile[proc][reg].op = “Free”  The register must be free.
A regFile’ = [regFile EXCEPT ![proc|[reg] = req] Put the request in the register.
A opQ’ = [opQ EXCEPT ![proc] = Append(Q, [req — req, reg — reg])] Add request to opQ[proc].
A UpdateOpOrder

Respond To WT( proc, reg) = The memory responds to a write request in processor proc’s register reg.
A regFile[proc] [reg].op = “Wr” The register must contain an active write request.
A regFile’ = [regFile EXCEPT ![proc|[reg].op = “Free”] The register is freed.

A LET idz = CHOOSE i € DOMAIN 0pQ[proc] : opQ[proc][i].reg = reg The appropriate opQ
IN  0pQ' = [opQ EXCEPT ![proc][idz].reg = Done] entry is updated.

A UpdateOpOrder  opOrder is updated.

Figure 11.6b: Module InnerSerial (middle).



198 CHAPTER 11. ADVANCED EXAMPLES

RespondToRd(proc, reg) =

The memory responds to a read request in processor proc’s register reg.

LET req regFile[proc]|reg]

proc’s register reg contains the request req, which is in opQ[proc|[idz].

idc = CHOOSE i € DOMAIN opQ|proc] : opQ[proc][i].reg = reg
IN A req.op = “Rd”

The register must contain an active read request.

A Jsre € gOOdSOUTC@([p’I"OC — proc, idx — de]) : The read obtains its value from a source src.

LET val = 1F src = InitWr THEN InitMem|[req.adr] — The value returned by
ELSE opldQ(src).req.val the read.
IN A regFile’ = [regFile EXCEPT ![proc][reg].val = wal, Set register’s val field,
![proc][reg].op — “Free”} and free the register.
A op@' = [OpQ EXCEPT  opQ|proc][idz] is updated appropriately.
proc][idx] = [req — [req EXCEPT !.val = val],
reg — Done,

source +— src]]
A UpdateOpOrder  opOrder is updated.

Internal £ A UNCHANGED (regFile, opQ)
A UpdateOpOrder

A
Next =  The next-state action.

V I proc € Proc, reg € Reg : V Jreq € Request : IssueRequest(proc, req, reg)
V' RespondToRd(proc, req)

V' RespondToWr(proc, req)

V Internal

A
Spec = The complete internal specification.
A Init

A D[Next] (regFile, opQ, opOrder)
A VY proc € Proc, reg € Reg :

The memory eventually responds to every request.
WEF (regrite, op@, opOrder) (RespondToWr(proc, reg) vV RespondToRd(proc, reg))
A Y oi, oj € [proc: Proc, idz: Nat] :

All operations are eventually ordered.

(Oi 7é Oj) = WF(TegFile,opQ,opOrdeT}(/\ (O’L € OpId) A (Oj € OpId)

A Internal

A ({01, 05) € opOrder’) V ({of, 0i) € opOrder’))

!
I

THEOREM Spec = O(Datalnvariant A Serializable)
L

Figure 11.6¢: Module InnerSerial (end).



11.2. OTHER MEMORY SPECIFICATIONS

199

RespondToRd, RespondToWr, and Internal. Like the serial memory specifica-
tion, it has an internal variable op(@ to which the IssueRequest operation appends
an entry with req (request) and reg (register) fields. However, an operation does
not remain forever in op@. Instead, an Internal step removes it after it has been
completed. The specification has a second internal variable mem that represents
the contents of a memory—that is, the value of mem is a function from Adr to
Val. The value of mem is changed only by an Internal action that removes a
write from op().
Recall that the correctness condition has two requirements:

1. There is a sequential execution order of all the operations that explains
the values returned by reads.

2. This execution order is consistent with the order in which operations are
issued by each individual processor.

The order in which operations are removed from op(@ is an explanatory execution
order that satisfies requirement 1 if the Internal action satisfies these properties:

e When a write of value val to address adr is removed from op(, the value
of mem[adr] is set to val.

e A read of address adr that returned a value val can be removed from op@
only if mem[adr] = val.

Requirement 2 is satisfied if operations issued by processor p are appended by
the IssueRequest action to the tail of opQ|p], and are removed by the Internal
action only from the head of opQ[p].

We have now determined what the IssueRequest and Internal actions should
do. The RespondTo Wr action is obvious; it’s essentially the same as in the serial
memory specification. The problem is the RespondToRd action. How can we
define it so that the value returned by a read is one that mem will contain when
the Internal action has to remove the read from op@Q? The answer is surprisingly
simple: we allow the read to return any value. If the read were to return a bad
value—for example, one that is never written—then the Internal action would
never be able to remove the read from op@. We rule out that possibility with a
liveness condition requiring that every operation in op@ eventually be removed.
This makes it easy to write the Internal action. The only remaining problem is
expressing the liveness condition.

To guarantee that every operation is eventually removed from op@, it suf-
fices to guarantee that, for every processor proc, the operation at the head of
opQ|proc] is eventually removed. The desired liveness condition can therefore
be expressed as:

V proc € Proc : WF(_y(RemoveOp(proc))



200 CHAPTER 11. ADVANCED EXAMPLES

where RemoveOp(proc) is an action that unconditionally removes the operation
from the head of opQ[proc]. For convenience, we let the RemoveOp(proc) action
also update mem. We then define a separate action Internal(proc) for each
processor proc. It conjoins to RemoveOp(proc) the following enabling condition,
which asserts that if the operation being removed is a read, then it has returned
the correct value.

(Head(opQlproc]).req.op = “Rd”) =
(mem[Head(opQproc]).req.adr] = Head(opQ[proc]).req.val)

The complete internal specification, with the variables op@ and mem visible,
appears in module InnerSequential on the following two pages. At this point, you
should have no trouble understanding it. You should also have no trouble writing
a module that instantiates InnerSequential and hides the internal variables op@
and mem to produce the final specification, so I won’t bother doing it for you.

11.2.5 The Memory Specifications Considered

Almost every specification we write admits a direct implementation, based on
the initial predicate and next-state action. Such an implementation may be
completely impractical, but it is theoretically possible. It’s easy to implement
the linearizable memory with a single central memory. A direct implementation
of the serial memory would require maintaining queues of all operations issued
thus far, and a computationally infeasible search for possible total orderings.
But, in theory, it’s easy.

Our specification of a sequentially consistent memory cannot be implemented
directly. A direct implementation would have to guess the correct value to return
on a read, which is impossible. The specification is not directly implementable
because it is not machine closed. As explained in Section 8.9.2 on page 111,
a non-machine closed specification is one in which a direct implementation can
“paint itself into a corner,” reaching a point at which it is no longer possible
to satisfy the specification. Any finite scenario of memory operations can be
produced by a behavior satisfying the sequentially consistent memory’s initial
predicate and next-state action—namely, a behavior that contains no Internal
steps. However, not every finite scenario can be extended to one that is explain-
able by a sequential execution. For example, no scenario that begins as follows

is possible in a two-processor system: This notation for
describing scenar-
Processor p: Wr,(al,vl), Rd,(al,v2), Wry(a2,v2) ios was introduced
Processor q: Wrg(a2,vl), Rdy(a2,v2), Wrqe(al,v2) on page 186.

Here’s why:



11.2. OTHER MEMORY SPECIFICATIONS 201

: MODULE InnerSequential

EXTENDS RegisterInterface, Naturals, Sequences, FiniteSets

VARIABLE 0p(@, opQ[p][d] is the ;th operation issued by processor p.

mem  An internal memory.

| |
r 1

Done = CHOOSE v : v ¢ Reg The reg field value for a completed operation.

Datalnvariant =

A RegFileTypelnvariant Simple type invariants for regF'ile,
A opQ € [Proc — Seq([req : Request, reg : Reg U {Done}])] op@, and
A mem € [Adr — Val] e
AYp € Proc, r € Reg : Only nonfree registers have corresponding op@ entries.
Cardinality({i € DOMAIN opQ[p] : opQ[p][i].reg = r}) =
IF regFile[p][r].op = “Free” THEN 0 ELSE 1
Init =  The initial predicate.
A regFile € [Proc — [Reg — FreeRegValue]] Every register is free.
A op@Q = [p € Proc — <>] There are no operations in op@.
N mem € [Ad’l“ — Val] The internal memory can have any initial contents.

! |

f
IssueRequest(proc, req, reg) = Processor proc issues request req in register reg.
A ’r’egFile[pTOC] [reg].op = “Free” The register must be free.
A regFile’ = [regFile EXCEPT ![proc|[reg] = req] Put request in register.
A opQ' = [opQ EXCEPT ![proc| = Append(Q, [req — req, reg — reg])] Add request to opQ[proc].
A UNCHANGED mem,

A
RespondToRd(proc, reg) =  The memory responds to a read request in processor proc’s register reg.

A regFile [pT’OC] [reg].op = “Rd” The register must contain an active read request.
A Jwval € Val - val is the value returned.
A regFile’ = [regFile EXCEPT ![proc|[reg].val = wal, Set the register’s wval field,
! [pTOC] [reg].op — “Free”} and free the register.

A op@' = LET idx 2 opQ|[proc][idz] contains the request in register reg.
CHOOSE i € DOMAIN opQ|[proc] : opQ[proc][i].reg = reg

IN  [opQ@ EXCEPT ![proc][idz].req.val = wal, Set opQ|proc][idz]’s val field to
![proc][idx].reg — Done} val and its reg field to Done.

A UNCHANGED mem

Figure 11.7a: Module InnerSequential (beginning).



202 CHAPTER 11. ADVANCED EXAMPLES

A . " .
RespondTo Wr(proc, reg) = The memory responds to a write request in processor proc’s register reg.
A regFile [proc] [reg].op = “Wr”  The register must contain an active write request.
A regFile’ = [regFile EXCEPT ![proc|[reg].op = “Free”] Free the register.

A . .
= CHOOSE i € DOMAIN opQ|[proc] : opQ[proc]li].reg = reg  Update the appropri-

A LET idx
ate op(@ entry.

IN  opQ' =[opQ EXCEPT ![proc|[idz].reg = Done)
/A UNCHANGED mem

A
RemoveOp(proc) =  Unconditionally remove the operation at the head of opQ[proc] and update mem.

N OpQ[pTOC] # <> opQ[proc] must be nonempty.
N Head(opQ[proc]).reg = Done The operation must have been completed.

A mem’ = IF Head(opQ[pmc]).req.op = “Rd” Leave mem unchanged for a
THEN mem read operation, update it for

ELSE [mem EXCEPT ![Head(opQ[proc]).req.adr] = * write operation.
Head(opQ[proc]).req.val]
A opQ' = [OpQ EXCEPT ![pTOC] = Tail(@)] Remove the operation from opQ[proc].

A UNCHANGED T’egFile No register is changed.

Internal (p?”OC) = Remove the operation at the head of opQ[proc]. But if it’s a read,
only do so if it returned the value now in mem.

A RemoveOp(proc)
A (Head(opQ[proc]).req.op = “Rd”) =
(mem[Head(opQ]proc]).req.adr] = Head(opQ[proc]).req.val)

Next 2  The next-state action.
Iproc € Proc : V Ireg € Reg : V dreq € Request : IssueRequest(proc, req, reg)
V' RespondToRd(proc, reg)
V' RespondToWr(proc, reg)

V' Internal(proc) J

Spec = A Init
A O[Next]( regrite, op@, mem)
A Y proc € Proc, reg € Reg : The memory eventually responds to every request.
WEF (regrite, op@, mem) (RespondToWr(proc, reg) V RespondToRd(proc, reg))
A Y proc € Proc : Every operation is eventually removed from op@.

WF( regFile, opQ, mem) (RemoveOp(proc))

!
I

THEOREM Spec = O Datalnvariant
L

Figure 11.7b: Module InnerSequential (end).



11.2. OTHER MEMORY SPECIFICATIONS

203

Wr,(al, v2)
precedes de(aL 1)2) This is the only explanation of the value read by p.
precedes W’f’p (a2, 112) By the order in which operations are issued.
precedes qu(a2, 1)2) This is the only explanation of the value read by gq.

precedes qu(al, U2) By the order in which operations are issued.

Hence ¢’s write of al must precede itself, which is impossible.

As mentioned in Section 8.9.2, a specification is machine closed if the liveness
property is the conjunction of fairness properties for actions that imply the
next-state action. The sequential memory specification asserts weak fairness of
RemoveOp(proc), for processors proc, and RemoveOp(proc) does not imply the
next-state action. (The next-state action does not allow a RemoveOp(proc) step
that removes from op@[proc] a read that has returned the wrong value.)

Very high-level system specifications, such as our memory specifications are
subtle. It’s easy to get them wrong. The approach we used in the serial mem-
ory specification—namely, writing conditions on the history of all operations—is
dangerous. It’s easy to forget some conditions. A non-machine closed specifica-
tion can occasionally be the simplest way to express what you want so say.



204 CHAPTER 11. ADVANCED EXAMPLES




Part 111

The Tools

205






Chapter 12

The Syntactic Analyzer

The Syntactic Analyzer is a Java program, written by Jean-Charles Grégoire and
David Jefferson, that parses a TLA™ specification and checks it for errors. The
analyzer also serves as a front end for other tools, such as TLC (see Chapter 14).
It is available from the TLA web page.

You will probably run the analyzer by typing the command

program_name option spec_file
where:

program_name depends on your particular system. It might be

java tlasany.SANY

spec_file is the name of the file containing the TLA T specification. Each module
named M that appears in the specification (except for submodules) must
be in a separate file named M .tla. The extension .tla may be omitted
from spec_file.

option is either empty or consists of one of the following two options:

-s Causes the analyzer to check only for syntactic errors and not for se-
mantic errors. (These two classes of error are explained below.) You
can use this option to find syntax errors when you begin writing a
specification.

-d Causes the analyzer to enter debugging mode after checking the specifi-
cation. In this mode, you can examine the specification’ structure—for
example, finding out where it thinks a particular identifier is defined
or declared. The documentation that comes with the analyzer explains
how to do this.

207



208 CHAPTER 12. THE SYNTACTIC ANALYZER

The rest of this brief chapter provides some hints for what to do when the
Syntactic Analyzer reports an error.

The errors that the analyzer detects fall into two separate classes, which
are usually called syntactic and semantic errors. A syntactic error is one that
makes the specification grammatically incorrect, meaning that it violates the
BNF grammar, or the precedence and alignment rules, described in Chapter 15.
A semantic error is one that violates the legality conditions mentioned in Chap-
ter 17. The term semantic error is misleading, because it suggests an error
that makes a specification have the wrong meaning. All errors found by the
analyzer are ones that make the specification illegal—that is, not syntactically
well-formed—and hence make it have no meaning at all.

The analyzer reads the file sequentially, starting from the beginning, and
it reports a syntax error if and when it reaches a point at which it becomes
impossible for any continuation to produce a grammatically correct specification.
For example, if we omitted the colon after 3req € MReq in the definition of Req
from module InternalMemory on page 52, we would get:

Req(p) = A ctl[p] = “rdy”
A Jreq € MReq A Send(p, req, memlInt, memlInt’)
A buf’ = [buf EXCEPT ![p] = req]
A ctl’ = [ctl EXCEPT ![p] = “busy”]
/A UNCHANGED mem

This would cause the analyzer to print something like:

**x*Parse Error**x
Encountered "/\" at line 19, column 11

Line 19, column 11 is the position of the A that begins the last line of the
definition (right before the UNCHANGED). Until then, the analyzer thought it
was parsing a quantified expression that began

dreq € (MReq A Send(p, req, memlInt, memInt’) A buf =...

(Such an expression is silly, having the form 3req € p: ... where p is a Boolean,
but it’s legal.) The analyzer was interpreting each of these A symbols as an
infix operator. However, interpreting the last A of this definition (at line 19,
column 11) as an infix operator would violate the alignment rules for the outer
conjunction list, so the analyzer reported an error.

As this example suggests, the analyzer may discover a syntax error far past
the actual mistake. To help you locate the problem, it prints out a trace of
where it was in the parse tree when it found the error. For this example, it
prints:



209

Residual stack trace follows:

Quantified form starting at line 16, column 14.
Junction Item starting at line 16, column 11.
AND-OR Junction starting at line 15, column 11.
Definition starting at line 15, column 1.
Module body starting at line 3, column 1.

If you can’t find the source of an error, try the “divide and conquer” method:
keep removing different parts of the module until you isolate the source of the
problem.

Semantic errors are usually easy to find because the analyzer can locate them
precisely. A typical semantic error is an undefined symbol that arises because
you mistype an identifier. If, instead of leaving out the colon in the definition
of Req(p), we had left out the e in MReq, the analyzer would have reported:

line 16, col 26 to line 16, col 28 of module InternalMemory
Could not resolve name ’MRq’.

The analyzer stops when it encounters the first syntactic error. It can detect
multiple semantic errors in a single run.



210 CHAPTER 12. THE SYNTACTIC ANALYZER




Chapter 13

The TLATEX Typesetter

TLATEX is a Java program for typesetting TLAT modules, based on ideas by
Dmitri Samborski. It can be obtained through the TLA web page.

13.1 Introduction

TLATEX calls the BTEX program to do the actual typesetting. KTEX is a
document-production system based on Donald Knuth’s TEX typesetting pro-
gram.! BTEX normally produces as its output a dvi file—a file with extension
dvi containing a device-independent description of the typeset output. TLATEX
has options that allow it to call another program to translate the dvi file into a
Postscript or pdf file. Some versions of BTEX produce a pdf file directly.

You must have ITEX installed on your computer to run TLATEX. KTEX
is public-domain software that can be downloaded from the World Wide Web;
proprietary versions are also available. The TLA web page points to the TLATEX
web page, which contains information about obtaining I#TEX and a Postscript

or pdf converter.
You will probably run TLATEX by typing

java tlatex.TLA [options] fileName

where fileName is the name of the input file, and [options] is an optional sequence
of options, each option name preceded by “-”. Some options are followed by an
argument, a multi-word argument being enclosed in double-quotes. If fileName
does not contain an extension, then the input file is fileName.tla. For example,
the command

MATEX is described in BTEX: User’s Guide and Reference Manual (second edition) by
Leslie Lamport, published by Addison-Wesley, Reading, Massachusetts, 1994. TEX is described

in The TgXbook by Donald E. Knuth, published by Addison-Wesley, Reading, Massachusetts,
1994.

211



212 CHAPTER 13. THE TLATEX TYPESETTER

java tlatex.TLA -ptSize 12 -shade MySpec

typesets the module in the file MySpec.tla using the ptSize option with argument

12 and the shade option. The input file must contain a complete TLA+ module.

Running TLATEX with the help option produces a list of all options. Running it

with the info option produces most of the information contained in this chapter.

(The fileName argument can be omitted when using the help or info option.)
All you probably need to know about using TLATEX is:

e TLATEX can shade comments, as explained in the next section.

e The next section also explains how to get TLATEX to produce a Postscript
or pdf file.

e The number option causes TLATEX to print line numbers in the left mar-
gin.

e You should use the latezCommand option if you run ETEX on your system
by typing something other than latex. For example, if you run IXTEX on
file f.tex by typing

locallatex f.tex
then you should run TLATEX by typing something like
java tlatex.TLA -latexCommand locallatex fileName

e If you happen to use any of these three two-character sequences in a com-
ment:

¢~ ¢~ 4

then you’d better read Section 13.4 on page 214 to learn about how
TLATEX formats comments.

TLATEX’s output should be good enough for most purposes. The following
sections describe how you can get TLATEX to do a better job, and what to do
in the unlikely case that it produces weird output.

13.2 Comment Shading

The shade option causes TLATEX to typeset comments in shaded boxes. A
specification generally looks best when comments are shaded, as they are in this
book. However, shading is not supported by some programs for viewing and
printing dvi files. Hence, it may be necessary to create a Postscript or pdf file
from the dvi file to view a specification with shaded comments. Here are all the
options relevant to shading.



13.3. HOW IT TYPESETS THE SPECIFICATION

213

-grayLevel num
Determines the darkness of the shading, where num is a number between
0 and 1. The value 0 means completely black, and 1 means white; the
default value is .85. The actual degree of shading depends on the output
device and can vary from printer to printer and from screen to screen. You
will have to experiment to find the right value for your system.

-ps
-nops
These options tell TLATEX to create or not to create a Postscript or pdf
output file. The default is to create one if the shade option is specified,
and otherwise not to.

-psCommand cmd
This is the command run by TLATEX to produce the Postscript or pdf
output file. Its default value is dvips. TLATEX calls the operating system
with the command

cmd dviFile

where dviFile is the name of the dvi file produced by running BTEX. If
a more sophisticated command is needed, you may want to use the nops
option and run a separate program to create the Postscript or pdf file.

13.3 How It Typesets the Specification

TLATEX should typeset the specification itself pretty much the way you would
want it to. It preserves most of the meaningful alignments in the specification—
for example:

Input Output

Action == /\ ¥ =x -y Action = Az =z —y
/\ yy’ = 123 A yy' = 123
/\ zzz’ = zzz N zz2' = zzz

Observe how the A and = symbols are aligned in the output. Extra spaces in
the input will be reflected in the output. However, TLATEX treats no space and
one space between symbols the same:

Input Output
x+y T+y
x+y r+y
X + y r + y

TLATEX typesets the single TLAT module that must appear in the input
file. It will also typeset any material that precedes and follows the module as if



214 CHAPTER 13. THE TLATEX TYPESETTER

it were a comment. (However, that text won’t be shaded.) The noProlog and
noFEpilog options suppress typesetting of material that precedes and follows the
module, respectively.

TLATEX does not check that the specification is syntactically correct TLA™
input. However, it will report an error if the specification contains an illegal
lexeme, such as “;”.

13.4 How It Typesets Comments

TLATEX distinguishes between one-line and multi-line comments. A one-line
comment is any comment that is not a multi-line comment. Multi-line comments
can be typed in any of the following three styles:

(keskskosk sk sk sk ok sk kok ok ok ) \ skskoske sk sk ok sk ok sk sk ok ok sk (x This

(x This is *) \* This is is a

(* a comment. *) \* a comment. comment . *)
(ksk sk ok sk ook ok ok ok ok kK ) N\ sk sk ok ok ke ok sk ok ok ok ok

In the first two styles, the (* or \* characters on the left must all be aligned,
and the last line (containing the comment **---*x) is optional. In the first
style, nothing may appear to the right of the comment—otherwise, the input
is considered to be a sequence of separate one-line comments. The third style
works best when nothing appears on the same line to the left of the (* or to the
right of the *).

TLATEX tries to do a sensible job of typesetting comments. In a multi-
line comment, it usually considers a sequence of non-blank lines to be a single
paragraph, in which case it typesets them as one paragraph and ignores line
breaks in the input. But it does try to recognize tables and other kinds of
multi-line formatting when deciding where to break lines. You can help it as
follows:

e End each sentence with a period (“.”).
e Add blank lines to indicate the logical separation of items.

e Left-align the lines of each paragraph.

Below are some common ways in which TLATEX can mess up the typesetting
of comments, and what you can do about it.

TLATEX can confuse parts of a specification with ordinary text. For example,
identifiers should be italicized, and the minus in the expression z — y should be
typeset differently from the dash in z-ray. TLATEX gets this right most of the
time, but it does make mistakes. You can tell TLATEX to treat something as
part of a specification by putting single quotes (¢ and ’) around it. You can
tell it to treat something as ordinary text by putting ‘~ and ~’ around it. For
example:



13.4. HOW IT TYPESETS COMMENTS

215

Input Output

N\ sk sk sk sk s ok sk sk sk sk ok sk ok sk ok sk ok sk ok ok sk ok sk ok ok ok k ok A better value of bar is now in
\* A better value of ‘bar’ is http://foo/bar.

\* now in ‘"http://foo/bar”~’.

N\ ok ok ok sk sk sk sk sk sk sk ok ok ok ok ok ok ok ok o o o ok ok ok ok ok ok

But this is seldom necessary; TLATEX usually does the right thing.

Warning: Do not put any character between ¢~ and "’ except letters,
numbers, and ordinary punctuation—unless you know what you’re doing. In
particular, the following characters have special meaning to IXIEX and can have
unexpected effects if used between ‘=~ and ~’:

T # %8 % 0 & < > \N" | { }

See Section 13.8 on page 219 for further information about what can go between
‘~and "°.

TLATEX isn’t very good at copying the way paragraphs are formatted in a
comment. For example, note how it fails to align the two As in:

Input Output

N\ 3k 5k 3k ok 3k ok 3 ok 3 ok 3k ok ok K ok 3 ok ok KoKk koK gnat: A tiny insect.
\* gnat: A tiny insect.
\*

\* gnu: A short word.
Nk ok ok ok ok ok ok o skok o oK ok o Kok ok ok ok oK

gnu: A short word.

You can tell TLATEX to typeset a sequence of lines precisely the way they appear

in the input, using a fixed-width font, by enclosing the lines with ‘. and .’ , as
in:

Input Output

N\ stk sk sk sk sk sk sk ok sk sk sk ok sk sk sk sk sk ok sk ok sk sk ok This explains it all:

\* This explains it all:

\* T T

\* L S— — | P |=——>| M |

\ ok | P |-——>] M | T T

\* -== -—=

\************************

Using ¢. and .’ is the only reasonable thing to do for a diagram. However, if you
know (or want to learn) BTEX, Section 13.8 below on using BTEX commands in
comments will explain how you can get TLATEX to do a good job of formatting
things like lists and tables.

TLATEX will occasionally typeset a paragraph very loosely, with one or more
lines containing lots of space between the words. This happens if there is no good
way to typeset the paragraph. If it bothers you, the easiest solution is to rewrite



216 CHAPTER 13. THE TLATEX TYPESETTER

the paragraph. You can also try to fix the problem with IATEX commands. (See
Section 13.8 below.)

TLATEX usually handles pairs of double-quote characters (") the way it
should:

Input Output
\ 3kt sk sk sk sk sk sk ok sk sk sk ok ok sk ok sk ok ok k The string “ok” is a “good”
\* The string "ok" is value.

\* a "good" value.
\********************

However, if it gets confused, you can use single quotes to identify string values
and ‘¢ and ’’ to produce the left and right double-quotes of ordinary text:

Input Output

\ sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk ok ok sk ok kok He asks “Is “good” bad?”
\* He asks ‘‘Is ‘"good"’

\* bad?’’

\***********************

TLATEX ignores any (* ... *) comment that appears within another com-
ment. So, you can get it not to typeset part of a comment by enclosing that part
between (* and *). But a better way to omit part of a comment is to enclose it
between ¢~ and ~’:

Input Output

N\ sk sk ok ok sk ok sk s ok 3k ok ok ok k ok ok T + y is always positive.
\* x+y is always ‘"I

\* hope~”’ positive.

\ sk sk sk sk sk sk ok ok ok ok sk sk sk ok ok ok ok

13.5 Adjusting the Output Format

The following options allow you to adjust the font size, the dimensions of the
printed area, and the position of the text on the page.

-ptSize num
Specifies the size of the font. Legal values of num are 10, 11, or 12, which
cause the specification to be typeset in a 10-, 11-, or 12-point font. The
default value is 10.

-textwidth num

-textheight num
The value of num specifies the width and height of the typeset output, in
points. A point is 1/72 of an inch, or about 1/3 mm.



13.6. OUTPUT FILES

217

-hoffset num

-voffset num
The value of num specifies the distance, in points, by which the text should
be moved horizontally or vertically on the page. Exactly where on a page
the text appears depends on the printer or screen-display program. You
may have to adjust this value to get the output to appear centered on the
printed page, or for the entire output to be visible when viewed on the
screen.

13.6 Output Files

TLATEX itself writes either two or three files, depending on the options. The
names of these files are normally determined from the name of the input file.
However, options allow you to specify the name of each of these files. TLATEX
also runs the separate I2TEX program and possibly a program to produce a
Postscript or pdf file. These programs produce additional files. Below are
the file-related options. In their descriptions, the root of a file name is the
name with any extension or path specifier removed; for example, the root of
c:\foo\bar.tla is bar. All file names are interpreted relative to the directory
in which TLATEX is run.

-out fileName
If f is the root of fileName, then f.tex is the name of the ITEX input
file that TLATEX writes to produce the final output. TLATEX then runs
KTREX with f.tex as input, producing the following files:

f.dvi The dvi output file.

f-log A log file, containing ITEX’s messages. In this file, an overfull hbox
warning means that a specification line is too wide and extends into
the right margin, and an underfull hbox warning means that BTEX
could find no good line breaks in a comment paragraph. Unfor-
tunately, the line numbers in the file refer to the f.tex file, not to
the specification. But by examining the f.tex file, you can probably
figure out where the corresponding part of the specification is.

foaux A IMTEX auxiliary file that is of no interest.
The default out file name is the root of the input file name.

-alignOut fileName
This specifies the root name of the INTEX alignment file TLATEX writes—a
file described in Section 13.7 below on trouble-shooting. If f is the root of
fileName, then the alignment file is named f.tez, and running KTEX on it
produces the files f.dwvi, f.log, and f.auz. Only the f.log file is of interest. If



218 CHAPTER 13. THE TLATEX TYPESETTER

the alignOut option is not specified, the alignment file is given the same
name as the out file. This option is used only for trouble-shooting, as
described in the section below.

-tlaOut fileName
This option causes TLATEX to write to fileName a file that is almost the
same as the input file. (The extension tla is added to fileName if it has no
extension.) The tlaOut file differs from the input in that any portion of a
comment enclosed by ¢~ and "’ is removed, and every occurrence of the
following two-character strings:

«~ ~) ¢ )

is replaced by two blanks. As explained in Section 13.8 below, the tlaOut
option can be used to maintain a version of the specification that is read-
able in Ascil, while using BTEX commands to provide high-quality type-
setting of comments. The default is not to write a tlaOut file.

-style fileName

This option is of interest only to ITEX users. Normally, TLATEX inserts
a copy of the tlater package file in the KTEX input files that it writes.
The style option causes it instead to insert a \usepackage command to
read the WTEX package named fileName. (BTEX package files have the
extension sty. That extension is added to fileName if it’s not already
there.) The TLATEX style defines a number of special commands that are
written by TLATEX in its BTEX input files. The package file specified by
the style option must also define those commands. Any package file should
therefore be created by modifying the standard tlatex package, which is the
file tlatex.sty in the same directory as TLATEX’s Java program files. You
might want to create a new package to change the way TLATEX formats
the specification, or to define additional commands for use in ~... "’ text
in comments.

13.7 Trouble-Shooting

TLATEX’s error messages should be self-explanatory. However, it calls upon the
operating system up to three time to execute other programs:

e It runs TEX on the alignOut file that it wrote.
e It runs ITEX on the out file that it wrote.

e It may execute the psCommand to create the Postscript or pdf output file.



13.8. USING EITgX COMMANDS

219

After each of the last two executions, TLATEX writes a message asserting that
the appropriate output file was written. It might lie. Any of those executions
might fail, possibly causing no output file to be written. Such a failure can even
cause the operating system never to return control to TLATEX, so TLATEX
never terminates. This type of failure is the likely problem if TLATEX does not
produce a dvi file or a Postscript/pdf file, or if it never terminates. In that case,
you should try rerunning TLATEX using the alignOut option to write a separate
alignment file. Reading the two log files that IXTEX produces, or any error file
produced by executing psCommand, may shed light on the problem.

Normally, the ITEX input files written by TLATEX should not produce any
ITEX errors. However, incorrect ITEX commands introduced in ¢~... "’ regions
can cause KTEX to fail.

13.8 Using ETEX Commands

TLATEX puts any text enclosed between ‘™ and ~’ in a comment into the KTEX
input file exactly as it appears. This allows you to insert TEX formatting
commands in comments. There are two ways to use this.

e You can enclose between ‘™ and "’ a short phrase appearing on a single line
of input. IXTEX typesets that phrase as part of the enclosing paragraph.

e You can enclose one or more complete lines of a multi-line comment be-

tween ¢~ and ~’. That text is typeset as one or more separate paragraphs
whose prevailing left margin is determined by the position of the ‘-, as
show here:

Input Output

N\ skeskook ok sk ok sk ok ok sk ok ok sk ok skook ok ok sk ok ok ok The first paragraph.

t: The first paragraph. The 2nd paragraph.

\*  The 2nd paragraph. Text formatted by IATEX.

\*

\* ‘" Text formatted
\* by \LaTeX. ~’
\ sk sk ok sk sk ok sk ok sk ok ok ok ok sk ok ok ok

TEX typesets the text between ¢~ and ~’ in LR mode for a one-line com-
ment and in paragraph mode for a multi-line comment. The BTEX file produced
by TLATEX defines a describe environment that is useful for formatting text in
a multi-line ‘~... "’ region. This environment is the same as the standard BTEX
description environment, except that it takes an argument, which should be
the widest item label in the environment:



220

CHAPTER 13. THE TLATEX TYPESETTER

Input Output
N sk ok ok ok ok ok ok ook ook ook ook ok ok ok ook KoK oK gnat: Tiny insect.
\* ‘“\begin{describel}{gnat:} gnu:  Short word.

\* \item[gnat:] Tiny insect.
\* \item[gnu:] Short word.
\* \end{describe} "’

N sk ok ok ok ok ook ook ook ok ok ok ok oK Kok ok K

As this example shows, putting BTEX commands in comments makes the com-
ments in the input file rather unreadable. You can maintain both a typeset
and an AscIl-readable version of the specification by enclosing text that should

appear only in the ASCII version between

¢~ and ~’. You can then accompany

each ~...~? region with its ASCII version enclosed by ¢~ and ~’. For example,
the input file could contain:

N sk ook ook ok ok ook ok ok Kok KKK KKK ok Kok KKK KKK oK
\* ‘~ \begin{describe}{gnat:}

\* \item[gnat:] A tiny insect.
\* \item[gnu:] A short word.
\* \end{describe} "’

\* ¢~ gnat: A tiny insect.

\*

\* gnu: A short word. ™’

\*************************************

The tlaOut option causes TLATEX to write a version of the original specification
with ¢~..."? regions deleted, and with ¢~ and ~’ strings replaced by spaces.

(The strings

¢. and .’ are also replaced by spaces.) In the example above, the

tlaOut file would contain the comment:

\*************************************

\*
\* gnat: A tiny insect.
\*
\* gnu: A short word.

\*************************************

The blank line at the top was produced by the end-of-line character that follows

the ~°.
Warning: An error in a I¥TEX command inside

¢~

.7’ text can cause

TLATEX not to produce any output. See Section 13.7 above on trouble-shooting.



Chapter 14

The TLC Model Checker

TLC is a program for finding errors in TLA™ specifications. It was designed
and implemented by Yuan Yu, with help from Leslie Lamport, Mark Hayden,
and Mark Tuttle. It is available through the TLA web page. This chapter
describes TLC Version 2. At the time I am writing this, Version 2 is still being
implemented and only Version 1 is available. Consult the documentation that
accompanies the software to find out what version it is and how it differs from
the version described here.

14.1 Introduction to TLC

TLC handles specifications that have the standard form
(14.1) Init A O[Next]yars N Temporal

where Init is the initial predicate, Next is the next-state action, vars is the tu-
ple of all variables, and Temporal is a temporal formula that usually specifies
a liveness condition. Liveness and temporal formulas are explained in Chap-
ter 8. If your specification contains no Temporal formula, so it has the form
Init A O[Next]yqrs, then you can ignore the discussion of temporal checking.
TLC does not handle the hiding operator 3 (temporal existential quantifica-
tion). You can check a specification with hidden variables by checking the in-
ternal specification, in which those variables are visible.

The most effective way to find errors in a specification is by trying to verify
that it satisfies properties that it should. TLC can check that the specification
satisfies (implies) a large class of TLA formulas—a class whose main restriction
is that formulas may not contain 3. You can also run TLC without having it
check any property, in which case it will just look for two kinds of errors:

221



222 CHAPTER 14. THE TLC MODEL CHECKER

e “Silliness” errors. As explained in Section 6.2, a silly expression is one like
3 + (1,2), whose meaning is not determined by the semantics of TLA™.
A specification is incorrect if whether or not some particular behavior
satisfies it depends on the meaning of a silly expression.

e Deadlock. The absence of deadlock is a particular property that we often
want a specification to satisfy; it is expressed by the invariance property
O(ENABLED Nezt). A counterexample to this property is a behavior ex-
hibiting deadlock—that is, reaching a state in which Next is not enabled,
so no further (nonstuttering) step is possible. TLC normally checks for
deadlock, but this checking can be disabled since, for some systems, dead-
lock may just indicate successful termination.

The use of TLC will be illustrated with a simple example: a specification of the
alternating bit protocol for sending data over a lossy FIFO transmission line.
An algorithm designer might describe the protocol as a system that looks like
this:

Sender Receiver

sent msgQ

Y

revd

sBit

rBit

A

s

sAck

e

The sender can send a value when the one-bit values sBit and sAck are equal.
It sets the variables sent to the value it is sending and complements sBit. This
value is eventually delivered to the receiver by setting the variable rcvd and
complementing the one-bit value rBit. Some time later, the sender’s sAck value
is complemented, permitting the next value to be sent. The protocol uses two
lossy FIFO transmission lines: the sender sends data and control information
on msgQ, and the receiver sends acknowledgments on ack@.

The complete protocol specification appears in module AlternatingBit in
Figure 14.1 on the following two pages. It is fairly straightforward, except for
the liveness condition. Because messages can be repeatedly lost from the queues,
strong fairness of the actions that receive messages is required to ensure that a
message that keeps getting resent is eventually received. However, don’t worry
about the details of the specification. For now, all you need to know are the
declarations:

CONSTANT Data The set of data values that can be sent.
VARIABLES msgQ), ackQ, sBit, sAck, rBit, sent, rcvd

and the types of the variables:



14.1. INTRODUCTION TO TLC 223

[ MODULE AlternatingBit

This specification describes a protocol for using lossy FIFO transmission lines to transmit a sequence
of values from a sender to a receiver. The sender sends a data value d by sending a sequence of (b, d)
messages on msg(@, where b is a control bit. It knows that the message has been received when it re-
ceives the ack b from the receiver on ack@. It sends the next value with a different control bit. The
receiver knows that a message on msg@ contains a new value when the control bit differs from the last
one it has received. The receiver keeps sending the last control bit it received on ack(@.

EXTENDS Naturals, Sequences
CONSTANTS Data  The set of data values that can be sent.
VARIABLES msg(), The sequence of {control bit, data value) messages in transit to the receiver.
ack@, The sequence of one-bit acknowledgments in transit to the sender.
sBit, The last control bit sent by sender; it is complemented when sending a new data value.
sAck, The last acknowledgment bit received by the sender.
rBit, The last control bit received by the receiver.
sent,  The last value sent by the sender.

revd The last value received by the receiver.

}
ABInit = A msgQ = () The initial condition:
A\ ackQ = < > Both message queues are empty.
A sBit € {0,1} All the bits equal 0 or 1
A sAck = sBit and are equal to each other.
A rBit = sBit
A sent € Data The initial values of sent and rcvd
A rcvd € Data are arbitrary data values.
ABTypelnv 2 A msgQ € Seq({O, 1} X Data) The type-correctness invariant.
A ack@ € Seq({0,1})
A sBit €{0,1}
A sAck €{0,1}
A rBit €{0,1}
A sent € Data
A revd € Data
f
SndNew Value(d ) = The action in which the sender sends a new data value d.
A sAck = sBit Enabled iff sAck equals sBit.
A sent’ = d Set sent to d.
A sBit' =1 — sBit Complement control bit sBit
N mng’ = Append(msg@, <SBitl, d>) Send value on msg@ with new control bit.

A UNCHANGED ({ack@, sAck, rBit, rcvd)

Figure 14.1a: The alternating bit protocol (beginning).



224 CHAPTER 14. THE TLC MODEL CHECKER

ReSndMsg = The sender resends the last message it sent on msgQ.
A sAck # sBit Enabled iff sAck doesn’t equal sBit.
A msgQ’ = Append(msgQ, {sBit, sent)) Resend the last value in send.
A UNCHANGED (ackQ, sBit, sAck, rBit, sent, rcvd)
RcvMsg = The receiver receives the message at the head of msgQ.
A msgQ) #* <> Enabled iff msg@ not empty.
A mng’ = Tail(mSgQ) Remove message from head of msg@.

A rBit’ = Head(mng)[l] Set rBit to message’s control bit.
A revd = Head(mng)[Q] Set rcvd to message’s data value.

A UNCHANGED (ack@, sBit, sAck, sent)

SndAck = N ackQ’ = Append(ackQ, ’I“Bit) The receiver sends rBit on ack@® at any time.
A UNCHANGED (msgQ, sBit, sAck, rBit, sent, rcud)
RevAck = A ack@) # <> The sender receives an ack on ackQ.
A ackQ/ — Tail(ack@) It removes the ack and sets sAck to its
A sAck’ = Head(ackQ) value.
A UNCHANGED (msg@Q, sBit, rBit, sent, rcvd)
Lose(q) = The action of losing a message from queue gq.
A q# < Enabled iff ¢ is not empty.
AJiel..Len(q) : For some 1,
¢ =[jel.. (Len(q)—1)—1IF j <i THEN g¢l[j] remove the i*" message from gq.
ELSE LI[] + IH Leave every variable unchanged
A UNCHANGED (sBit, sAck, rBit, sent, rcvd) except msgQ and ackQ.
LoseMsg = Lose(msg@) A UNCHANGED ack(@) Lose a message from msgQ.
LoseAck = Lose(ackQ) A UNCHANGED msg() Lose a message from ackQ.

1>

ABNext V 3d € Data : SndNewValue(d) The next-state action.
V ReSndMsg V RcvMsg vV SndAck vV RecvAck

V LoseMsg \V LoseAck

!

I

abvars = (msgQ, ackQ, sBit, sAck, rBit, sent, rcud) The tuple of all variables.

ABFairness = A WF apvars (ReSndMsg) A WF gppars (SndAck)  The liveness condition.
A SF abvars (RevMsg) A SF gppars (RevAck)

|
ABSpec 2 ABInit A D[ABNeact] abvars \ ABFairness The complete specification.

1

| THEOREM A BSpec = OABTypelnv
L

Figure 14.1b: The alternating bit protocol (end).



14.1. INTRODUCTION TO TLC

225

e msg( is a sequence of elements in {0, 1} x Data.
e ack@ is a sequence of elements in {0, 1}.

e sBit, sAck, and rBit are elements of {0,1}.

e sent and rcvd are elements of Data.

The input to TLC consists of a TLA' module and a configuration file. TLC
assumes the specification has the form of formula (14.1) on page 221. The
configuration file tells TLC the names of the specification and of the properties
to be checked. For example, the configuration file for the alternating bit protocol
will contain the declaration

SPECIFICATION ABSpec

telling TLC to take ABSpec as the specification. If your specification has the
form Init A O[Next]yars, with no liveness condition, then instead of using a
SPECIFICATION statement, you can declare the initial predicate and next-state
action by putting the following two statements in the configuration file:

INIT Init
NEXT Next

The property or properties to be checked are specified with a PROPERTY state-
ment. For example, to check that ABTypelnv is actually an invariant, we could
have TLC check that the specification implies OABTypelnv by adding the defi-
nition

InvProperty = OABTypelnv
to module AlternatingBit and putting the statement
PROPERTY InvProperty

in the configuration file. Invariance checking is so common that TLC allows you
instead to put the following statement in the configuration file:

INVARIANT ABTypelInv

The INVARIANT statement must specify a state predicate. To check invariance
with a PROPERTY statement, the specified property has to be of the form OP.
Specifying a state predicate P in a PROPERTY statement tells TLC to check that
the specification implies P, meaning that P is true in the initial state of every
behavior satisfying the specification.

TLC works by generating behaviors that satisfy the specification. To do
this, it must be given what we call a model of the specification. To define a
model, we must assign values to the specification’s constant parameters. The
only constant parameter of the alternating bit protocol specification is the set



226 CHAPTER 14. THE TLC MODEL CHECKER

Data of data values. We can tell TLC to let Data equal the set containing two
arbitrary elements, named d1 and d2, by putting the following declaration in

the configuration file. The keywords
CONSTANT and
CONSTANT Data = {d1, d2} CONSTANTS are

equivalent, as are
(We can use any sequence of letters and digits containing at least one letter ag INVARIANT and
the name of an element.) INVARTANTS.
There are two ways to use TLC. The default method is model checking, in
which it tries to find all reachable states—that is, all states! that can occur in
behaviors satisfying the formula Init A O[Next]yqrs. You can also run TLC in
simulation mode, in which it randomly generates behaviors, without trying to
check all reachable states. We now consider model checking; simulation mode is
described in Section 14.3.2 on page 243.
Exhaustively checking all reachable states is impossible for the alternating
bit protocol because the sequences of messages can get arbitrarily long, so there
are infinitely many reachable states. We must further constrain the model to
make it finite—that is, so it allows only a finite number of possible states. We
do this by defining a state predicate called the constraint that asserts bounds Section 14.3 be-
on the lengths of the sequences. For example, the following constraint asserts low describes how

R actions as well as
that msg@ and ack@ have length at most 2: state predicates

can be used as
constraints.

A Len(msgQ) < 2
A Len(ack®) <2

Instead of specifying the bounds on the lengths of sequences in this way, I prefer
to make them parameters and to assign them values in the configuration file. We
don’t want to put into the specification itself declarations and definitions that
are just for TLC’s benefit. So, we write a new module, called MCAlternatingBit,
that extends the AlternatingBit module and can be used as input to TLC. This
module appears in Figure 14.2 on the next page. A possible configuration file
for the module appears in Figure 14.3 on the next page. Observe that the
configuration file must specify values for all the constant parameters of the
specification—in this case, the parameter Data from the AlternatingBit mod-
ule and the two parameters declared in module MCAlternatingBit itself. You
can put comments in the configuration file, using the TLAT comment syntax
described in Section 3.5 (page 32).

When a constraint Constr is specified, TLC checks every state that appears
in a behavior satisfying Init A O[Next] qrs A OConstr. In the rest of this chapter,
these states will be called the reachable ones.

LAs explained in Section 2.3 (page 18), a state is an assignment of values to all possible
variables. However, when discussing a particular specification, we usually consider a state to
be an assignment of values to that specification’s variables. That’s what I’'m doing in this
chapter.



14.1. INTRODUCTION TO TLC 227

MODULE MCAlternatingBit

EXTENDS AlternatingBit
CONSTANTS msg@QLen, ack@QLen

SeqConstraint = A Len(msgQ)
A Len(ack@)

msg@QLen A constraint on the lengths of

<
< ackQLen sequences for use by TLC.

Figure 14.2: Module MCAlternatingBit.

Having TLC check the type invariant will catch many simple mistakes. When
we’ve corrected all the errors we can find that way, we then want to look for
less obvious ones. A common error is for an action not to be enabled when it
should be, preventing some states from being reached. You can discover if an
action is never enabled by using the coverage option, described on page 252. To
discover if an action is just sometimes incorrectly disabled, try checking liveness
properties. An obvious liveness property for the alternating bit protocol is that The temporal op-
every message sent is eventually delivered. A message d has been sent when .ator ~ is de-
sent = d and sBit # sAck. So, a naive way to state this property is fined on page 91.

SentLeadsToRcvd =
Vd € Data : (sent = d) A (sBit # sAck) ~ (rcvd = d)

Formula SentLeadsToRcvd asserts that, for any data value d, if sent ever equals d
when sBit does not equal sAck, then rcvd must eventually equal d. This doesn’t
assert that every message sent is eventually delivered. For example, it is satisfied
by a behavior in which a particular value d is sent twice, but received only once.
However, the formula is good enough for our purposes because the protocol
doesn’t depend on the actual values being sent. If it were possible for the same
value to be sent twice but received only once, then it would be possible for two
different values to be sent and only one received, violating SentLeadsToRcvd. We
therefore add the definition of SentLeadsToRcvd to module MCAlternatingBit
and add the following statement to the configuration file.

PROPERTY SentLeadsToRcvd

CONSTANTS Data = {d1, 42} (* Is this big enough? *)
msgQLlen = 2
ackQLen = 2 \* Try 3 next.

SPECIFICATION ABSpec

INVARIANT ABTypeInv

CONSTRAINT SeqConstraint

Figure 14.3: A configuration file for module MCAlternatingBit.



228 CHAPTER 14. THE TLC MODEL CHECKER

Checking liveness properties is a lot slower than other kinds of checking, so you
should do it only after you've found all the errors you can by checking invariance
properties.

Checking type correctness and property SentLeadsToRcvd is a good way to
start looking for errors. But ultimately, we would like to see if the protocol
meets its specification. However, we don’t have its specification. In fact, it is
typical in practice that we are called upon to check the correctness of a system
design without any formal specification of what the system is supposed to do.
In that case, we can write an ex post facto specification. Module A BCorrectness
in Figure 14.4 on the next page is such a specification of correctness for the
alternating bit protocol. It is actually a simplified version of the protocol’s
specification in which, instead of being read from messages, the variables rcvd,
rBit, and sAck are obtained directly from the variables of the other process.

We want to check that the specification ABSpec of module AlternatingBit
implies formula ABCSpec of module ABCorrectness. To do this, we modify
module MCAlternatingBit by adding the statement

INSTANCE ABCorrectness

and we modify the PROPERTY statement of the configuration file to The keywords
PROPERTY and
PROPERTIES ABCSpec SentLeadsToRcvd PROPERTIES are
equivalent.

This example is atypical because the correctness specification ABCSpec does
not involve variable hiding (temporal existential quantification). Let’s now sup-
pose module ABCorrectness did declare another variable h that appeared in
ABCSpec, and that the correctness condition for the alternating bit protocol
was ABCSpec with h hidden. The correctness condition would then be expressed

formally in TLAT as follows: This use of
INSTANCE is ex-
AB(h) = INSTANCE ABCorrectness plained in Sec-
THEOREM ABSpec = 3h : AB(h)! ABCSpec s &8 (fouggs 400).

TLC could not check this theorem directly because it cannot handle the temporal
existential quantifier 3. We would check this theorem with TLC the same way
we would try to prove it—mamely, by using a refinement mapping. As explained
in Section 5.8 on page 62, we would define a state function oh in terms of the
variables of module AlternatingBit and we would prove

(14.2) ABSpec = AB(oh)! ABCSpec

To get TLC to check this theorem, we would add the definition
ABCSpecBar = AB(oh)! ABCSpec

and have TLC check the property ABCSpecBar.



14.1. INTRODUCTION TO TLC 229

MODULE ABCorrectness
EXTENDS Naturals

CONSTANTS Data

VARIABLES sBit, sAck, rBit, sent, rcvd

ABCInit = A sBit € {0,1}
A sAck = sBit
A rBit = sBit
A sent € Data
A revd € Data

CSndNewValue(d) = A sAck = sBit
A sent’ = d
A sBit' = 1 — sBit
A UNCHANGED (sAck, rBit, rcvd)

CRcuMsg = A rBit # sBit
A rBit’ = sBit
A revd = sent
A UNCHANGED (sBit, sAck, sent)

CRevAck = A rBit # sAck
N sAck’ = rBit
A UNCHANGED ($Bit, rBit, sent, rcvd)

ABCNext = Vv 3d € Data : CSndNew Value(d)
V CRcvMsg V CRcvAck

cvars = (sBit, sAck, rBit, sent, rcvd)

ABCFairness = WF cpars (CRcoMsg) A WE yars (CRcvAck)

A

ABCSpec = ABCInit AN OJABCNext] cyars N ABCFairness

Figure 14.4: A specification of correctness of the alternating bit protocol.

When TLC checks a property, it does not actually verify that the specification
implies the property. Instead, it checks that (i) the safety part of the specification
implies the safety part of the property and (ii) the specification implies the
liveness part of the property. For example, suppose that the specification Spec
and the property Prop are:

Init A O[Next]yars A Temporal
ImpliedInit A O[ImpliedAction]pyers N Implied Temporal

Spec

e 1

Prop



230 CHAPTER 14. THE TLC MODEL CHECKER

where Temporal and Implied Temporal are liveness properties. In this case, TLC
checks the two formulas

Init A O[Next]yars = ImpliedInit A D[ImpliedAction]pyars
Spec = Implied Temporal

This means that you cannot use TLC to check that a non-machine closed speci-
fication satisfies a safety property. (Machine closure is discussed in Section 8.9.2
on page 111.) Section 14.3 below more precisely describes how TLC checks
properties.

14.2 What TLC Can Cope With

No model checker can handle all the specifications that we can write in a lan-
guage as expressive as TLAT. However, TLC seems able to handle most TLA*
specifications that people actually write. Getting TLC to handle a specification
may require a bit of trickery, but it can usually be done without having to make
any changes to the specification itself.

This section explains what TLC can and cannot cope with, and gives some
ways to make it cope. The best way to understand TLC’s limitations is to
understand how it works. So, this section describes how TLC “executes” a
specification.

14.2.1 TLC Values

A state is an assignment of values to variables. TLA™ allows you to describe a
wide variety of values—for example, the set of all sequences of prime numbers.
TLC can compute only a restricted class of values, called TLC values. Those
values are built from the following four types of primitive values:

Booleans The values TRUE and FALSE.
Integers Values like 3 and —1.
Strings Values like “ab3”.

Model Values These are values introduced in the CONSTANT statement of the
configuration file. For example, the configuration file shown
in Figure 14.3 on page 227 introduces the model values d1
and d2. Model values with different names are assumed to be
different.

A TLC value is defined inductively to be either

1. a primitive value, or



14.2. WHAT TLC CAN COPE WITH 231

2. a finite set of comparable TLC values (comparable is defined below), or

3. a function f whose domain is a TLC value such that f[z] is a TLC value,
for all  in DOMAIN f.

For example, the first two rules imply that

(14.3) {{“3777 LLb”}’ {ééb”’ “C”}, {“C”’ (Ld??}}

is a TLC value because rules 1 and 2 imply that {“a”, “b”}, {“b”, “c”}, and
{¥c”, “d” } are TLC values, and the second rule then implies that (14.3) is a TLC
value. Since tuples and records are functions, rule 3 implies that a record or tuple
whose components are TLC values is a TLC value. For example, (1, “a”,2, “b”)
is a TLC value.

To complete the definition of what a TLC value is, I must explain what
comparable means in rule 2. The basic idea is that two values should be com-
parable iff the semantics of TLA™ determines whether or not they are equal.
For example, strings and numbers are not comparable because the semantics of
TLA™T doesn’t tell us whether or not “abc” equals 42. The set {“abc”, 42} is
therefore not a TLC value; rule 2 doesn’t apply because “abc” and 42 are not
comparable. On the other hand, {“abc”} and {4, 2} are comparable because sets
having different numbers of elements must be unequal. Hence, the two-element
set {{“abc”}, {4,2}} is a TLC value. TLC considers a model value to be com-
parable to, and unequal to, any other value. The precise rules for comparability
are given in Section 14.7.2.

14.2.2 How TLC Evaluates Expressions

Checking a specification requires evaluating expressions. For example, TLC does
invariance checking by evaluating the invariant in each reachable state—that is,
computing its TLC value, which should be TRUE. To understand what TLC can
and cannot do, you have to know how it evaluates expressions.

TLC evaluates expressions in a straightforward way, generally evaluating
subexpressions “from left to right”. In particular:

e It evaluates p A ¢ by first evaluating p and, if it equals TRUE, then evalu-
ating q.

e It evaluates p V ¢ by first evaluating p and, if it equals FALSE, then evalu-
ating ¢. It evaluates p = ¢q as =p V q.

e It evaluates IF p THEN e; ELSE ey by first evaluating p, then evaluating
either e; or es.

To understand the significance of these rules, let’s consider a simple example.
TLC cannot evaluate the expression z[1] if z equals (), since ()[1] is silly. (The



232 CHAPTER 14. THE TLC MODEL CHECKER

empty sequence () is a function whose domain is the empty set and hence does
not contain 1.) The first rule implies that, if z equals (), then TLC can evaluate
the formula

(z# () A (2[1] = 0)

but not the (logically equivalent) formula

(z[1]=0) A (= # ()
(When evaluating the latter formula, TLC first tries to compute (}[1] = 0,
reporting an error because it can’t.) Fortunately, we naturally write the first
formula rather than the second because it’s easier to understand. People under-

stand a formula by “mentally evaluating” it from left to right, much the way
TLC does.

TLC evaluates 3z € S:p by enumerating the elements sp,...,s, of § in
some order and then evaluating p with s; substituted for z, successively for
i =1,...,n. It enumerates the elements of a set S in a very straightforward

way, and it gives up and declares an error if the set is not obviously finite.
For example, it can obviously enumerate the elements of {0, 1, 2, 3} and 0 .. 3.
It enumerates a set of the form {z € S : p} by first enumerating S, so it can
enumerate {¢ € 0 .. 5 : i <4} but not {i € Nat : i < 4}.

TLC evaluates the expressions Vz € S : p and CHOOSE z € S : p by first
enumerating the elements of S, much the same way as it evaluates 3z € S : p.
The semantics of TLA™ states that CHOOSE z € S : p is an arbitrary value if
there is no x in S for which p is true. However, this case almost always arises
because of a mistake, so TLC treats it as an error. Note that evaluating the
expression

IF n>5 THEN CHOOSE 1 €1 ..n : ¢ >5 ELSE 42

will not produce an error because TLC will not evaluate the CHOOSE expression if
n < 5. (TLC would report an error if it tried to evaluate the CHOOSE expression
when n <5.)

TLC cannot evaluate “unbounded” quantifiers or CHOOSE expressions—that
is, expressions having one of the forms:

dz :p Vo :p CHOOSE z : p

TLC cannot evaluate any expression whose value is not a TLC value, as defined
in Section 14.2.1 above. In particular, TLC can evaluate a set-valued expression
only if that expression equals a finite set, and it can evaluate a function-valued
expression only if that expression equals a function whose domain is a finite set.
TLC will evaluate expressions of the following forms only if it can enumerate
the set S:

dxeS:p Vel :p CHOOSE x € S : p
{z el :p} {e:z€ 85} [z €S e
SUBSET S UNION S



14.2. WHAT TLC CAN COPE WITH

233

TLC can often evaluate an expression even when it can’t evaluate all subexpres-
sions. For example, it can evaluate

[n € Nat — n* (n + 1)][3]
which equals the TLC value 12, even though it can’t evaluate
[n € Nat — n* (n+1)]

which equals a function whose domain is the set Nat. (A function can be a TLC
value only if its domain is a finite set.)

TLC evaluates recursively defined functions with a simple recursive proce-
dure. If f is defined by f[z € S] = e, then TLC evaluates f[c] by evaluating e
with ¢ substituted for x. This means that it can’t handle some legal function
definitions. For example, consider this definition from page 68:

mr[n € Nat] =

[f — 1IF n=0 THEN 17 ELSE mr[n — 1].f * mrn].g,
g — IF n=0 THEN 42 ELSE mr{n — 1].f + mr[n —1].¢]

To evaluate mr[3], TLC substitutes 3 for n and starts evaluating the right-hand
side. But because mr[n] appears in the right-hand side, TLC must evaluate
the subexpression mr[3], which it does by substituting 3 for n and starting to
evaluate the right-hand side. And so on. TLC eventually detects that it’s in an
infinite loop and reports an error.

Legal recursive definitions that cause TLC to loop like this are rare, and they
can be rewritten so TLC can handle them. Recall that we defined mr to express
the mutual recursion:

fln] = IF n=0 THEN 17 ELSE f[n — 1] * g[n]
g[n] = IF n =0 THEN 42 ELSE f[n — 1]+ g[n — 1]

The subexpression mr[n] appeared in the expression defining mr[n] because f[n]
depends on g[n]. To eliminate it, we have to rewrite the mutual recursion so f[n]
depends only on f[n — 1] and g[n — 1]. We do this by expanding the definition
of g[n] in the expression for f[n]. Since the ELSE clause applies only to the case
n # 0, we can rewrite the expression for f[n] as

fln] = 1F n =0 THEN 17 ELSE f[n — 1]« (f[n — 1]+ g[n —1])
This leads to the following equivalent definition of mr.

mr[n € Nat] =
[f — 1IF n=0 THEN 17
ELSE mr[n — 1].f x (mr[n — 1].f + mr[n — 1].g),
g — IF n=0 THEN 42 ELSE mr[n — 1].f + mr[n — 1].g]



234 CHAPTER 14. THE TLC MODEL CHECKER

With this definition, TLC has no trouble evaluating mr(3].

The evaluation of ENABLED predicates and the action-composition operator
are described on page 240 in Section 14.2.6 below. Section 14.3 below explains
how TLC evaluates temporal-logic formulas for temporal checking.

If you're not sure whether TLC can evaluate an expression, try it and see.
But don’t wait until TLC gets to the expression in the middle of checking the
entire specification. Instead, make a small example in which TLC evaluates just
that expression. See the explanation on page 14.5.3 of how to use TLC as a
TLAT calculator.

wn

14.2.3 Assignment and Replacement

As we saw in the alternating bit example, the configuration file must determine
the value of each constant parameter. To assign a TLC value v to a constant pa-
rameter ¢ of the specification, we write ¢ = v in the configuration file’s CONSTANT
statement. The value v may be a primitive TLC value or a finite set of primitive
TLC values written in the form {vy,...,v,}—for example, {1, -3, 2}. In v,
any sequence of characters like al or foo that is not a number, a quoted string,
or TRUE or FALSE is taken to be a model value.

In the assignment ¢ = v, the symbol ¢ need not be a constant parameter; it
can also be a defined symbol. This assignment causes TLC to ignore the actual
definition of ¢ and to take v to be its value. Such an assignment is often used
when TLC cannot compute the value of ¢ from its definition. In particular, TLC
cannot compute the value of NotAnS from the definition:

NotAnS = CHOOSEn : n¢ S

because it cannot evaluate the unbounded CHOOSE expression. You can override
this definition by assigning NotAnS a value in the CONSTANT statement of the
configuration file. For example, the assignment

NotAnS = NS

causes TLC to assign to NotAnS the model value NS. TLC ignores the actual
definition of NotAnS. If you used the name NotAnS in the specification, you’d
probably want TLC’s error messages to call it NotAnS rather than NS. So, you'd
probably use the assignment

NotAnS = NotAnS

Note that d is a
which assigns to the symbol NotAnS the model value NotAnS. Remember that, defined symbol in

in the assignment ¢ = v, the symbol ¢ must be defined or declared in the TLAT the replacement
module, and v must be a primitive TLC value or a finite set of such values. ;;-Lé \‘;}111111:1:1 8

The CONSTANT statement of the configuration file can also contain replace- {16 substitution
ments of the form ¢ <- d, where ¢ and d are symbols defined in the TLAT ¢=o.



14.2. WHAT TLC CAN COPE WITH

235

module. This causes TLC to replace ¢ by d when performing its calculations.
One use of replacement is to give a value to an operator parameter. For exam-
ple, suppose we wanted to use TLC to check the write-through cache specifi-
cation of Section 5.6 (page 54). The Write ThroughCache module extends the
Memorylnterface module, which contains the declaration

CONSTANTS Send(_, —, —, _), Reply(—, —, —, ), ...

We have to tell TLC how to evaluate the operators Send and Reply. We
do this by first writing a module MCWrite ThroughCache that extends the
Write ThroughCache module and defines two operators

MCSend(p, d, old, new)
MCReply(p, d, old, new)

e

We then add to the configuration file’s CONSTANT statement the replacements:

Send <- MCSend
Reply <- MCReply

A replacement can also replace one defined symbol by another. In a specification,
we usually write the simplest possible definitions. A simple definition is not
always the easiest one for TLC to use. For example, suppose our specification
requires an operator Sort such that Sort(.9) is a sequence containing the elements
of S in increasing order, if S is a finite set of numbers. Our specification in
module SpecMod might use the simple definition:

Sort(S) = CHOOSE s € [1 .. Cardinality(S) — 8] :
Vi,j € DOMAIN s : (i < j) = (s[i] < s[j])

To evaluate Sort(S) for a set S containing n elements, TLC has to enumerate
the n™ elements in the set [1 .. n — S] of functions. This may be unacceptably
slow. We can write a module MCSpecMod that extends SpecMod and defines
FastSort so it equals Sort, when applied to finite sets of numbers, but can be
evaluated more efficiently by TLC. We can then run TLC with a configuration
file containing the replacement

Sort <- FastSort

One possible definition of FastSort is given in Section 14.4, on page 250 below.

14.2.4 FEvaluating Temporal Formulas

Section 14.2.2 above (page 231) explains what kind of ordinary expressions TLC
can evaluate. The specification and properties that TLC checks are temporal
formulas; this section describes the class of temporal formulas it can handle.



236 CHAPTER 14. THE TLC MODEL CHECKER

TLC can evaluate a TLA temporal formula iff (i) the formula is nice—a term
defined below—and (ii) TLC can evaluate all the ordinary expressions of which
the formula is composed. For example, a formula of the form P ~» @) is nice, so
TLC can evaluate it iff it can evaluate P and . (Section 14.3 below explains
on what states and pairs of states TLC evaluates the component expressions of
a temporal formula.)

A temporal formula is nice iff it is the conjunction of formulas that belong
to one of the following four classes:

State Predicate
Invariance Formula A formula of the form OP, where P is a state predicate.

Box-Action Formula A formula of the form O[A],, where A is an action and
v is a state function.

Simple Temporal Formula To define this class, we first make the following

definitions. The terminology
used here is not
e The simple Boolean operators consist of the operators standard.
A\ V - = = TRUE FALSE

of propositional logic together with quantification over finite, constant
sets.

e A temporal state formula is one obtained from state predicates by
applying simple Boolean operators and the temporal operators O, <,
and ~». For example, if N is a constant, then

Viel..N:O(z=1i)=3j€l..i:O(y=43))
is a temporal state formula.

o A simple action formula is one of the following, where A is an action
and v a state function:
WEF,(4) SF,(A) OOC(A), ©0O[4],
The component expressions of WF,(A) and SF,(A4) are (A4), and
ENABLED (A),. (The evaluation of ENABLED formulas is described
on page 240.)

A simple temporal formula is then defined to be one constructed from
temporal state formulas and simple action formulas by applying simple
Boolean operators.

For convenience, we exclude invariance formulas from the class of simple tem-
poral formulas, so these four classes of nice temporal formulas are disjoint.
TLC can therefore evaluate the temporal formula

Viel..N:O(y=i)=WF,((y =y+1)A(y > 1)



14.2. WHAT TLC CAN COPE WITH

237

if N is a constant, because this is a simple temporal formula (and hence nice)
and TLC can evaluate all of its component expressions. TLC cannot evaluate
Oz’ = 1), since this is not a nice formula. It cannot evaluate the formula
WF,(2'[1] = 0) if it must evaluate the action (z'[1] = 0), on a step s — ¢ in
which z = () in state ¢.

A PROPERTY statement can specify any formulas that TLC can evaluate. The
formula of a SPECIFICATION statement must contain exactly one conjunct that
is a box-action formula. That conjunct specifies the next-state action.

14.2.5 Overriding Modules

TLC cannot compute 2 + 2 from the definition of + contained in the standard
Naturals module. Even if we did use a definition of + from which TLC could
compute sums, it would not do so very quickly. Arithmetic operators like + are
implemented directly in Java, the language in which TLC is written. This is
achieved by a general mechanism of TLC that allows a module to be overridden
by a Java class that implements the operators defined in the module. When
TLC encounters an EXTENDS Naturals statement, it loads the Java class that
overrides the Naturals module rather than reading the module itself. There
are Java classes to override the following standard modules: Naturals, Integers,
Sequences, FiniteSets, and Bags. (The TLC module described below in Sec-
tion 14.4 is also overridden by a Java class.) Intrepid Java programmers will
find that writing a Java class to override a module is not too hard.

14.2.6 How TLC Computes States

When TLC evaluates an invariant, it is calculating the invariant’s value, which
is either TRUE or FALSE. When TLC evaluates the initial predicate or the next-
state action, it is computing a set of states—for the initial predicate, the set
of all initial states, and for the next-state action, the set of possible successor
states (primed states) reached from a given starting (unprimed) state. I will
describe how TLC does this for the next-state action; the evaluation of the
initial predicate is analogous.

Recall that a state is an assignment of values to variables. TLC computes the
successors of a given state s by assigning to all unprimed variables their values in
state s, assigning no values to the primed variables, and then evaluating the next-
state action. TLC evaluates the next-state action as described in Section 14.2.2
(page 231), except for two differences, which I now describe. This description
assumes that TLC has already performed all the assignments and replacements
specified by the CONSTANT statement of the configuration file and has expanded
all definitions. Thus, the next-state action is a formula containing only variables,
primed variables, model values, and built-in TLA™T operators and constants.



238 CHAPTER 14. THE TLC MODEL CHECKER

The first difference in evaluating the next-state action is that TLC does not
evaluate disjunctions from left to right. Instead, when it evaluates a subformula
A1 V...V A,, it splits the computation into n separate evaluations, each taking
the subformula to be one of the A;. Similarly, when it evaluates 3z € S: p,
it splits the computation into separate evaluations for each element of S. An
implication P = @ is treated as the disjunction (—P) Vv Q. For example, TLC
splits the evaluation of

(A= B)V (CA3FieS:DH)ANE)
into separate evaluations of the three disjuncts ~A, B, and
CA(FieS:DGH)ANE

To evaluate the latter disjunct, it first evaluates C'. If it obtains the value TRUE,
then it splits this evaluation into the separate evaluations of D(i) A E, for each
iin S. It evaluates D (i) A E by first evaluating D(7) and, if it obtains the value
TRUE, then evaluating F.

The second difference in the way TLC evaluates the next-state action is that,
for any variable z, if it evaluates an expression of the form 2’ = e when z’ has not
yet been assigned a value, then the evaluation yields the value TRUE and TLC
assigns to z’ the value obtained by evaluating the expression e. TLC evaluates
an expression of the form 2’ € S as if it were v € S: 2’ = v. It evaluates
UNCHANGED z as z’ = z for any variable z, and UNCHANGED (e1, ..., €,) as

(UNCHANGED e7) A ... A (UNCHANGED e,)

for any expressions e;. Hence, TLC evaluates UNCHANGED (z, (y, z)) as if it
were

(' =z) ANy =y) A (' =2)

Except when evaluating an expression of the form z’ = e, TLC reports an
error if it encounters a primed variable that has not yet been assigned a value.
An evaluation stops, finding no states, if a conjunct evaluates to FALSE. An
evaluation that completes and obtains the value TRUE finds the state determined
by the values assigned to the primed variables. In the latter case, TLC reports
an error if some primed variable has not been assigned a value.

To illustrate how this works, let’s consider how TLC evaluates the next-state
action

(14.4) Vv Az €1 .. Len(y)
A y' = Append(Tail(y), z")
VAZ =z+1
A y' = Append(y, ')

We first consider the starting state with = 1 and y = (2,3). TLC splits the
computation into evaluating the two disjuncts separately. It begins evaluating



14.2. WHAT TLC CAN COPE WITH

239

the first disjunct of (14.4) by evaluating its first conjunct, which it treats as
Jiel.. Len(y):2z’ = i. Since Len(y) = 2, the evaluation splits into separate
evaluations of:

(14.5) N2’ =1 ANzl =2
Ay = Append(Tail(y), z’) N y" = Append(Tail(y), z")

TLC evaluates the first of these actions as follows. It evaluates the first con-
junct, obtaining the value TRUE and assigning to z’ the value 1; it then eval-
uates the second conjunct, obtaining the value TRUE and assigning to y’ the
value Append(Tail({2,3)),1). So, evaluating the first action of (14.5) finds the
successor state with = 1 and y = (3,1). Similarly, evaluating the second
action of (14.5) finds the successor state with z = 2 and y = (3,2). In a similar
way, TLC evaluates the second disjunct of (14.4) to find the successor state with
z =2 and y = (2,3,2). Hence, the evaluation of (14.4) finds three successor
states.

Next, consider how TLC evaluates the next-state action (14.4) in a state
with z = 1 and y equal to the empty sequence (). Since Len(y) =0and 1..0
is the empty set { }, TLC evaluates the first disjunct as

ANJie{}: a2 =i
Ay = Append(Tail(y), z')

Evaluating the first conjunct yields FALSE, so the evaluation of the first disjunct
of (14.4) stops, finding no successor states. Evaluating the second disjunct yields
the successor state with z = 2 and y = (2).

Since TLC evaluates conjuncts from left to right, their order can affect
whether or not TLC can evaluate the next-state action. For example, suppose
the two conjuncts in the first disjunct of (14.4) were reversed, like this:

Ay = Append(Tail(y), z")
ANz’ €l.. Len(y)

When TLC evaluates the first conjunct of this action, it encounters the expres-
sion Append(Tail(y),z’) before it has assigned a value to z’, so it reports an
error. Moreover, even if we were to change that z’ to an z, TLC could still not
evaluate the action starting in a state with y = (), since it would encounter the
silly expression Tail({)) when evaluating the first conjunct.

The description given above of how TLC evaluates an arbitrary next-state
action is good enough to explain how it works in almost all cases that arise
in practice. However, it is not completely accurate. For example, interpreted
literally, it would imply that TLC can cope with the following two next-state
actions, which are both logically equivalent to (z' = TRUE) A (y' = 1):

(14.6) (z' = (y' =1)) A (z' = TRUE) IF £’ = TRUE THEN y’ =1 ELSE FALSE



240 CHAPTER 14. THE TLC MODEL CHECKER

In fact, TLC will produce error messages when presented with either of these
bizarre next-state actions.
Remember that TLC computes initial states by using a similar procedure
to evaluate the initial predicate. Instead of starting from given values of the
unprimed variables and assigning values to the primed variables, it assigns values
to the unprimed variables.
TLC evaluates ENABLED formulas essentially the same way it evaluates a
next-state action. More precisely, to evaluate a formula ENABLED A, TLC com-
putes successor states as if A were the next-state action. The formula evaluates
to TRUE iff there exists a successor state. To check if a step s — ¢ satisfies the
composition A - B of actions A and B, TLC first computes all states u such that Action composi-
s — u is an A step and then checks if v — t is a B step for some such u. tion is discussed
TLC may also have to evaluate an action when checking a property. In that °% P8es 76777
case, it evaluates the action as it would any expression, and it has no trouble
evaluating even the bizarre actions (14.6).

14.3 How TLC Checks Properties

Section 14.2 above explains how TLC evaluates expressions and computes initial
states and successor states. This section describes how TLC uses evaluation
to check properties—first for model-checking mode (its default), and then for
simulation mode.

First, let’s define some formulas that are obtained from the configuration
file. In these definitions, a specification conjunct is a conjunct of the formula
named by the SPECIFICATION statement (if there is one), a property conjunct is
a conjunct of a formula named by a PROPERTY statement, and the conjunction
of an empty set of formulas is defined to be TRUE. The definitions use the four
classes of nice temporal formulas defined above in Section 14.2.4 on page 235.

Init The specification’s initial state predicate. It is specified by an INIT or
SPECIFICATION statement. In the latter case, it is the conjunction of all
specification conjuncts that are state predicates.

Next The specification’s next-state action. It is specified by a NEXT statement
or a SPECIFICATION statement. In the latter case, it is the action N such
that there is a specification conjunct of the form O[N],. There must not
be more than one such conjunct.

Temporal The conjunction of every specification conjunct that is neither a state
predicate nor a box-action formula. It is usually the specification’s liveness
condition.

Invariant The conjunction of every state predicate I that is either named by
an INVARIANT statement or for which some property conjunct equals O1.



14.3. HOW TLC CHECKS PROPERTIES

241

ImpliedInit The conjunction of every property conjunct that is a state predicate.

ImpliedAction The conjunction of every action [A], such that some property
conjunct equals O[A],.

ImpliedTemporal The conjunction of every property conjunct that is a simple
temporal formula, but is not of the form O/, where [ is a state predicate,

Constraint The conjunction of all state predicates named by CONSTRAINT state-
ments.

ActionConstraint The conjunction of all actions named by ACTION-CONSTRAINT
statements. An action constraint is similar to an ordinary constraint,
except it eliminates possible transitions rather than states. An ordinary
constraint P is equivalent to the action constraint P’.

14.3.1 Model-Checking Mode

TLC keeps two data structures: a directed graph G whose nodes are states, and
a queue (a sequence) U of states. A state in G, means a state that is a node of
the graph G. The graph G is the part of the state reachability graph that TLC
has found so far, and I/ contains all states in G whose successors TLC has not
yet computed. TLC’s computation maintains the following invariants:

e The states of G satisfy the Constraint predicate.
e For every state s in G, the edge from s to s isin G.

o If there is an edge in G from state s to a different state ¢, then ¢ is a
successor state of s that satisfies the action constraint. In other words,
the step s — t satisfies Next A ActionConstraint.

e Each state s of G is reachable from an initial state (one that satisfies the
Init predicate) by a path in G.

e U is a sequence of distinct states that are nodes in G.

e For every state s in G that is not in U, and for every state t satisfying
Constraint such that the step s — t satisfies Next A ActionConstraint, the
state ¢ and the edge from s to ¢ are in G.

TLC executes the following algorithm, starting with G and U empty.

1. Check that every ASSUME in the specification is satisfied by the values
assigned to the constant parameters.

2. Compute the set of initial states by evaluating the initial predicate Init,
as described above in Section 14.2.6. For each initial state s found:



242 CHAPTER 14. THE TLC MODEL CHECKER

(a) Evaluate the predicates Invariant and ImpliedInit in state s; report
an error and stop if either is false.

(b) If the predicate Constraint is true in state s, then add s to the
queue U, add node s and edge s — s to the graph G.

3. While U is nonempty, do the following:

(a) Remove the first state from U and let s be that state.

(b) Find the set T of all successor states of s by evaluating the next-state
action starting from s, as described above in Section 14.2.6.

(¢) If T is empty and the deadlock option is not selected, then report a
deadlock error and stop.

(d) For each state t in T, do the following.

i. If Invariant is false in state ¢t or ImpliedAction is false for the
step s — t, then report an error and stop.

ii. If the predicate Constraint is true in state ¢ and the step s — ¢
satisfies ActionConstraint, then:

A. If t is not in G, then add it to the tail of U/ and add the node
t and the edge t — ¢ to G.

B. Add the edge s — ¢ to G.

TLC can use multiple threads, and steps 3(b)—(d) may be performed concur-
rently by different threads for different states s. See the description of the
workers option on page 253 below.

If formula Implied Temporal is not equal to TRUE, then whenever it adds an
edge s — t in the procedure above, TLC evaluates all the predicates and actions
that appear in formulas Temporal and Implied Temporal for the step s — t. (It
does this when adding any edge, including the self-loops s — s and ¢t — ¢ in
steps 2(b) and 3(d)ii.A.)

Periodically during the computation of G, and when it has finished computing
G, TLC checks the ImpliedTemporal property as follows. Let 7 be the set
consisting of every behavior 7 that is the sequence of states in an infinite path
in G starting with an initial state. (For example, 7 contains the path s — s —
s — ... for every initial state s in G.) Note that every behavior in 7 satisfies
Init AO[Next]pqors. TLC checks that every behavior in 7 also satisfies the formula
Temporal = Implied Temporal. (This is conceptually what happens; TLC does
not actually check each behavior separately.) See Section 14.3.5 on page 247
below for a discussion of why TLC’s checking of the Implied Temporal property
may not do what you expect.

The computation of G terminates only if the set of reachable states is finite. See page 226 for

Otherwise, TLC will run forever—that is, until it runs out of resources or is the definition of
stopped reachable state.



14.3. HOW TLC CHECKS PROPERTIES

243

TLC does not always perform all three of the steps described above. It does
step 2 only for a non-constant module, in which case the configuration file must
specify an Init formula. TLC does step 3 only if the configuration file specifies
a Next formula, which it must do if it specifies an Invariant, ImpliedAction, or
Implied Temporal formula.

14.3.2 Simulation Mode

In simulation mode, TLC repeatedly constructs and checks individual behaviors
of a fixed maximum length. The maximum length can be specified with the
depth option, as described on page 251 below. (Its default value is 100 states.)
In simulation mode, TLC runs until you stop it.

To create and check a behavior, TLC uses the procedure described above
for constructing the graph G—except with the following difference. After com-
puting the set of initial states, and after computing the set T of successors for
a state s, TLC randomly chooses an element of that set. If the element does
not satisfy the constraint, then the computation of G stops. Otherwise, TLC
puts only that state in G and U, and checks the Invariant and the ImpliedInit
or the ImpliedAction formula for it. (The queue U isn’t actually maintained,
since it would never contain more than a single element.) The construction of
G stops, and the formula Temporal = ImpliedTemporal is checked, when the
specified maximum number of states have been generated. TLC then repeats
the procedure, starting with G and U empty.

TLC’s choices are not strictly random, but are generated using a pseudo-
random number generator from a randomly chosen seed. The seed and another
value called the aril are printed if TLC finds an error. As described in Sec-
tion 14.5.1 below, using the key and aril options, you can get TLC to generate
the behavior that displayed the error.

14.3.3 Views and Fingerprints

In the description above of how TLC checks properties, I wrote that the nodes
of the graph G are states. That is not quite correct. The nodes of G are values of
a state function called the view. TLC’s default view is the tuple of all declared
variables, whose value determines the state. However, you can specify that the
view should be some other state function myview by putting the statement

VIEW myview

in the configuration file, where myview is an identifier that is either defined or
else declared to be a variable.

When TLC computes initial states, it puts their views rather than the states
themselves in G. (The view of a state s is the value of the VIEW state function in

Remember that
we are using the
term state infor-
mally to mean an
assignment of val-
ues to declared
variables, rather
than to all vari-
ables.



244 CHAPTER 14. THE TLC MODEL CHECKER

state s.) If there are multiple initial states with the same view, only one of them
is put in the queue /. Instead of inserting an edge from a state s to a state t,
TLC inserts the edge from the view of s to the view of ¢. In step 3(d)ii.A in the
algorithm above, TLC checks if the view of ¢ is in G.

When using a view other than the default one, TLC may stop before it has
found all reachable states. For the states it does find, it correctly performs
safety checks—that is, the Invariant, ImpliedInit, and ImpliedAction checks.
Moreover, it prints out a correct counterexample (a finite sequence of states) if
it finds an error in one of those properties. However, it may incorrectly check
the ImpliedTemporal property. Because the graph G that TLC is constructing is
not the actual reachability graph, it may report an error in the Implied Temporal
property when none exists, printing out a bogus counterexample.

Specifying a nonstandard view can cause TLC not to check many states. You
should do it when there is no need to check different states that have the same
view. The most likely alternate view is a tuple consisting of some, but not all,
declared variables. For example, you may have added one or more variables to
help debug the specification. Using the tuple of the original variables as the view
lets you add debugging variables without increasing the number of states that
TLC must explore. If the properties being checked do not mention the debugging
variables, then TLC will find all reachable states of the original specification and
will correctly check all properties.

In the actual implementation, the nodes of the graph G are not the views of
states, but fingerprints of those views. A TLC fingerprint is a 64-bit number
generated by a “hashing” function. Ideally, the probability that two different
views have the same fingerprint is 2764, which is a very small number. However,
it is possible for a collision to occur, meaning that TLC mistakenly thinks that
two different views are the same because they have the same fingerprint. If this
happens, TLC will not explore all the states that it should. In particular, with
the default view, TLC will report that it has checked all reachable states when
it hasn’t.

When it terminates, TLC prints out two estimates of the probability that
a fingerprint collision occurred. The first is based on the assumption that the
probability of two different views having the same fingerprint is 274, (Under
this assumption, if TLC generated n views with m distinct fingerprints, then
the probability of a collision is about m * (n — m) * 27%4.) However, the process
of generating states is highly nonrandom, and no known fingerprinting scheme
can guarantee that the probability of any two distinct states generated by TLC
having the same fingerprint is actually 27%4. So, TLC also prints an empirical
estimate of the probability that a collision occurred. It is based on the obser-
vation that, if there was a collision, then it is likely that there was also a “near
miss”. The estimate is the maximum value of 1/|f1 — f2| over all pairs (f1, f2) of
distinct fingerprints generated by TLC. In practice, the probability of collision
turns out to be very small unless TLC is generating billions of distinct states.



14.3. HOW TLC CHECKS PROPERTIES

245

Views and fingerprinting apply only to model-checking mode. In simulation
mode, TLC ignores any VIEW statement.

14.3.4 Taking Advantage of Symmetry

The memory specifications of Chapter 5 are symmetric in the set Proc of pro-
cessors. Intuitively, this means that permuting the processors doesn’t change
whether or not a behavior satisfies a specification. To define symmetry more
precisely, we first need some definitions.

A permutation of a finite set S is a function whose domain and range both
equal S. In other words, 7 is a permutation of S iff:

(S=poMAINT) A VweS :TveS: nv] =w)

A permutation is a function that is a permutation of its (finite) domain. If 7 is
a permutation of a set S of values and s is a state, let s™ be the state obtained
from s by replacing each value v in S with 7[v]. To see what s™ means, let’s
take as an example the permutation 7 of {“a”, “b”, “c”} such that «[“a”] = “b”,
w[“b”] = “¢”, and 7w[“c”] = “a”. Suppose that, in state s, the values of the
variables z and y are:

T = < “b??7 HC”’ (Ld” >
y = [1€{“”,“D”} — IF { = “a” THEN 7 ELSE 42]

Then in state s™, the values of the variables z and y are:

r = < “C”7 “a777 Ltd?’ >

y = [1 € {“D",“"} —1F i = “b” THEN 7 ELSE 42]
This example should give you an intuitive idea of what s™ means; I won’t try
to define it rigorously. If o is the behavior sy, s, ..., let ™ be the behavior
ST, 85, ...

We can now define what symmetry means. A specification Spec is symmetric
with respect to a permutation 7 iff the following condition holds: for any behavior
o, formula Spec is satisfied by o iff it is satisfied by ™.

The memory specifications of Chapter 5 are symmetric with respect to any
permutation of Proc. This means that there is no need for TLC to check a
behavior ¢ if it has already checked the behavior ¢™ for some permutation 7 of
Proc. (Any error revealed by o would also be revealed by ¢™.) We can tell TLC
to take advantage of this symmetry by putting the following statement in the
configuration file:

SYMMETRY Perms

where Perms is defined in the module to equal Permutations(Proc), the set of
all permutations of Proc. (The Permutations operator is defined in the TLC



246 CHAPTER 14. THE TLC MODEL CHECKER

module, described in Section 14.4 below.) This SYMMETRY statement causes TLC
to modify the algorithm described on pages 241-242 so it never adds a state s to
its queue U of unexamined states and to its state graph G if G already contains
the state s™, for some permutation 7 of Proc. If there are n processes, this
reduces the number of states that TLC examines by a factor of n!.

The memory specifications of Chapter 5 are also symmetric with respect to
any permutation of the set Adr of memory addresses. To take advantage of this
symmetry as well as the symmetry with respect to permutations of processors,
we define the symmetry set (the set specified by the SYMMETRY statement) to
equal

Permutations(Proc) U Permutations(Adr)

In general, the SYMMETRY statement can specify an arbitrary symmetry set II,
each element of which is a permutation of a set of model values. More pre-
cisely, each element 7 in IT must be a permutation such that all the elements of
DOMAIN 7 are assigned model values by the configuration file’s CONSTANT state-
ment. (If the configuration has no SYMMETRY statement, we take the symmetry
set II to be the empty set.)

To explain what TLC does when given an arbitrary symmetry set II, I need
a few more definitions. If 7 is a sequence (71,...,7n) of permutations in II, let
sT equal (...((s™)™2)...)"™. (If 7 is the empty sequence, then s7 is defined to
equal s.) Define the equivalence class s of a state s to be the set of states s for
all sequences 7 of permutations in II. For any state s, TLC keeps only a single
element of 5 in U and G. This is accomplished by the following modifications to
the algorithm on pages 241-242. In step 2(b), TLC adds the state s to U/ and G
only if U« and G do not already contain a state in . Step 3(d)ii is changed to:

A. If no element in ¢ is in G, then add ¢ to the tail of & and add the node ¢
and the edge t — ¢ to G.

B. Add the edge s — tt to G, where tt is the unique element of # that is (now)
in G.

When a VIEW statement appears in the configuration file, these changes are
modified as described in Section 14.3.3 above so that views rather than states
are put in G.

If the specification and the properties being checked are, indeed, symmetric
with respect to all permutations in the symmetry set, then TLC’s Invariant,
ImpliedInit, and ImpliedAction checking will find and correctly report any error
that it would have had the SYMMETRY statement been omitted. However, TLC
may perform Implied Temporal checking incorrectly—it may miss errors, report
an error that doesn’t exist, or report a real error with an incorrect counterex-
ample. So, you should do Implied Temporal checking when using a SYMMETRY
statement only if you understand exactly what TLC is doing.



14.3. HOW TLC CHECKS PROPERTIES

247

If the specification and properties are not symmetric with respect to all
permutations in the symmetry set, then TLC may be unable to print an error
trace if it does find an error. In that case, it will print the error message

Failed to recover the state from its fingerprint.

The symmetry set is used only in model-checking mode. TLC ignores it in
simulation mode.

14.3.5 Limitations of Liveness Checking

If a specification violates a safety property, then there is a finite behavior that
displays the violation. That behavior can be generated with a finite model. It
is therefore, in principle, possible to discover the violation with TLC. It may be
impossible to discover a violation of a liveness property with any finite model.
To see why, consider the following simple specification EvenSpec that starts with
x equal to zero and repeatedly increments it by 2.

BEvenSpec = (z=0)ADO[z' =2+ 2], AN\WF,(z' =z 4 2)

Obviously, = never equals 1 in any behavior satisfying FvenSpec. So, EvenSpec
does not satisfy the liveness property O(z = 1). Suppose we ask TLC to check
if FvenSpec implies &(z = 1). To get TLC to terminate, we must provide a
constraint that limits it to generating a finite number of reachable states. All
the infinite behaviors satisfying (z = 0) AO[z" = 2+ 2], that TLC generates will
then end in an infinite number of stuttering steps. In any such behavior, action
x’ = 1 + 2 is always enabled, but only a finite number of z’ = z + 2 steps occur,
so WF, (z/ = x + 2) is false. TLC will therefore not report an error because the
formula

WF,(z' =2+2) = O(z=1)

is satisfied by all the infinite behaviors it generates.

When doing temporal checking, make sure that your model will permit in-
finite behaviors that satisfy the specification’s liveness condition. For example,
consider the finite model of the alternating bit protocol specification defined by
the configuration file of Figure 14.3 on page 227. You should convince yourself
that it allows infinite behaviors that satisfy formula ABFairness.

It’s a good idea to verify that TLC is performing the liveness checking you
expect. Have it check a liveness property that the specification does not satisfy
and make sure it reports an error.

Safety properties
were defined on
page 87.



248 CHAPTER 14. THE TLC MODEL CHECKER

MODULE TLC

LOCAL INSTANCE Naturals The keyword LOCAL means that definitions from the instantiated

module are not obtained by a module that extends TLC'.
LOCAL INSTANCE Sequences

OPERATORS FOR DEBUGGING

Print(out, val) £ pal Causes TLC to print the values out and wval.
A
Assert(val, out) = IF val = TRUE THEN TRUE Causes TLC to report an error
ELSE CHOOSE v : TRUE and print out if val is not true.

JavaTime 2 CHOOSE n : n € Nat Causes TLC to print the current time, in milliseconds elapsed
since 00:00 on 1 Jan 1970 UT, modulo 23!.

OPERATORS FOR REPRESENTING FUNCTIONS AND SETS OF PERMUTATIONS

d:>e 2 [I (S {d} — 6] The function f with domain {d1,...,d,}
h that f[d;] = e, for i = 1,... b
f@@g = [z € (DOMAIN f) U (DOMAIN g) e fldil = eq, for i =1,...,n can be
IF & € DOMAIN f THEN f[z] ELSE g[z]] di:>e; @QQ...QQ dy:> ey

Permutations(S) = {felS—S]:YweS:JvesS: fl[] =w} Theset of permutations of S.

AN OPERATOR FOR SORTING

SortSeq(s, _ = _) 2 The result of sorting sequence s according to the ordering <.
LET Perm = CHOOSE p € Permutations(1 .. Len(s)) :

Vi,jel.. Len(s) : (i <j) = (s[p[i]] < s[plj]])
IN [i€1l.. Len(s)— s[Permlil]]

<
—
w
3
=
!
w»
=
=
=z

Figure 14.5: The standard module TLC.

14.4 The TLC Module

The standard TLC module, in Figure 14.5 on this page, defines operators that
are handy when using TLC. The module on which you run TLC usually EX-
TENDS the TLC module, which is overridden by its Java implementation. Module overriding

Module TLC begins with the statement by copllabiied wloeve
in Section 14.2.5.

LOCAL INSTANCE Naturals

As explained on page 171, this is like an EXTENDS statement, except that the
definitions included from the Naturals module are not obtained by any other
module that extends or instantiates module TLC'. Similarly, the next statement
locally instantiates the Sequences module.



14.4. THE TLC MODULE

249

Module TLC next defines three operators Print, Assert, and JavaTime.
They are of no use except in running TLC, when they can help you track down
problems.

The operator Print is defined so that Print(out, val) equals val. But, when
TLC evaluates this expression, it prints the values of out and val. You can add
Print expressions to a specification to help locate an error. For example, if your
specification contains

A Print(“a”, TRUE)
AN P
A Print(“b”, TRUE)

and TLC prints the "a" but not the "b" before reporting an error, then the
error happened while TLC was evaluating P. If you know where the error is but
don’t know why it’s occurring, you can add Print expressions to give you more
information about what values TLC has computed.

To understand what gets printed when, you must know how TLC evaluates
expressions, which is explained above in Sections 14.2 and 14.3. TLC usually
evaluates an expression many times, so inserting a Print expression in the spec-
ification can produce a lot of output. One way to limit the amount of output is
to put the Print expression inside an IF/THEN expression, so it is executed only
in interesting cases.

The TLC module next defines the operator Assert so Assert(val, out) equals
TRUE if val equals TRUE. If val does not equal TRUE, evaluating Assert(val, out)
causes TLC to print the value of out and to halt. (In this case, the value of
Assert(val, out) is irrelevant.)

Next, the operator JavaTime is defined to equal an arbitrary natural number.
However, TLC does not obey the definition of JavaTime when evaluating it.
Instead, evaluating JavaTime yields the time at which the evaluation takes place,
measured in milliseconds elapsed since 00:00 Universal Time on 1 January 1970,
modulo 23!, If TLC is generating states slowly, using the JavaTime operator
in conjunction with Print expressions can help you understand why. If TLC
is spending too much time evaluating an operator, you may be able to replace
the operator’s definition with an equivalent one that TLC can evaluate more
efficiently. (See Section 14.2.3 on page 234.)

The TLC module next defines the operators :> and @QQ so that the expression

di:>e; Q@ ... QQ d, :> e,

is the function f with domain {d, ..., d,} such that f[d;] = e;, fori =1,... n.
For example, the sequence { “ab”, “cd” ), which is a function with domain {1, 2},
can be written as

1:> "ab" @ 2 :> "cd"



250 CHAPTER 14. THE TLC MODEL CHECKER

TLC uses these operators to represent function values that it prints when evalu-
ating a Print expression or reporting an error. However, it usually prints values
the way they appear in the specification, so it usually prints a sequence as a
sequence, not in terms of the :> and Q@ operators.

Next comes the definition of Permutations(S) to be the set of all permu-
tations of S, if S is a finite set. The Permutations operator can be used to
specify a set of permutations for the SYMMETRY statement described in Sec-
tion 14.3.4 above. More complicated symmetries can be expressed by defining a
set {m1, ..., 7} of permutations, where each 7; is written as an explicit func-
tion using the :> and @QQ operators. For example, consider a specification of
a memory system in which each address is in some way associated with a pro-
cessor. The specification would be symmetric under two kinds of permutations:
ones that permute addresses associated with the same processor, and ones that
permute the processors along with their associated addresses. Suppose we tell
TLC to use two processors and four addresses, where addresses a1l and al12
are associated with processor pl and addresses a21 and a22 are associated with
processor p2. We can get TLC to take advantage of the symmetries by giving
it the following set of permutations as the symmetry set.

Permutations({all, al2}) U {pl:>p2 QQ p2:>pl
@Q all:> a2l QQ a2l1:>all
QQ ¢l2:>a22 QQ ¢22:>al2}

The permutation pl:>p2 QQ ... QQ ¢22:> al12 interchanges the processors
and their associated addresses. The permutation that just interchanges a21
and a22 need not be specified explicitly because it is obtained by interchang-
ing the processors, interchanging a11 and a12, and interchanging the processors
again.

The TLC module ends by defining the operator SortSeq, which can be used
to replace operator definitions with ones that TLC can evaluate more efficiently.
If s is a finite sequence and < is a total ordering relation on its elements, then
SortSeq(s, <) is the sequence obtained from s by sorting its elements accord-
ing to <. For example, SortSeq((3,1,3,8), >) equals (8,3,3,1). The Java
implementation of SortSeq allows TLC to evaluate it more efficiently than a
user-defined sorting operator. For example, here’s how we can use SortSeq to
define an operator FastSort to replace the Sort operator defined on page 235.

FastSort(S) =
LET MakeSeq[SS € SUBSET S] =
IF SS ={} THEN ()
A
ELSE LET s§ = CHOOSE ss € SS : TRUE
IN  Append(MakeSeq[SS \ {ss}], ss)
IN  SortSeq(MakeSeq[S], <)



14.5. HOW TO USE TLC

251

14.5 How to Use TLC
14.5.1 Running TLC

Exactly how you run TLC depends upon what operating system you are using
and how it is configured. You will probably type a command of the form

program_name options spec_file
where:
program_name is specific to your system. It might be java tlatk.TLC.

spec_file is the name of the file containing the TLA™ specification. Each TLA™
module named M that appears in the specification must be in a separate
file named M .tla. The extension .tla may be omitted from spec_file.

options is a sequence consisting of zero or more of the following options:

—-deadlock
Tells TLC not to check for deadlock. Unless this option is specified,
TLC will stop if it finds a deadlock—that is, a reachable state with
no successor state.

-simulate
Tells TLC to run in simulation mode, generating randomly chosen be-
haviors, instead of generating all reachable states. (See Section 14.3.2
above.)

-depth num
This option causes TLC to generate behaviors of length at most num
in simulation mode. Without this option, TLC will generate runs of
length at most 100. This option is meaningful only when the simulate
option is used.

-seed num

In simulation mode, the behaviors generated by TLC are determined
by the initial seed given to a pseudorandom number generator. Nor-
mally, the seed is generated randomly. This option causes TLC to
let the seed be num, which must be an integer from —263 to 263 — 1.
Running TLC twice in simulation mode with the same seed and aril
(see the aril option below) will produce identical results. This option
is meaningful only when using the simulate option.

—aril num
This option causes TLC to use num as the aril in simulation mode.
The aril is a modifier of the initial seed. When TLC finds an error
in simulation mode, it prints out both the initial seed and an aril



CHAPTER 14. THE TLC MODEL CHECKER

number. Using this initial seed and aril will cause the first trace gen-
erated to be that error trace. Adding Print expressions will usually
not change the order in which TLC generates traces. So, if the trace
doesn’t tell you what went wrong, you can try running TLC again on
just that trace to print out additional information.

-coverage num
This option causes TLC to print “coverage” information every num
minutes and at the end of its execution. For every action conjunct
that “assigns a value” to a variable, TLC prints the number of times
that conjunct has actually been used in constructing a new state. The
values it prints may not be accurate, but their magnitude can provide
useful information. In particular, a value of 0 indicates part of the
next-state action that was never “executed”. This might indicate an
error in the specification, or it might mean that the model TLC is
checking is too small to exercise that part of the action.

-recover run_id
This option causes TLC to start executing the specification not from
the beginning, but from where it left off at the last checkpoint. When
TLC takes a checkpoint, it prints the run identifier. (That identifier
is the same throughout an execution of TLC.) The value of run_id
should be that run identifier.

-cleanup
TLC creates a number of files when it runs. When it completes, it
erases all of them. If TLC finds an error, or if you stop it before it
finishes, TLC can leave some large files around. The cleanup option
causes TLC to delete all files created by previous runs. Do not use
this option if you are currently running another copy of TLC in the
same directory; if you do, it can cause the other copy to fail.

-difftrace num

When TLC finds an error, it prints an error trace. Normally, that
trace is printed as a sequence of complete states, where a state lists
the values of all declared variables. The difftrace option causes TLC
to print an abridged version of each state, listing only the variables
whose values are different than in the preceding state. This makes it
easier to see what is happening in each step, but harder to find the
complete state.

-terse
Normally, TLC completely expands values that appear in error mes-
sages or in the output from evaluating Print expressions. The terse
option causes TLC instead to print partially evaluated, shorter ver-
sions of these values.



14.5. HOW TO USE TLC

253

-workers num
Steps 3(b)—(d) of the TLC execution algorithm described on pages
241-242 can be speeded up on a multiprocessor computer by the
use of multiple threads. This option causes TLC to use num threads
when finding reachable states. There is no reason to use more threads
than there are actual processors on your computer. If the option is
omitted, TLC uses a single thread.

-config config_file
Specifies that the configuration file is named config_file, which must
be a file with extension .cfg. The extension .cfg may be omitted
from config_file. If this option is omitted, the configuration file is
assumed to have the same name as spec_file, except with the extension
.cfg.

-nowarning
There are TLAT expressions that are legal, but are sufficiently un-
likely that their presence probably indicates an error. For example,
the expression [f EXCEPT ![v] = e] is probably incorrect if v is not
an element of the domain of f. (In this case, the expression just
equals f.) TLC normally issues a warning when it encounters such
an unlikely expression; this option suppresses these warnings.

14.5.2 Debugging a Specification

When you write a specification, it usually contains errors. The purpose of run-
ning TLC is to find as many of those errors as possible. We hope an error in
the specification will cause TLC to report an error. The challenge of debugging
is to find the error in the specification that caused the error reported by TLC.
Before addressing this challenge, let’s first examine TLC’s output when it finds
No error.

TLC’s Normal Output

When you run TLC, the first thing it prints is the version number and creation
date:

TLC Version 2.12 of 26 May 2003

Always include this information when reporting any problems with TLC. Next,
TLC describes the mode in which it’s being run. The possibilities are

Model-checking

in which it is exhaustively checking all reachable states, or

TLC’s messages
may differ in for-
mat from the ones
described here.



254 CHAPTER 14. THE TLC MODEL CHECKER

Running Random Simulation with seed 1901803014088851111.

in which it is running in simulation mode, using the indicated seed. (Seeds
are described on pages 251-252.) Let’s suppose it’s running in model-checking
mode. If you asked TLC to do liveness checking, it will now print something
like

Implied-temporal checking--relative complexity = 8.

The time TLC takes for liveness checking is approximately proportional to the
relative complexity. Even with a relative complexity of 1, checking liveness takes
longer than checking safety. So, if the relative complexity is not small, TLC will
probably take a very long time to complete, unless the model is very small.
In simulation mode, a large complexity means that TLC will not be able to
simulate very many behaviors. The relative complexity depends on the number
of terms and the size of sets being quantified over in the temporal formulas.
TLC next prints a message like

Finished computing initial states:
4 states generated, with 2 of them distinct.

This indicates that, when evaluating the initial predicate, TLC generated 4
states, among which there were 2 distinct ones. TLC then prints one or more
messages such as.

Progress(9): 2846 states generated, 984 distinct states
found. 856 states left on queue.

This message indicates that TLC has thus far constructed a state graph G of G and U are de-
diameter? 9, that it has generated and examined 2846 states, finding 984 distinct ~scribed in Sec-
ones, and that the queue U of unexplored states contains 856 states. After g:gelf ﬁ'l on
running for a while, TLC generates these progress reports about once every five
minutes. For most specifications, the number of states on the queue increases
monotonically at the beginning of the execution and decreases monotonically
at the end. The progress reports therefore provide a useful guide to how much
longer the execution is likely to take.

When TLC successfully completes, it prints

Model checking completed. No error has been found.

It then prints something like:

2The diameter of G is the smallest number d such that every state in G can be reached from
an initial state by a path containing at most d states. It is the depth TLC has reached in its
breadth-first exploration of the set of states. When using multiple threads (specified with the
workers option), the diameter TLC reports may not be quite correct.



14.5. HOW TO USE TLC

255

Estimates of the probability that TLC did not check all
reachable states because two distinct states had the same
fingerprint:

calculated (optimistic): .000003

based on the actual fingerprints: .00007

As explained on page 244, these are TLC’s two estimates of the probability of a
fingerprint collision. Finally, TLC prints a message like

2846 states generated, 984 distinct states found,
0 states left on queue.
The state graph has diameter 15.

with the total number of states and the diameter of the state graph.
While TLC is running, it may also print a message such as

-- Checkpointing run states/99-05-20-15-47-55 completed

This indicates that it has written a checkpoint that you can use to restart TLC
in the event of a computer failure. (As explained in Section 14.5.3 on page 260,
checkpoints have other uses as well.) The run identifier

states/99-05-20-15-47-55

is used with the recover option to restart TLC from where the checkpoint was
taken. If only part of this message was printed—for example, because your
computer crashed while TLC was taking the checkpoint—there is a slight chance
that all the checkpoints are corrupted and you must start TLC again from the
beginning.

Error Reports

The first problems you find in your specification will probably be syntax errors.
TLC reports them with

ParseException in parseSpec:

followed by the error message generated by the Syntactic Analyzer. Chapter 12
explains how to interpret the analyzer’s error messages. Running your speci-
fication through the analyzer as you write it will catch a lot of simple errors
quickly.

As explained in Section 14.3.1 above, TLC executes three basic phases. In
the first phase, it checks assumptions; in the second, it computes the initial
states; and in the third, it generates the successor states of states on the queue
U of unexplored states. You can tell if it has entered the third phase by whether
or not it has printed the “initial states computed” message.



256 CHAPTER 14. THE TLC MODEL CHECKER

TLC’s most straightforward error report occurs when it finds that one of the
properties it is checking does not hold. Suppose we introduce an error into our
alternating bit specification (Figure 14.1 on pages 223 and 224) by replacing the
first conjunct of the invariant ABTypelnv with

A msgQ € Seq(Data)
TLC quickly finds the error and prints
Invariant ABTypelnv is violated

It next prints a minimal-length?® behavior that leads to the state not satisfying
the invariant: Note that TLC in-

dicates which part

The behavior up to this point is: of the next-state

STATE 1: <Initial predicate> aetien el e
/\ rBit = 0 step that produces
/\ sBit = 0 each state.

/\ ack = << >>

/\ rcvd = di

/\ sent = di

/\ sAck = 0

/\ msgQ = << >>

STATE 2: <Action at line 66 in AlternatingBit>

/\ rBit = 0
/\ sBit =1
/\ ackQ = << >>
/\ rcvd = di
/\ sent = di
/\ sAck =0

/\ msgQ = << << 1, d1 >> >>

TLC prints each state as a TLA™ predicate that determines the state. When
printing a state, TLC describes functions using the operators :> and @Q defined
in the TLC module. (See Section 14.4 on page 248.)

The hardest errors to locate are usually the ones detected when TLC is forced
to evaluate an expression that it can’t handle, or one that is “silly” because its
value is not specified by the semantics of TLAT. As an example, let’s introduce
a typical “off-by-one” error into the alternating bit protocol by replacing the
second conjunct in the definition of Lose with

Jiel.. Len(q) :
¢ =1]jel..(Len(q) —1)—1F j <17 THEN gq[j —1]
ELSE  q[j]]

3When using multiple threads, it is possible, though unlikely, for there to be a shorter
behavior that also violates the invariant.



14.5. HOW TO USE TLC

257

If ¢ has length greater than 1, then this defines Lose(q)[1] to equal ¢[0], which
is a nonsensical value if ¢ is a sequence. (The domain of a sequence ¢ is the
set 1...Len(¢), which does not contain 0.) Running TLC produces the error
message:

Error: Applying tuple
<< << 1, dl >>, << 1, d1 >> >
to integer O which is out of domain.

It then prints a behavior leading to the error. TLC finds the error when eval-
uating the next-state action to compute the successor states for some state s,
and s is the last state in that behavior. Had the error occurred when evaluating
the invariant or the implied-action, TLC would have been evaluating it on the
last state or step of the behavior.

Finally, TLC prints the location of the error:

The error occurred when TLC was evaluating the nested
expressions at the following positions:

0. Line 57, column 7 to line 59, column 60 in AlternatingBit
1. Line 58, column 55 to line 58, column 60 in AlternatingBit

The first position identifies the second conjunct of the definition of Lose; the
second identifies the expression ¢[j — 1]. This tells you that the error occurred
while TLC was evaluating ¢[j — 1], which it was doing as part of the evaluation
of the second conjunct of the definition of Lose. You must infer from the printed
trace that it was evaluating the definition of Lose while evaluating the action
LoseMsg. In general, TLC prints a tree of nested expressions—higher-level ones
first. It seldom locates the error as precisely as you would like; often it just
narrows it down to a conjunct or disjunct of a formula. You may need to insert
Print expressions to locate the problem. See the discussion on page 259 for
further advice on locating errors.

14.5.3 Hints on Using TLC Effectively

Start small

The constraint and the assignment of values to the constant parameters define
a model of the specification. How long it takes TLC to check a specification
depends on the specification and the size of the model. Running on a 600MHz
work station, TLC finds about 700 distinct reachable states per second for the
alternating bit protocol specification. For some specifications, the time it takes
TLC to generate a state grows with the size of the model; it can also increase
as the generated states become more complicated. For some specifications run
on larger models, TLC finds fewer than one reachable state per second.



258 CHAPTER 14. THE TLC MODEL CHECKER

You should always begin testing a specification with a tiny model, which
TLC can check quickly. Let sets of processes and of data values have only one
element; let queues be of length one. A specification that has not been tested
probably has lots of errors. A small model will quickly catch most of the simple
ones. When a very small model reveals no more errors, you can then run TLC
with larger models to try to catch more subtle errors.

One way to figure out how large a model TLC can handle is to estimate
the approximate number of reachable states as a function of the parameters.
However, this can be hard. If you can’t do it, increase the model size very
gradually. The number of reachable states is typically an exponential function
of the model’s parameters; and the value of a’ grows very fast with increasing
values of b.

Many systems have errors that will show up only on models too large for
TLC to check exhaustively. After having TLC model check your specification
on as large a model as your patience allows, you can run it in simulation mode
on larger models. Random simulation is not an effective way to catch subtle
errors, but it’s worth trying; you might get lucky.

Be suspicious of success

Section 14.3.5 on page 247 explains why you should be suspicious if TLC does
not find a violation of a liveness property; the finite model may mask errors.
You should also be suspicious if TLC finds no error when checking safety prop-
erties. It’s very easy to satisfy a safety property by simply doing nothing. For
example, suppose we forgot to include the SndNew Value action in the alternat-
ing bit protocol specification’s next-state action. The sender would then never
try to send any values. But the resulting specification would still satisfy the
protocol’s correctness condition, formula ABCSpec of module ABCorrectness.
(The specification doesn’t require that values must be sent.)

The coverage option described on page 252 provides one way to catch such
problems. Another way is to make sure that TLC finds errors in properties
that should be violated. For example, if the alternating bit protocol is sending
messages, then the value of sent should change. You can verify that it does
change by checking that TLC reports a violation of the property

Vd € Data : (sent = d) = O(sent = d)

A good sanity check is to verify that TLC finds states that are reached only
by performing a number of operations. For example, the caching memory specifi-
cation of Section 5.6 should have reachable states in which a particular processor
has both a read and two write operations in the mem@ queue. Reaching such
a state requires a processor to perform two writes followed by a read to an un-
cached address. We can verify that such a state is reachable by having TLC find
a violation of an invariant declaring that there aren’t a read and two writes for



14.5. HOW TO USE TLC

259

the same processor in mem@. (Of course, this requires a model in which mem@
can be large enough.) Another way to check that certain states are reached is by
using the Print operator inside an IF/THEN expression in an invariant to print
a message when a suitable state is reached.

Let TLC help you figure out what went wrong

When TLC reports that an invariant is violated, it may not be obvious what
part of the invariant is false. If you give separate names to the conjuncts of
your invariant and list them separately in the configuration file’s INVARIANT
statement, TLC will tell you which conjunct is false. However, it may be hard
to see why even an individual conjunct is false. Instead of spending a lot of time
trying to figure it out by yourself, it’s easier to add Print expressions and let
TLC tell you what’s going wrong.

If you rerun TLC from the beginning with a lot of Print expressions, it will
print output for every state it checks. Instead, you should start TLC from the
state in which the invariant is false. Define a predicate, say ErrorState, that
describes this state, and modify the configuration file to use ErrorState as the
initial predicate. Writing the definition of ErrorState is easy—just copy the last
state in TLC’s error trace.*

You can use the same trick if any safety property is violated, or if TLC reports
an error when evaluating the next-state action. For an error in a property of
the form O[A],, rerun TLC using the next-to-last state in the error trace as the
initial predicate, and using the last state in the trace, with the variable names
primed, as the next-state action. To find an error that occurs when evaluating
the next-state action, use the last state in the error trace as the initial predicate.
(In this case, TLC may find several successor states before reporting the error.)

If you have introduced model values in the configuration file, they will un-
doubtedly appear in the states printed by TLC. So, if you are to copy those
states into the module, you will have to declare the model values as constant
parameters, and then assign to each of these parameters the model value of
the same name. For example, the configuration file we used for the alternating
bit protocol introduces model values d1 and d2. So, we would add to module
MCAlternatingBit the declaration

CONSTANTS d1, d2
and add to the CONSTANT statement of the configuration file the assignments
dli = d1 d2 = d2

which assign to the constant parameters d1 and d2 the model values d1 and 42,
respectively.

4Defining ErrorState is not so easy if you use the difftrace option, which is a reason for not
using that option.



260 CHAPTER 14. THE TLC MODEL CHECKER

Don’t start over after every error

After you've eliminated the errors that are easy to find, TLC may have to run
for a long time before finding an error. Very often, it takes more than one try
to fix an error properly. If you start TLC from the beginning after correcting an
error, it may run for a long time only to report that you made a silly mistake
in the correction. If the error was discovered when taking a step from a correct
state, then it’s a good idea to check your correction by starting TLC from that
state. As explained above, you do this by defining a new initial predicate that
equals the state printed by TLC.
Another way to avoid starting from scratch after an error is by using check-
points. A checkpoint saves the current state graph G and queue U of unexplored
states. It does not save any other information about the specification. You can
restart TLC from a checkpoint even if you have changed the specification, as
long as the specification’s variables and the values that they can assume haven’t
changed. More precisely, you can restart from a checkpoint iff the view of any The view and
state computed before the checkpoint has not changed, and the symmetry set symmetry set are
is the same. When you correct an error that TLC found after running for a fZ%ngdaS;Slzcgan
long time, you may want to use the recover option (page 252) to continue TLC yegpectively.
from the last checkpoint instead of having it recheck all the states it has already
checked.?

Check everything you can

Verify that your specification satisfies all the properties you think it should.
For example, you shouldn’t be content to check that the alternating bit pro-
tocol specification satisfies the higher-level specification ABCSpec of module
ABCorrectness. You should also check lower-level properties that you expect it
to satisfy. One such property, revealed by studying the algorithm, is that there
should never be more than two different messages in the msg@ queue. So, we
can check that the following predicate is an invariant.

Cardinality( {msgQ[i] : i €1 .. Len(msgQ) }) < 2

(We must add the definition of Cardinality to module MCAlternatingBit by
adding FiniteSets to its EXTENDS statement.)

It’s a good idea to check as many invariance properties as you can. If you
think that some state predicate should be an invariant, let TLC test if it is.
Discovering that the predicate isn’t an invariant may not reveal an error, but it
will probably teach you something about your specification.

5Some states in the graph G may not be saved by a checkpoint; they will be rechecked when
restarting from the checkpoint.



14.5. HOW TO USE TLC 261

Be creative

Even if a specification seems to lie outside the realm of what it can handle, TLC

may be able to help check it. For example, suppose a specification’s next-state

action has the form 3n € Nat : A(n). TLC cannot evaluate quantification over

an infinite set, so it apparently can’t deal with this specification. However, we

can enable TLC to evaluate the quantified formula by using the configuration

file’s CONSTANT statement to replace Nat with the finite set 0 .. n, for some n. Replacement is
This replacement profoundly changes the specification’s meaning. However, it explained in Sec-
might nonetheless allow TLC to reveal errors in the specification. Never forget tion 14.2.3.
that your objective in using TLC is not to verify that a specification is correct;

it’s to find errors.

Use TLC as a TLA* Calculator

Misunderstanding some aspect of TLAY can lead to errors in your specification.
Use TLC to check your understanding of TLA™ by running it on small examples.
TLC checks assumptions, so you can turn it into a TLA™ calculator by having
it check a module with no specification, only ASSUME statements. For example,
if g equals

[f EXCEPT ![d] = ey, ![d] = e2]

what is the value of g[d]? You can ask TLC by letting it check a module
containing

ASSUME LET f [f€l..10 1]
g [f EXCEPT ![2] =3, ![2] = 4]
IN  Print(g[2], TRUE)

A
A

You can have it verify that (F = G) = (-F V G) is a tautology by checking:
ASSUME Y F, G € BOOLEAN : (F = G)=(-FV G)

TLC can even look for counterexamples to a conjecture. Can every set be written
as the disjunction of two different sets? Check it for all subsets of 1 .. 4 with:

ASSUME VS € SUBSET (1 .. 4) :
IF 3T7T,U €SUBSET (1 ..4) : (TZU)A(S=TUVU)
THEN TRUE
ELSE Print(S, TRUE)

When TLC is run just to check assumptions, it may need no information from
the configuration file. But you must provide a configuration file, even if that file
is empty.



262 CHAPTER 14. THE TLC MODEL CHECKER

14.6 What TLC Doesn’t Do

We would like TLC to generate all the behaviors that satisfy a specification. But
no program can do this for an arbitrary specification. I have already mentioned
some limitations of TLC. There are other limitations that you may stumble on.
One of them is that the Java classes that override the Naturals and Integers
modules handle only numbers in the interval —231.. (23! — 1); TLC reports an
error if any computation generates a value outside this interval.

TLC can’t generate all behaviors satisfying an arbitrary specification, but it
might achieve the easier goal of ensuring that every behavior it does generate
satisfies the specification. However, for reasons of efficiency, TLC doesn’t always
meet this goal. It deviates from the semantics of TLAT in two ways.

The first deviation is that TLC doesn’t preserve the precise semantics of
CHOOSE. As explained in Section 16.1, if S equals T, then CHOOSE z € S: P
should equal CHOOSE z € T : P. However, TLC guarantees this only if S and T
are syntactically the same. For example, TLC might compute different values
for the two expressions

CHOOSE z € {1,2,3} : © <3 CHOOSE z € {3,2,1} : <3

A similar violation of the semantics of TLA™T exists with CASE expressions, whose
semantics are defined (in Section 16.1.4) in terms of CHOOSE.

The second part of the semantics of TLA™ that TLC does not preserve is
the representation of strings. In TLAT, the string “abc” is a three-element
sequence—that is, a function with domain {1, 2, 3}. TLC treats strings as
primitive values, not as functions. It thus considers the legal TLAT expression
“abc”[2] to be an error.

14.7 The Fine Print

This section describes in detail two aspects of TLC that were sketched above:
the grammar of the configuration file, and the precise definition of TLC values.

14.7.1 The Grammar of the Configuration File

The grammar of TLC’s configuration file is described in the TLA™ module
ConfigFileGrammar in Figure 14.6 on the next page. More precisely, the set of
sentences ConfigGrammar.File, where ConfigGrammar is defined in the module,
describes all syntactically correct configuration files from which comments have
been removed. The ConfigFileGrammar module extends the BNFGrammars
module, which is explained above in Section 11.1.4 (page 179).

Here are some additional restrictions on the configuration file that are not
specified by module ConfigFileGrammar. There can be at most one INIT and



14.7. THE FINE PRINT 263

MODULE ConfigFileGrammar
EXTENDS BNFGrammars

LEXEMES
Letter = OneOf (“abedefghijklmnopgrstuvwxyz_ABCDEFGHIJKLMNOPQRSTUVWXYZ”)
Num = OneOf (“0123456789”)
LetterOrNum = Letter U Num
AnyChar = LetterOrNum U OneOf(“~!1@#\$% &+ —+=|(){}[].:;"'<>.7/")
SingularKW = {“SPECIFICATION”, “INIT”, “NEXT”, “VIEW”, “SYMMETRY” }
PluralKW =

{“CONSTRAINT”, “CONSTRAINTS”, “ACTION-CONSTRAINT”, “ACTION-CONSTRAINTS”,
“INVARIANT”, “INVARIANTS”, “PROPERTY”, “PROPERTIES” }

£ SingularKW U PluralKW U {“CONSTANT”, “CONSTANTS”}
Anyldent = LetterOrNum* & Letter & LetterOrNum*
Ident = Anyldent \ Keyword

Keyword

ConfigGrammar = THE BNF GRAMMAR
LET P(Q) 2
A G.File := G.Statement™
A G.Statement ::=  Tok(SingularKW') & Tok(Ident)
| Tok(PluralKW) & Tok(Ident)*
| Tok({“CONSTANT”, “CONSTANTS”})
& (G.Replacement | G.Assignment)*
A G.Replacement ::= Tok(Ident) & tok(“<—=") & Tok(Anyldent)
A G.Assignment = Tok(Ident) & tok(“=") & G.IdentValue

A G.IdentValue = Tok(Anyldent) | G.Number | G.String
| tok(“{”)
& (Nil | G.IdentValue & (tok(“)) & G.IdentValue)*)
& tok(“}”)

A G.Number ::= (Nil | tok(“=")) & Tok(Num™)
A G.String = tok(“"") & Tok(AnyChar*) & tok(*"")
IN  LeastGrammar(P)

Figure 14.6: The BNF grammar of the configuration file.



264 CHAPTER 14. THE TLC MODEL CHECKER

one NEXT statement. There can be one SPECIFICATION statement, but only
if there is no INIT or NEXT statement. (See page 243 in Section 14.3.1 for
conditions on when these statements must appear.) There can be at most one
VIEW statement and at most one SYMMETRY statement. Multiple instances of
other statements are allowed. For example, the two statements

INVARIANT Invi
INVARIANT Inv2 Inv3

specify that TLC is to check the three invariants Inv1l, Inv2, and Inv3. These
statements are equivalent to the single statement

INVARIANT Invil Inv2 Inv3

14.7.2 Comparable TLC Values

Section 14.2.1 (page 230) describes TLC values. That description is incomplete
because it does not define exactly when values are comparable. The precise
definition is that two TLC values are comparable iff the following rules imply
that they are:

1. Two primitive values are comparable iff they have the same value type.

This rule implies that “abc” and “123” are comparable, but “abc” and 123
are not.

2. A model value is comparable with any value. (It is equal only to itself.)

3. Two sets are comparable if they have different numbers of elements, or if
they have the same numbers of elements and all the elements in one set
are comparable with all the elements in the other.

This rule implies that {1} and {“a”, “b”} are comparable and that {1,2}
and {2,3} are comparable. However, {1,2} and {“a”, “b”} are not com-
parable.

4. Two functions f and ¢ are comparable iff (i) their domains are comparable
and (ii) if their domains are equal, then f[z] and g[z] are comparable for
every element z in their domain.

This rule implies that (1,2) and (“a”, “b”, “c”) are comparable, and that
(1,“a”) and (2, “bc”) are comparable. However, (1,2) and (“a”, “b”) are
not comparable.



Part 1V

The TLA T Language

265






267

This part of the book describes TLAT in detail. Chapter 15 explains the
syntax; Chapters 16 and 17 explain the semantics; and Chapter 18 contains
the standard modules. Almost all of the TLA™ language has already been
described—mainly through examples. In fact, most of the language was de-
scribed in Chapters 1-6. This part gives complete specification of the language.

A completely formal specification of TLA' would consist of a formal defi-
nition of the set of legal (syntactically well-formed) modules, and a precisely-
defined meaning operator that assigns to every legal module M its mathematical
meaning [M]. Such a specification would be quite long and of limited interest.
Instead, I have tried to provide a fairly informal specification that is detailed
enough to show mathematically sophisticated readers how they could write a
completely formal one.

These chapters are heavy going, and few people will want to read them
completely. However, I hope they can serve as a reference manual for anyone
who reads or writes TLAT specifications. If you have a question about the finer
details of the syntax or the meaning of some part of the language, you should
be able to find the answer here.

Tables 1-8 on the next page through page 273 provide a tiny reference man-
ual. Tables 1-4 very briefly describe all the built-in operators of TLAT. Table 5
lists all the user-definable operator symbols, and indicates which ones are al-
ready used by the standard modules. It’s is a good place to look when choosing
notation for your specification. Table 6 gives the precedence of the operators; it
is explained in Section 15.2.1. Table 7 lists all operators defined by the standard
modules. Finally, Table 8 shows how to type any symbol that doesn’t have an
obvious ASCII equivalent.



268

Logic
A T —
TRUE FALSE BOOLEAN [the set {TRUE, FALSE}]
Ve:p dz:p VzeS:p ® FzelS:p O
CHOOSE z : p [An z satisfying p] CHOOSE z € S : p [An z in S satisfying p]

Sets
= # € ¢ U N C \ [set difference]
{e1,...,en} [Set consisting of elements e;]
{z €S :p} @ [Setof elements x in S satisfying p]
{e : £ €8} @ [Set of elements e such that z in 5]

SUBSET S [Set of subsets of 5]
UNION S [Union of all elements of S|
Functions
fle] [Function application]
DOMAIN f [Domain of function f]
[xteS el ® [Function f such that f[z] = e for z € 5]
[S — T] [Set of functions f with f[z] € T for z € 5]
[f EXCEPT !le;] = ea] ® [Function f equal to f except ?[el] = eo]
Records
e.h The h-field of record e]

[

[h1 +— e1,...,hy +— e,] [The record whose h; field is e;]

[h1 @ S1,...,hy : Su]  [Set of all records with h; field in S;]
[

[r EXCEPT !.h = €] ®  [Record T equal to r except 7.h = e]

Tuples
eli] [The i*® component of tuple e]
(e1,...,€n) [The n-tuple whose i** component is e;]

S1 X ...x 8, [The set of all n-tuples with i*" component in S]

Strings and Numbers

“cp ... Cp” [A literal string of n characters]

STRING [The set of all strings]
dy...dp, di...dy.dpy1...d, [Numbers (where the d; are digits)]

(1) z € S may be replaced by a comma-separated list of items v € S, where v is either a
comma-separated list or a tuple of identifiers.

(2) z may be an identifier or tuple of identifiers.

(3) ![e1] or !.h may be replaced by a comma separated list of items !aj - - - an, where each
a; is [e;] or .hy.

Table 1: The constant operators.



269

IF p THEN ej ELSE eo [e1 if p true, else es]

CASE p1 — e 0 ... Op, — e, [Some e; such that p; true]

CASE p; — e; O ... Op, — e, OOTHER — e [Some e; such that p; true,
or e if all p; are false]

LET dp 2 er ... dp 2 en IN e [ein the context of the definitions]

A p1 [the conjunction pi1 A ... A py] V p1 [the disjunction py V...V p,]

N Pn V' pn

Table 2: Miscellaneous constructs.

e [The value of e in the final state of a step]
4], AV (¢ = - )
(A). [AA (€ # )
ENABLED A [An A step is possible]
UNCHANGED e [/ = €]
A-B [Composition of actions]
Table 3: Action operators.
aor F is always true]
OF F is eventually true]
WF,(A) [Weak fairness for action A]

[
[
[
SF.(A4) [Strong fairness for action A]
[
[
[
[

F~ G [F leads to G]

F > G [F guarantees G]

Jdx : F [Temporal existential quantification (hiding).]
Vz : F [Temporal universal quantification.]

Table 4: Temporal operators.



270

Infix Operators
@

+ (1) _ (1 x D / o ® ++
-~ (1 0o/ (1) ~ (1,4) (1) __
: % .
©® ©o® g % ® ok
< (1) > (1) S (1) Z (1) ml //
< >~ = = U o
< > <: i >© & &&
C 3 cC® 3 \ |
C D) D * %%
- . = - . .
~ ~ =~ & $ $$
_ — - = ?7? I
x ) W O Q@ ©

Postfix Operators ("
~y “y ~

Prefix Operator
_®

(1) Defined by the Naturals, Integers, and Reals modules.
(2) Defined by the Reals module.

(3) Defined by the Sequences module.

(4) =~y is printed as z¥.

(5) Defined by the Bags module.

(6) Defined by the TLC module.

(7) e~+ is printed as e™, and similarly for “x and ~#.

(8) Defined by the Integers and Reals modules.

Table 5: User-definable operator symbols.



271

Prefix Operators

= 4-4 O 4-15 UNION 88
ENABLED 4-15 & 4-15 DOMAIN  9-9
UNCHANGED 4-15 SUBSET  &8-8 — 12-12

Infix Operators

= 1-1 < 55 <: 77 e 11-11(a)
22 < 5D \ 8-8 —  11-11(a)
= 22 < 55 n 88 (a) ——  11-11(a)
~ 22 < 55 U 88 (a) & 13-13(a)
A 3-3(a) x 55 9-9 &&  13-13(a)
vV 3-3(a) ~ 59D .99 ®  13-13(a)
# 55 ~ 55 913 © 13-13

4 55 C 55 ##  9-13 (a) ® 13-13(a)
n= 55 C 55 $ 9-13 (a) * 13-13 (a)
= 55 I 55 $8  9-13 (a) % 13-13 (a)
< 55 J 55 77 9-13 (a) / 13-13
= 55H C 55 m  9-13 (a) // 1313
= 55 c 55 U 9-13 (a) O 13-13(a)
> 55 = 5 W 9-13 (a) ° 13-13 (a)
~ 55 = 55 l 9-14 = 13-13
= 55 D> 55 @& 10-10(a) o 13-13 (a)
= 55 D + 10-10(a) *  13-13(a)
= 55 F 55 +4+ 10-10(a) - 14-14

> 55 E 55 % 10-11 o 14-14
> 59 AW 5-14 (a) %% 10-11(a) L@ 1717 (a)
€ 59D @@ 6-6 (a) | 10-11 (a)

¢ 55 > 7T I 10-11 (a)

Postfix Operators
“+  15-15 “*  15-15 “#  15-15 " 1515

(1) Action composition (\cdot).
(2) Record field (period).

Table 6: The precedence ranges of operators. The relative precedence of two
operators is unspecified if their ranges overlap. Left-associative operators are
indicated by (a).



272

Modules Naturals, Integers, Reals
+ - * /@ ~ 3 .. Nat Real ®
- % < > < > Int™  Infinity ®

(1) Only infix — is defined in Naturals.  (3) Exponentiation.
(2) Defined only in Reals module. (4) Not defined in Naturals module.

Module Sequences

) Head SelectSeq SubSeq
Append Len Seq Tail

Module FiniteSets
IsFiniteSet Cardinality

Module Bags

&) Bagln CopiesIn SubBag
S] BagOfAll EmptyBag
C BagToSet IsABag

BagCardinality BagUnion SetToBag

Module RealTime
RTBound RTnow now (declared to be a variable)

Module TLC
> Q@ Print Assert JavaTime Permutations
SortSeq

Table 7: Operators defined in the standard modules.



273

WHOROOS DD | T TIMmnNINIAAAIANATM T >

/\ or \land

~ or \lnot or \neg
\in

<<

<

\leq or =< or <=
\11

\prec

\preceq
\subseteq
\subset
\sgsubset
\sgsubseteq

|-

|=

->

\cap or \intersect
\sqcap

(+) or \oplus
(=) or \ominus
(.) or \odot
(\X) or \otimes
(/) or \oslash
\E

\EE
]v ] _v
F, WF_v
- (3)
________ (3)

K TXxehCT AL LHUUIUIYY YIVV TR <

\/ or \lor
<=> or \equiv
\notin

>>

>

\geq or >=
\gg

\succ
\succeq
\supseteq
\supset
\sqgsupset
\sgsupseteq
-1

=|

<_

\cup or \union
\sqcup
\uplus

\X or \times
\wr

\propto

"S" (1)

\A

\AA

>>_v

SF_v

= =

£ ==

%  # or /=

] d

&<

~ >

R

— | ->

+ \div
\cdot

o \o or \circ

° \bullet

* \star

(O \bigcirc

~  \sim

~  \simeq

= \asymp

R \approx

=~ \cong

= \doteq

v xy @

2T xt+ @

r* x"x @

o xt# @

/ b}

(1) s is a sequence of characters. See Section 16.1.10 on page 307.
(2) =z and y are any expressions.
(3) a sequence of four or more - or = characters.

Table 8: The ASCII representations of typeset symbols.



274




Chapter 15

The Syntax of TLA™

This book uses the Ascil version of TLA*—the version based on the AscCII
character set. One can define other versions of TLAT that use different sets of
characters. A different version might allow an expression like Q[a]o( “¢a”). Since
mathematical formulas look pretty much the same in most languages, the basic
syntax of all versions of TLA™T should be the same. Different versions would
differ in their lexemes and in the identifiers and strings they allow. This chapter
describes the syntax of the ASCII version, the only one that now exists.

The term syntax has two different usages, which I will somewhat arbitrar-
ily attribute to mathematicians and computer scientists. A computer scientist
would say that {a, a) is a syntactically correct TLA™T expression. A mathemati-
cian would say that the expression is syntactically correct iff it appears in a
context in which « is defined or declared. A computer scientist would call this
requirement a semantic rather than a syntactic condition. A mathematician
would say that {a, a) is meaningless if a isn’t defined or declared, and one can’t
talk about the semantics of a meaningless expression. This chapter describes the
syntax of TLAT, in the computer scientist’s sense of syntax. The “semantic”
part of the syntax is specified in Chapters 16 and 17.

TLAT is designed to be easy for humans to read and write. In particu-
lar; its syntax for expressions tries to capture some of the richness of ordinary
mathematical notation. This makes a precise specification of the syntax rather
complicated. Such a specification has been written in TLA™, but it’s quite de-
tailed and you probably don’t want to look at it unless you are writing a parser
for the language. This chapter gives a less formal description of the syntax that
should answer any questions likely to arise in practice. Section 15.1 specifies
precisely a simple grammar that ignores some aspects of the syntax such as op-
erator precedence, indentation rules for A and V lists, and comments. These
other aspects are explained informally in Section 15.2. Sections 15.1 and 15.2
describe the grammar of a TLAT module viewed as a sequence of lexemes, where



276 CHAPTER 15. THE SYNTAX OF TLA*

a lexeme is a sequence of characters such as | -> that forms an atomic unit of the
grammar. Section 15.3 describes how the sequence of characters that you actu-
ally type are turned into a sequence of lexemes. It includes the precise syntax
for comments.

This chapter describes the AscII syntax for TLA™ specifications. Typeset
versions of specifications appear in this book. For example, the infix operator
typeset as < is represented in ASCII as \prec. Table 8 on page 273 gives the
correspondence between the ASCIT and typeset versions of all TLAT symbols for
which the correspondence may not be obvious.

15.1 The Simple Grammar

The simple grammar of TLA T is described in BNF. More precisely, it is specified
below in the TLA' module TLAPIlusGrammar. This module uses the opera-
tors for representing BNF grammars defined in the BNFGrammars module of
Section 11.1.4 (page 179). Module TLAPlusGrammar contains comments de-
scribing how to read the specification as an ordinary BNF grammar. So, if you
are familiar with BNF grammars and just want to learn the syntax of TLAT,
you don’t have to understand how the TLA™T operators for writing grammars
are defined. Otherwise, you should read Section 11.1.4 before trying to read the
following module.

MODULE TLAPIlusGrammar
EXTENDS Naturals, Sequences, BNFGrammars

This module defines a simple grammar for TLAT that ignores many aspects of the language,
such as operator precedence and indentation rules. I use the term sentence to mean a se-
quence of lexemes, where a lexeme is just a string. The BNFGrammars module defines the
following standard conventions for writing sets of sentences: L | M means an L or an M,
L* means the concatenation of zero or more Ls, and Lt means the concatenation of one or
more Ls. The concatenation of an L and an M is denoted by L & M rather than the cus-
tomary juxtaposition L M. Nil is the null sentence, so Nil & L equals L for any L.

A token is a one-lexeme sentence. There are two operators for defining sets of tokens: if s is
a lexeme, then tok(s) is the set containing the single token (s); and if S is a set of lexemes,
then Tok(S) is the set containing all tokens (s) for s € S. In comments, I will not distin-
guish between the token (s) and the string s.

We begin by defining two useful operators. First, a CommalList(L) is defined to be an L or a
sequence of Ls separated by commas.

CommalList(L) = L & (tok(“”) & L)*

Next, if ¢ is a character, then we define AtLeast4(“c”) to be the set of tokens consisting of 4
or more c’s.

AtLeastd(s) = Tok({sosos} &{s}*)




15.1. THE SIMPLE GRAMMAR

277

‘We now define some sets of lexemes. First is Reserved Word, the set of words that can’t be
used as identifiers. (Note that BOOLEAN, TRUE, FALSE, and STRING are identifiers that are
predefined.)

ReservedWord =

{“ASSUME”, “ELSE”, “LOCAL”, “UNION”,
“ASSUMPTION”, “ENABLED”, “MODULE”,  “VARIABLE”,
“AXIOM”, “EXCEPT”,  “OTHER”, “VARIABLES”,
LLCASE?’7 LLEXTENDS??, “SF_W, “WF_77,
“CHOOSE”, “IF7, “SUBSET”,  “WITH",
“CONSTANT”,  “IN”, “THEN",

“CONSTANTS”, “INSTANCE”, “THEOREM”,

“DOMAIN”, “LET”, “UNCHANGED” }

Next are three sets of characters—more precisely, sets of 1-character lexemes. They are the
sets of letters, numbers, and characters that can appear in an identifier.

Letter =
OneOf (“abcdefghijkimnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ”)

OneOf (“0123456789" )
Letter U Numeral U {“_"}

Numeral

NameChar

e

We now define some sets of tokens. A Name is a token composed of letters, numbers, and
_ characters that contains at least one letter, but does not begin with “WF_” or “SF_" (see
page 290 for an explanation of this restriction). It can be used as the name of a record field
or a module. An Identifier is a Name that isn’t a reserved word.
IN
Name = Tok((NameChar* & Letter & NameChar™)
\ ({“WF_", “SF_"} & NameChar™))

Identifier = Name \ Tok(Reserved Word)

An IdentifierOrTuple is either an identifier or a tuple of identifiers. Note that ( ) is typed as
<< >>.

IdentifierOrTuple =
Identifier | tok(“<<”) & CommalList(Identifier) & tok(“>>")

A Number is a token representing a number. You can write the integer 63 in the following
ways: 63, 63.00, \b111111 or \B111111 (binary), \o77 or \077 (octal), or \h3f, \H3f, \h3F,
or \H3F (hexadecimal).

NumberLezeme = Numeralt
| (Numeral* & {“.”} & Numeral™)
| {Ln\bn7 LL\B??} & Oneof(440177)+
| {“\o”,“\O”} & OneOf(“01234567")"
| {“\h”,“\H"} & OneOf(“0123456789abcdefABCDEF”)*

Number = Tok(NumberLezeme)

A String token represents a literal string. See Section 16.1.10 on page 307 to find out how
special characters are typed in a string.



278 CHAPTER 15. THE SYNTAX OF TLA*

String = Tok({“"”} & STRING & {“""})

We next define the sets of tokens that represent prefix operators (like O), infix operators
(like +), and postfix operators (like prime (’)). See Table 8 on page 273 to find out what
symbols these ASCII strings represent.

Pre'ﬁxOp é Tok({ 44_777 “~777 “\ant”, éé\neg”’ “[]77, “< >”’ LGDOMAIN”,
“ENABLED”, “SUBSET”, “UNCHANGED”, “UNION”})

A
InfixOp =
Tok( { “ ! ! ” , 44#77 , LL##” , LL$’7 , LL$$77 , “%7’ , “%%77 ,
LL&”’ 44&&77’ LL(+)77’ LL(_)”’ Lé(')7’7 “(/)77’ “(\x’)”7
Y , e , wyn ; gy ) w_» U_goyn ; w__»

) )
W I”’ LL‘ .7’, 43 777 LC/”7 LL//”7 Cé/=77, “/\77,

« 7 « » “ 7 [P « »” « o (1)
o= i= > <, <7, <=>", =

.. ) . ? )

“=<” LL=>77 “= | b2 LL>’7 LL>=77 “777 “??77
K Y ) ) 9, * ) ot )

LL@@” , 44\77 , LL\/” , LLA”’ W~ A”’ [13 | 9 , [13 | ) ,
Wl =" 13 ” U~ry” W

I = | I ) > ) L)
“\Napprox”, “\geq”, “\oslash”, “\sqsupseteq”,
“\asymp” , u\ggn , “\otimes” , “\star” ,
“\bigcirc”, “\in”, “\prec”, “\subset”,
“Nbullet”, “Nintersect”, “\preceq”, “\subseteq”,
LL\Cap”’ “\Iand”, “\propto”, “\SUCC”,
“\CdOt”, cc\leq777 “\sim”, “\SUCCGq”,
“\circ” , “ | , “\simeq” , “\supset” ,
“\cong”, “\lor”, “\sqcap”, “\supseteq”,
“\Cup”} “\077’ LL\chup”’ “\union”’
“\div”, “\Nodot”, “\sqsubset”, “\uplus”,
“\doteq”, “Nominus”, “\sqsubseteq”, “ANwr”,
“\equiv”, “\oplus”, “\sqsupset” 1)

Postﬁxop é Tok({“'\_'_”’ ééﬁ*”’ (LA#”7 44)77})

| |
r 1

Formally, the grammar TLAPlusGrammar of TLAT is the smallest grammar satisfying the
BNF productions below.

TLAPlusGrammar =

LET P(G) =
Here is the BNF grammar. Terms that begin with “G.”, like G.Module, represent nontermi-
nals. The terminals are sets of tokens, either defined above or described with the operators
tok and Tok. The operators AtLeast4 and CommalList are defined above.

A G.Module = AtLeast4(“=") & tok(“MODULE”) & Name & AtLeast4(“-")
& (Nil | (tok(“EXTENDS”) & CommalList(Name)))
& (G.Unit)*

& AtLeast4(“=")



15.1. THE SIMPLE GRAMMAR

279

A G.Unit =

G. VariableDeclaration

G.ConstantDeclaration

(Nil | tok(“LOCAL™)) & G.OperatorDefinition
(Nil | tok(“LOCAL”)) & G.FunctionDefinition
(Nil | tok(“LOCAL”)) & G.Instance

(Nil | tok(“LOCAL™)) & G.ModuleDefinition
G.Assumption

G.Theorem

G.Module

AtLeast4(“=")

A G.VariableDeclaration ::=

Tok({“VARIABLE”, “VARIABLES"}) & CommaList(Identifier)

A G.ConstantDeclaration ::=

Tok({“CONSTANT?”, “CONSTANTS”}) & CommaList(G.OpDecl)

A G.OpDecl ::= Identifier
| Identifier & tok(“(”) & CommalList(tok(“_")) & tok(“)”)
|  PrefixOp & tok(“_")
| tok(“_") & InfizOp & tok(“_")
| tok(“_”) & PostfizOp
A G.OperatorDefinition ::= ( G.NonFizLHS

Identifier & InfixOp & Identifier

| PrefixOp & Identifier
|

| Identifier & PostfizOp )
& tok(“==")
& G.Expression

A G.NonFizLHS ::=
Identifier

& (
|

>

Nil
tok(“(”) & CommalList( Identifier | G.OpDecl) & tok(“)”))

G .FunctionDefinition 1=

Identifier

& tok(“[”) & CommalList(G.QuantifierBound) & tok(*1”)

& tok(“==")
& G.Ezxpression



280 CHAPTER 15. THE SYNTAX OF TLA*

A G.QuantifierBound ::= ( IdentifierOrTuple | CommalList(Identifier) )
& tok(“N\in”)
&  G.FEzpression
A G.Instance ::= tok(“INSTANCE”)
& Name

& (Nil | tok(“WITH”) & CommalList(G.Substitution) )

A G.Substitution = (Identifier | PrefixOp | InfixOp | PostfizOp)
& tok(“<_”)
& G.Argument
A G.Argument = G.Expression
| G.GeneralPrefixOp
| G.GenerallnfizOp
| G.GeneralPostfizOp
A G.InstancePrefix ::=
( Identifier
& (1 Nil
| tok(“(”) & CommaList(G.Expression) & tok(“)”) )
& tok(“!”) )*
A G.Generalldentifier ::= G.InstancePrefix & Identifier
A G.GeneralPrefitOp ::= G.InstancePrefix & PrefizOp
A G.GenerallnfitOp  ::= G.InstancePrefix & InfizOp
A G.GeneralPostfirtOp ::= G.InstancePrefiz & PostfixOp
A G.ModuleDefinition ::= G.NonFizLHS & tok(“==") & G.Instance
A G.Assumption =

Tok({“ASSUME”, “ASSUMPTION”, “AXIOM”}) & G.Ezxpression

A G.Theorem ::= tok(“THEOREM”) & G.Expression
The comments give examples of each of the different types of expression.
A G.Ezxpression ::=

G.Generalldentifier A(z +7)!B!Id

|  G.Generalldentifier & tok(“(”) AlOp(z +1,y)
& CommalList(G.Argument) & tok(“)”)

| G.GeneralPrefixOp & G.Expression SUBSET S.foo



15.1. THE SIMPLE GRAMMAR 281

G.Expression & G.GenerallnfirtOp & G.Ezxpression a+b
G .FExpression & G.GeneralPostfixOp z[1]
tok(“(”) & G.Ezpression & tok(“)”) (z+1)

Tok({“\A”, “\E”}) & CommaList(G.QuantifierBound) vz €8, (y,z)€ T : F(z,y,z)
& tok(“”) & G.FExpression

| Tok({“\A”,“\E”, “NAA”, \EE”}) & CommaList(Identifier) 3az,y:z+y>0
& tok(“”) & G.Expression

| tok(“CHOOSE”) CHOOSE (z,y) € S : F(z,y)
IdentifierOrTuple

(Nil | tok(“\in”) & G.Expression)

tok ()

G.Ezxpression

e

| tok(“{”) & (Nil | CommalList(G.Expression)) & tok(“}’) {1,2,2+2}

| tok(“{”) {z € Nat : z > 0}
IdentifierOrTuple & tok(“\in”) & G.Expression

tok(“:”)

G.Ezpression

tok(“}")

| tok(“{”) {F(z,y,2) : z,y €S, z€ T}
& G.Ezxpression
& tok(“7)
& CommalList(G.QuantifierBound)
& tok(“}”)

e

|  G.Ezxpression & tok(“[”) & CommalList(G.Expression) & tok(“1”) fli+1, ]

| tok(“[7) [i,5 €5, (p,9) € T = F(i,4,p, 9)]
CommalList( G. QuantifierBound)

tok(“l_)w)

G.Ezxpression

tok(“] 77)

e

| tok(“[”) & G.Ezpression & tok(“->") & G.Ezpression & tok(“1”) [(SUT)— U]

| tok(“[”) & CommalList( Name & tok(“|->") & G.Expression) [ar z+1,b— y]
& tOk(“]”)



282

CHAPTER 15. THE SYNTAX OF TLA*

tok(“[”) & CommalList( Name & tok(*“:”) & G.Exzpression) [a:Nat, b:SU T)
& tOk(“] aa)

tok(“[") [f ExcepT ![1,2].r =4, ![(2,y)] = €]
& G.FEzpression
& tok(“EXCEPT”)
& CommalList(  tok(“!”)
& (1 tok(*) & Name
| tok(“[") & CommalList(G.Expression) & tok(“1”) )+
& tok(“=") & G.Ezpression)
& tok(“17)

tok(“<<”) & CommalList(G.Ezpression) & tok(“>>") (1,2,1+2)
G.Expression & (Tok({“\X”, “\times”}) & G.Ezpression)™ Nat x (1 .. 3) x Real
tok(“[") & G.Expression & tok(“1_") & G.Expression [AV B],

tok(“<<”) & G.Expression & tok(“>>_") & G.Expression (z' =y + 1)y

Tok({“WF_",“SF_"}) & G.Eupression  WEqupa(Next)
& t0k(*(") & G.Eapression & tok(*)")

tok(“IF”) & G.FExpression & tok(“THEN”) IF p THEN A ELSE B
& G.Ezxpression & tok(“ELSE”) & G.Expression

tok(“CASE”) CASE pl — el
& (LET CaseArm = SZiHER - Z§
G.Expression & tok(“->") & G.Expression
IN  CaseArm & (tok(“[17) & CaseArm)* )

& (1 Nil
| (tok(“[17) & tok(“OTHER”) & tok(“->") & G.Expression))
tok(“LET”) LET £ = y+1
& ( G.OperatorDefinition flt € Nat] £ ¢2

| G.FunctionDefinition N =+ f[y]
|  G.ModuleDefinition )*

& tok(“IN™)

& G.Ezxpression

(tok(“/\") & G.Expression)™ Az=1

(tok(“\/") & G.Expression)™ vz =1



15.2. THE COMPLETE GRAMMAR 283

|  Number 09001
| String “foo”

| tok(“@’) @ (Can be used only in an EXCEPT expression.)

IN LeastGrammar(P)

15.2 The Complete Grammar

We now complete our explanation of the syntax of TLA™ by giving the de-
tails that are not described by the BNF grammar in the previous section. Sec-
tion 15.2.1 gives the precedence rules, Section 15.2.2 gives the alignment rules
for conjunction and disjunction lists, and Section 15.2.3 describes comments.
Section 15.2.4 briefly discusses the syntax of temporal formulas. Finally, for
completeness, Section 15.2.5 explains the handling of two anomalous cases that
you're unlikely ever to encounter.

15.2.1 Precedence and Associativity

The expression a + b * ¢ is interpreted as a + (b * ¢) rather than (a+ b) % ¢. This
convention is described by saying that the operator * has higher precedence than
the operator +. In general, operators with higher precedence are applied before
operators of lower precedence. This applies to prefix operators (like SUBSET )
and postfix operators (like /) as well as to infix operators like + and *. Thus,
a + b’ is interpreted as a + (b’), rather than as (a + b)’, because ' has higher
precedence than +. Application order can also be determined by associativity.
The expression a—b— ¢ is interpreted as (a—b) — ¢ because — is a left-associative
infix operator.

In TLAT, the precedence of an operator is a range of numbers, like 9-13. The
operator $ has higher precedence than the operator :> because the precedence
of § is 9-13, and this entire range is greater than the precedence range of :>,
which is 7-7. An expression is illegal (not syntactically well-formed) if the
order of application of two operators is not determined because their precedence
ranges overlap and they are not two instances of an associative infix operator.
For example, the expression a + b * ¢’ % d is illegal for the following reason.
The precedence range of ' is higher than that of *, and the precedence range
of * is higher than that of both + and %, so this expression can be written as
a+(bx(c")) % d. However, the precedences of + (10-10) and % (10-11) overlap,
so we don’t know if the expression is to be interpreted as (a4 (b (¢))) % d or

+ ((b* (")) % d), and it is therefore illegal.



284 CHAPTER 15. THE SYNTAX OF TLA*

TLAT embodies the philosophy that it’s better to require parentheses than
to allow expressions that could easily be misinterpreted. Thus, * and / have
overlapping precedence, making an expression like a/b * ¢ illegal. (This also
makes a * b/c illegal, even though (a * b)/c and a * (b/c) happen to be equal
when * and / have their usual definitions.) Unconventional operators like $ have
wide precedence ranges for safety. But, even when the precedence rules imply
that parentheses aren’t needed, it’s often a good idea to use them anyway if you
think there’s any chance that a reader might not understand how an expression
is parsed.

Table 6 on page 271 gives the precedence ranges of all operators and tells
which infix operators are left associative. (No TLA™ operators are right asso-
ciative.) Note that the symbols €, =, and “.” are used both as fixed parts of
constructs and as infix operators. They are not infix operators in the following
two expressions:

{res: p)} [f EXCEPT !.a = €]

so the precedence of the corresponding infix operators plays no role in parsing
these expressions. Below are some additional precedence rules not covered by
the operator precedence ranges.

Function Application

Function application is treated like an operator with precedence range 16-16,
giving it higher precedence than any operator except period (“.”), the record-
field operator. Thus, a + b.c[d]" is interpreted as a + (((b.¢)[d])").

Cartesian Products

In the Cartesian product construct, x (typed as \X or \times) acts somewhat
like an associative infix operator with precedence range 10-13. Thus, Ax B C C
is interpreted as (A x B) C C, rather than as A x (B C C). However, X is
part of a special construct, not an infix operator. For example, the three sets
Ax Bx C,(Ax B)x C,and A x (B x C) are all different:

AxBxC = {{a,b,c):a€cA beB, ceC}
(AxB)x C = {{{a,b),c) :a€ A, be B, ce C}
Ax (BxC) = {{a,{(b,c)) : a€ A, be B, ce C}

The first is a set of triples; the last two are sets of pairs.

Undelimited Constructs

TLAT has several expression-making constructs with no explicit right-hand ter-
minator. They are: CHOOSE, IF/THEN/ELSE, CASE, LET/IN, and quantifier con-
structs. These constructs are treated as prefix operators with the lowest possible



15.2. THE COMPLETE GRAMMAR

285

precedence, so an expression made with one of them extends as far as possible.
More precisely, the expression is ended only by one of the following:

e The beginning of the next module unit. (Module units are produced by
the Unit nonterminal in the BNF grammar of Section 11.1.4; they include
definition and declaration statements.)

e A right delimiter whose matching left delimiter occurs before the beginning
of the construct. Delimiter pairs are (), [], { }, and { ).

e Any of the following lexemes, if they are not part of a subexpression: THEN,
ELSE, IN, comma (,), colon (:), and —. For example, the subexpression
Va: P is ended by the THEN in the expression:

IF Vz:P THEN 0 ELSE 1

e The CASE separator O (not the prefix temporal operator that is typed the
same) ends all of these constructs except a CASE statement without an
OTHER clause. That is, the O acts as a delimiter except when it can be
part of a CASE statement.

e Any symbol not to the right of the A or V prefixing a conjunction or dis-
junction list element containing the construct. (See Section 15.2.2 below.)

Here is how some expressions are interpreted under this rule:

IF x>0 THEN y+1

ELSE y—1 means IF £ >0 THEN y+1

49 ELSE (y —1+42)

VeeS : Px)
v oQ

As these examples show, indentation is ignored—except in conjunction and dis-
junction lists, discussed below. The absence of a terminating lexeme (an END) for
an IF/THEN/ELSE or CASE construct usually makes an expression less cluttered,
but sometimes it does require you to add parentheses.

means VeeS: (P(z)VQ)

Subscripts

TLA uses subscript notation in the following constructs: [A]., (4)., WF.(A),
and SF.(A). In TLA™, these are written with a “_” character, as in <<A>>_e.
This notation is, in principle, problematic. The expression <<A>>_x /\ B, which
we expect to mean ((A4),) A B, could conceivably be interpreted as (A).p)-
The precise rule for parsing these constructs isn’t important; you should put

parentheses around the subscript except in the following two cases.

e The subscript is a Generalldentifier in the BNF grammar.



286 CHAPTER 15. THE SYNTAX OF TLA*

e The subscript is an expression enclosed by one of the following matching
delimiter pairs: (), [], ( ), or { }—for example, (z,y) or (z + y).

Although [A]_f [x] is interpreted correctly as [A]f[,), it will be easier to read in
the ascir text (and will be formatted properly by TLATEX) if you write it as
(Al _(£[xD).

15.2.2 Alignment

The most novel aspect of TLAT syntax is the aligned conjunction and disjunction
lists. If you write such a list in a straightforward manner, then it will mean what
you expect it to. However, you might wind up doing something weird through
a typing error. So, it’s a good idea to know what the exact syntax rules are for
these lists. I give the rules here for conjunction lists; the rules for disjunction
lists are analogous.

A conjunction list is an expression that begins with A, which is typed as /\.
Let ¢ be the column in which the / occurs. The conjunction list consists of a
sequence of conjuncts, each beginning with a A. A conjunct is ended by any one
of the following that occurs after the /\:

1. Another /\ whose / character is in column ¢ and is the first nonspace
character on the line.

2. Any nonspace character in column ¢ or a column to the left of column c.

3. A right delimiter whose matching left delimiter occurs before the beginning
of the conjunction list. Delimiter pairs are (), [], { }, and ( ).

4. The beginning of the next module unit. (Module units are produced by
the Unit nonterminal in the BNF grammar; they include definition and
declaration statements.)

In case 1, the /\ begins the next conjunct in the same conjunction list. In the
other three cases, the end of the conjunct is the end of the entire conjunction list.
In all cases, the character ending the conjunct does not belong to the conjunct.
With these rules, indentation properly delimits expressions in a conjunction
list—for example:

/\ IF e THEN P A (IF e THEN P
ELSE Q means ELSE ()
/\ R AR

It’s best to indent each conjunction completely to the right of its A symbol.
These examples illustrate precisely what happens if you don’t:



15.2. THE COMPLETE GRAMMAR

287

/:x’ Al =y i\x’ g/\x)
y means Y = 1 y means = y)
/N yr=x /N yo=x Ay =)

In the second example, Az’ is interpreted as a conjunction list containing only
one conjunct, and the second /\ is interpreted as an infix operator.

You can’t use parentheses to circumvent the indentation rules. For example,
this is illegal:

/\ X

= y)

/\ y’=x
The rules imply that the first /\ begins a conjunction list that is ended before
the =. That conjunction list is therefore A (z’, which has an unmatched left
parenthesis.

The conjunction/disjunction list notation is quite robust. Even if you mess
up the alignment by typing one space too few or too many—something that’s
easy to do when the conjuncts are long—the formula is still likely to mean what
you intended. Here’s an example of what happens if you misalign a conjunct:

/\ A ( (/\ A) The bulleted list A A of one conjunct; it equals A.
/\ B means A B) This A is interpreted as an infix operator.
/\ C AN C This A is interpreted as an infix operator.

While not interpreted the way you expected, this formula is equivalent to A A
B A C, which is what you meant in the first place.

Most keyboards contain one key that is the source of a lot of trouble: the tab
key (sometimes marked on the keyboard with a right arrow). On my computer
screen, I can produce

/\ x’ 1
/Ny’ =2

by beginning the second line with eight space characters and the third with one
tab character. In this case, it is unspecified whether or not the two / characters
occur in the same column. Tab characters are an anachronism left over from
the days of typewriters and of computers with memory capacity measured in
kilobytes. I strongly advise you never to use them. But, if you insist on using
them, here are the rules:

e A tab character is considered to be equivalent to one or more space char-
acters, so it occupies one or more columns.

e Identical sequences of space and tab characters that occur at the beginning
of a line occupy the same number of columns.

There are no other guarantees if you use tab characters.



288 CHAPTER 15. THE SYNTAX OF TLA*

15.2.3 Comments

Comments are described in Section 3.5 on page 32. A comment may appear
between any two lexemes in a specification. There are two types of comments:

e A delimited comment is a string of the form “(x” o so “x)” where s is

any string in which occurrences of “(x” and “x)” are properly matched.
More precisely, a delimited comment is defined inductively to be a string
of the form “(x” 0 s;0---08, 0 “x)”, where each s; is either (i) a string
containing neither the substring “(*” nor the substring “*)”, or (ii) a
delimited comment. (In particular, “(*#)” is a delimited comment.)

e An end-of-line comment is a string of the form “\x” o so “(LF)”, where s
is any string not containing an end-of-line character (LF).

I like to write comments as shown here:

BufRcv == /\ InChan!Rcv (st ok sk ok sk ok sk ok sk ok sk ok ok k ok 3k ok 3k ok 3 ok 3k ok 3k ok 3k K ok 5k ok k)
/\ q’ = Append(q, in.val) (* Receive message from channel *)
/\ out (* ‘in’ and append to tail of q. *)

(*********************************)

Grammatically, this piece of specification has four distinct comments, the first
and last consisting of the same string (k*x-..x*x). But a person reading it
would regard them as a single comment, spread over four lines. This kind of
commenting convention is not part of the TLAY language, but it is supported
by the TLATEX typesetting program, as described in Section 13.4 on page 214.

15.2.4 Temporal Formulas

The BNF grammar treats O and < simply as prefix operators. However, as
explained in Section 8.1 (page 88), the syntax of temporal formulas places re-
strictions on their use. For example, O(z’ = z+1) is not a legal formula. It’s not
hard to write a BNF grammar that specifies legal temporal formulas made from
the temporal operators and ordinary Boolean operators like = and A. However,
such a BNF grammar won’t tell you which of these two expressions is legal:

LET F(P,Q) = PAOQ LET F(P,Q) = PAOQ
IN Flz=1z=y+1) IN Fz=1 12 =y+1)

The first is legal; the second isn’t because it represents the illegal formula
(1? = 1) A D(l’/ =y + 1) This formula is illegal.

The precise rules for determining if a temporal formula is syntactically well-
formed involve first replacing all defined operators by their definitions, using the
procedure described in Section 17.4 below. I won’t bother specifying these rules.



15.3. THE LEXEMES OF TLA™

289

In practice, temporal operators are not used very much in TLAT specifica-
tions, and one rarely writes definitions of new ones such as

A

F(P,Q) = P ADQ

The syntactic rules for expressions involving such operators are of academic
interest only.

15.2.5 Two Anomalies

There are two sources of potential ambiguity in the grammar of TLAY that you
are unlikely to encounter and that have ad hoc resolutions. The first of these
arises from the use of — as both an infix operator (as in 2 — 2) and a prefix
operator (as in 2 + —2). This poses no problem when — is used in an ordinary
expression. However, there are two places in which an operator can appear by
itself:

e As the argument of a higher-order operator, as in HOp(+, —).
e In an INSTANCE substitution, such as
INSTANCE M WITH Plus < +, Minus «— —

In both these cases, the symbol - is interpreted as the infix operator. You must
type —. to denote the prefix operator. You also have to type -. if you should
ever want to define the prefix — operator, as in:

—.a = UMinus(a)

In ordinary expressions, you just type - as usual for both operators.

The second source of ambiguity in the TLAT syntax is an unlikely expression
of the form {z € § : y € T}, which might be taken to mean either of the
following:

LET p(z) = y€ T IN {z € S:p(x)} Thisis a subset of S.
LET p(y)

It is interpreted as the first formula.

=

15.3 The Lexemes of TLA™

So far, this chapter has described the sequences of lexemes that form syntac-
tically correct TLA* modules. More precisely, because of the alignment rules,
syntactic correctness depends not just on the sequence of lexemes, but also on
the position of each lexeme—that is, on the row and columns in which the char-
acters of the lexeme appear. To complete the definition of the syntax of TLA™,

z €S IN {p(y):y € T} Thisis a subset of BOOLEAN (the set {TRUE, FALSE}).



290 CHAPTER 15. THE SYNTAX OF TLA*

this section explains how a sequence of characters is turned into a sequence of
lexemes.

All characters that precede the beginning of the module are ignored. Ignoring
a character does not change the row or column of any other character in the
sequence. The module begins with a sequence of four or more dashes (“-”
characters), followed by zero or more space characters, followed by the six-
character string “MODULE”. (This sequence of characters yields the first two
lexemes of the module.) The remaining sequence of characters is then converted
to a sequence of lexemes by iteratively applying the following rule until the
module-ending ==- - - == token is found:

The next lexeme begins at the next text character that is not part of a
comment, and consists of the largest sequence of consecutive characters
that form a legal TLA™ lexeme. (It is an error if no such lexeme exists.)

Space, tab, and the end-of-line character are not text characters. It is undefined
whether characters such as form feed are considered text characters. (You should
not use such characters outside comments.)

In the BNF grammar, a Name is a lexeme that can be used as the name of a
record field. The semantics of TLA™, in which r.c is an abbreviation for r[“c”],
would allow any string to be a Name. However, some restriction is needed—for
example, allowing a string like “a+b” to be a Name would make it impossible
in practice to decide if r.a+b meant r[“a+b”] or r[“a”’] + b. The one unusual
restriction in the definition of Name on page 277 is the exclusion of strings
beginning with (but not consisting entirely of) “WF_" and “SF_". With this
restriction, such strings are not legal TLA T lexemes. Hence, the input WF_x (4) is
broken into the five lexemes “WF_", “x”, “(”, “A”, and “)”, and it is interpreted
as the expression WF, (A).



Chapter 16

The Operators of TLA™

This chapter describes the built-in operators of TLA™. Most of these operators
have been described in Part I. Here, you can find brief explanations of the opera-
tors, along with references to the longer descriptions in Part I. The explanations
cover some subtle points not mentioned elsewhere. The chapter can serve as a
reference manual for readers who have finished Part I or who are already familiar
enough with the mathematical concepts that the brief explanations are all they
need.

The chapter includes a formal semantics of the operators. The rigorous
description of TLA™T that a formal semantics provides is usually needed only by
people building TLA T tools. If you're not building a tool and don’t have a special
fondness for formalism, you will probably want to skip all the subsections titled
Formal Semantics. However, you may some day encounter an obscure question
about the meaning of a TLA™ operator that is answered only by the formal
semantics.

This chapter also defines some of the “semantic” conditions on the syntax
of TLA™ that are omitted from the grammar of Chapter 15. For example, it
tells you that [a: Nat, a: BOOLEAN] is an illegal expression. Other semantic
conditions on expressions arise from a combination of the definitions in this
chapter and the conditions stated in Chapter 17. For example, this chapter
defines 3z, : p to equal Iz : (Fz:p), and Chapter 17 tells you that the latter
expression is illegal.

16.1 Constant Operators

We first define the constant operators of TLAT. These are the operators of
ordinary mathematics, having nothing to do with TLA or temporal logic. All
the constant operators of TLA™ are listed in Table 1 on page 268 and Table 2

291



292 CHAPTER 16. THE OPERATORS OF TLA"

on page 269.

An operator combines one or more expressions into a “larger” expression.
For example, the set union operator U combines two expressions e; and es
into the expression e; U e3. Some operators don’t have simple names like U.
There’s no name for the operator that combines the n expressions eq, ..., e,
to form the expression {ey,...,e,}. We could name it {,..., }or {_,..., _ },
but that would be awkward. Instead of explicitly mentioning the operator, I'll
refer to the construct {ei,...,e,}. The distinction between an operator like
U and the nameless one used in the construct {eq,...,e,} is purely syntactic,
with no mathematical significance. In Chapter 17, we’ll abstract away from this
syntactic difference and treat all operators uniformly. For now, we’ll stay closer
to the syntax.

Formal Semantics

A formal semantics for a language is a translation from that language into some
form of mathematics. We assign a mathematical expression [e], called the mean-
ing of e, to certain terms e in the language. Since we presumably understand
the mathematics, we know what [e] means, and that tells us what e means.

Meaning is generally defined inductively. For example, the meaning [e; U es]
of the expression e; U ea would be defined in terms of the meanings [e;] and
[ez] of its subexpressions. This definition is said to define the semantics of the
operator U.

Because much of TLAT is a language for expressing ordinary mathemat-
ics, much of its semantics is trivial. For example, the semantics of U can be
defined by

[erUea] = [ex] U [e2]

In this definition, the U to the left of the = is the TLA™T symbol, while the one
to the right is the set-union operator of ordinary mathematics. We could make
the distinction between the two uses of the symbol U more obvious by writing

[er \eup es] = [e1] U [e2]

But, that wouldn’t make the definition any less trivial.

Instead of trying to maintain a distinction between the TLA™ operator U
and the operator of set theory that’s written the same, we simply use TLA™T as
the language of mathematics in which to define the semantics of TLAT. That
is, we take as primitive certain TLA™ operators that, like U, correspond to
well-known mathematical operators. We describe the formal semantics of the
constant operators of TLAT by defining them in terms of these primitive op-
erators. We also describe the semantics of some of the primitive operators by
stating the axioms that they satisfy.



16.1. CONSTANT OPERATORS

293

16.1.1 Boolean Operators

The truth values of logic are written in TLAT as TRUE and FALSE. The built-in
constant BOOLEAN is the set consisting of those two values:

A
BOOLEAN = {TRUE, FALSE}

TLA™ provides the usual operators' of propositional logic:
A \Y - = (implication) = TRUE FALSE

They are explained in Section 1.1. Conjunctions and disjunctions can also be
written as aligned lists:

A p1 Vo p1
L2 piALLADy L2 piV...Vp,
The standard quantified formulas of predicate logic are written in TLA™ as:
Vz:p dx : p

I call these the unbounded quantifier constructions. The bounded versions are
written as:

VeeS:p JzeS:p

The meanings of these expressions are described in Section 1.3. TLAT allows
some common abbreviations—for example:

Ve,y :p = Yz : (Vy:p)

Jz,yeS,2e€T:p = 3ze€8:3ByeS: (32T :p)
TLA™ also allows bounded quantification over tuples, such as

V{z,y) €S : p

This formula is true iff, for any pair (a, b) in S, the formula obtained from p by
substituting a for z and b for y is true.

Formal Semantics

Propositional and predicate logic, along with set theory, form the foundation
of ordinary mathematics. In defining the semantics of TLA™T, we therefore take
as primitives the operators of propositional logic and the simple unbounded
quantifier constructs dz:p and Vz:p, where z is an identifier. Among the

ITRUE and FALSE are operators that take no arguments.



294 CHAPTER 16. THE OPERATORS OF TLA"

Boolean operators described above, this leaves only the general forms of the
quantifiers, given by the BNF grammar of Chapter 15, whose meanings must
be defined. This is done by defining those general forms in terms of the simple
forms.

The unbounded operators have the general forms:

VZi,...,Zy 1 P d21,.. ., 1 P

where each z; is an identifier. They are defined in terms of quantification over
a single variable by:

VZi,...,Tp : P ERZ T Vzo : (...Va, : p)...)
and similarly for 3. The bounded operators have the general forms:
Vyi1 €81,..., Y. €ESp : p dy1 €81,...,yn €8, : p

where each y; has the form z1,..., 2z or (z1,...,2x), and each z; is an identi-
fier. The general forms of V are defined inductively by

VIi,..., 2, €8 :p = Vi, ..., T :
(z1e€S)N...AN(zr€8) =D

Vyi €81, ...,yn€S8n:p = Vy1€81: ...Vy, €8, : p

V{(z1,...,25) €S : p 2 Vo, o, Ty (z1,...,zx)€S)=p

where the y; are as before. In these expressions, S and the §; lie outside the
scope of the quantifier’s bound identifiers. The definitions for 3 are similar. In
particular:

I (zy, ..., z,)ES : p 2 Ja, ., Ty ({z1,...,zx) €S)AD

See Section 16.1.9 for further details about tuples.

16.1.2 The Choose Operator

A simple unbounded CHOOSE expression has the form
CHOOSE ¢ : p

As explained in Section 6.6, the value of this expression is some arbitrary value
v such that p is true if v is substituted for z, if such a v exists. If no such v
exists, then the expression has a completely arbitrary value.

The bounded form of the CHOOSE expression is:

CHOOSE £ € S : p



16.1. CONSTANT OPERATORS

295

It is defined in terms of the unbounded form by
(16.1) CHOOSE z € S : p = CHOOSE z : (z € S)Ap

It is equal to some arbitrary value v in S such that p, with v substituted for
x, is true—if such a v exists. If no such v exists, the CHOOSE expression has a
completely arbitrary value.

A CHOOSE expression can also be used to choose a tuple. For example

CHOOSE (z,y) €S : p

equals some pair (v, w) in S such that p, with v substituted for z and w sub-
stituted for y, is true—if such a pair exists. If no such pair exists, it has an
arbitrary value, which need not be a pair.

The unbounded CHOOSE operator satisfies the following two rules:

(16.2) (3z : P(z)) = P(CHOOSE z : P(x))
(Vz : P(z) = Q(z)) = ((CHOOSE z : P(z)) = (CHOOSE z : Q(z)))

for any operators P and Q. We know nothing about the value chosen by CHOOSE
except what we can deduce from these rules.

The second rule allows us to deduce the equality of certain CHOOSE expres-
sions that we might expect to be different. In particular, for any operator P, if
there exists no z satisfying P(z), then CHOOSE z : P(z) equals the unique value
CHOOSE z : FALSE. For example, the Reals module defines division by

a/b = CHOOSE ¢ € Real : a="bxc

For any nonzero number a, there exists no number ¢ such that a« = 0 ¢. Hence,
a/0 equals CHOOSE c : FALSE, for any nonzero a. We can therefore deduce that
1/0 equals 2/0.

We would expect to be unable to deduce anything about the nonsensical
expression 1/0. It’s a bit disquieting to prove that it equals 2/0. If this upsets
you, here’s a way to define division that will make you happier. First define an
operator Choice so that Choice(v, P) equals CHOOSE z : P(z) if there exists an
z satisfying P(z), and otherwise equals some arbitrary value that depends on
v. There are many ways to define Choice; here’s one:

Choice(v, P(_)) = 1 3z : P(z) THEN CHOOSE z : P(z)

ELSE (CHOOSE z : z.a = v).b
You can then define division by

a/b = LET P(c) (c € Real) A (a = bxc)
IN  Choice(a, P)

2

This definition makes it impossible to deduce any relation between 1/0 and 2/0.
You can use Choice instead of CHOOSE whenever this kind of problem arises—if
you consider 1/0 equaling 2/0 to be a problem. But there is seldom any practical
reason for worrying about it.



296 CHAPTER 16. THE OPERATORS OF TLA"

Formal Semantics

We take the construct CHOOSE z : p, where z is an identifier, to be primitive.
This form of the CHOOSE operator is known to mathematicians as Hilbert’s €.
Its meaning is defined mathematically by the rules (16.2).2

An unbounded CHOOSE of a tuple is defined in terms of the simple unbounded
CHOOSE construct by

CHOOSE (Z1,...,%p) 1 p =
CHOOSE y : (3z1,...,2n : (y=(Z1,...,2Zn)) A D)

where y is an identifier that is different from the z; and does not occur in p.
The bounded CHOOSE construct is defined in terms of unbounded CHOOSE by
(16.1), where z can be either an identifier or a tuple.

16.1.3 Interpretations of Boolean Operators

The meaning of a Boolean operator when applied to Boolean values is a standard
part of traditional mathematics. Everyone agrees that TRUE A FALSE equals
FALSE. However, because TLA™T is untyped, an expression like 2 A (5) is legal.
We must therefore decide what it means. There are three ways of doing this,
which T call the conservative, moderate, and liberal interpretations.

In the conservative interpretation, the value of an expression like 2 A (5) is
completely unspecified. It could equal v/2. It need not equal (5) A 2. Hence,
the ordinary laws of logic, such as the commutativity of A, are valid only for
Boolean values.

In the liberal interpretation, the value of 2 A (5) is specified to be a Boolean.
It is not specified whether it equals TRUE or FALSE. However, all the ordinary
laws of logic, such as the commutativity of A, are valid. Hence, 2 A (5) equals
(5) A 2. More precisely, any tautology of propositional or predicate logic, such
as

(Vz :p) = -3z : —p)

is valid, even if p is not necessarily a Boolean for all values of z.3 It is easy
to show that the liberal approach is sound.* For example, one way of defining
operators that satisfy the liberal interpretation is to consider any nonBoolean
value to be equivalent to FALSE.

The conservative and liberal interpretations are equivalent for most speci-
fications, except for ones that use Boolean-valued functions. In practice, the

2Hilbert’s e is discussed at length in Mathematical Logic and Hilbert’s e-Symbol by
A. C. Leisenring, published by Gordon and Breach, New York, 1969.

3Equality (=) is not an operator of propositional or predicate logic; this tautology need not
be valid for nonBoolean values if = is replaced by =.

4A sound logic is one in which FALSE is not provable.



16.1. CONSTANT OPERATORS

297

conservative interpretation doesn’t permit you to use f[z] as a Boolean expres-
sion even if f is defined to be a Boolean-valued function. For example, suppose
we define the function tnat by

tnat = [n € Nat — TRUE]
so tnat[n] equals TRUE for all n in Nat. The formula
(16.3) Vn € Nat : tnat[n]

equals TRUE in the liberal interpretation, but not in the conservative interpre-
tation. Formula (16.3) is equivalent to

Vn : (n € Nat) = tnat[n]

which asserts that (n € Nat) = tnat[n] is true for all n, including, for example,
n = 1/2. For (16.3) to equal TRUE, the formula (1/2 € Nat) = tnat[1/2],
which equals FALSE = tnat[1/2], must equal TRUE. But the value of tnat[1/2] is
not specified; it might equal /2. The formula FALSE = /2 equals TRUE in the
liberal interpretation; its value is unspecified in the conservative interpretation.
Hence, the value of (16.3) is unspecified in the conservative interpretation. If we
are using the conservative interpretation, instead of (16.3), we should write

Vn € Nat : (tnat[n] = TRUE)

This formula equals TRUE in both interpretations.

The conservative interpretation is philosophically more satisfying, since it
makes no assumptions about a silly expression like 2 A (5). However, as we
have just seen, it would be nice if the not-so-silly formula FALSE = v/2 equaled
TRUE. We therefore introduce the moderate interpretation, which lies between
the conservative and liberal interpretations. It assumes only that expressions
involving FALSE and TRUE have their expected values—for example, FALSE = /2
equals TRUE, and FALSE A 2 equals FALSE. In the moderate interpretation, (16.3)
equals TRUE, but the value of (5) A 2 is still completely unspecified.

The laws of logic still do not hold unconditionally in the moderate interpre-
tation. The formulas p A ¢ and ¢ A p are equivalent only if p and ¢ are both
Booleans, or if one of them equals FALSE. When using the moderate interpre-
tation, we still have to check that all the relevant values are Booleans before
applying any of the ordinary rules of logic in a proof. This can be burdensome
in practice.

The semantics of TLA™T asserts that the rules of the moderate interpreta-
tion are valid. The liberal interpretation is neither required nor forbidden. You
should write specifications that make sense under the moderate interpretation.
However, you (and the implementer of a tool) are free to use the liberal inter-
pretation if you wish.



298 CHAPTER 16. THE OPERATORS OF TLA"

16.1.4 Conditional Constructs

TLAT provides two conditional constructs for forming expressions that are in-
spired by constructs from programming languages: IF/THEN/ELSE and CASE.

The IF/THEN/ELSE construct was introduced on page 16 of Section 2.2. Its
general form is:

IF p THEN e; ELSE es

It equals eq if p is true, and e if p is false.
An expression can sometimes be simplified by using a CASE construct instead
of nested IF/THEN/ELSE constructs. The CASE construct has two general forms:

(16.4) CASE p1 — e1 0 ... Op, — e,
CASE p; — e O ... Op, — €, OOTHER — ¢

If some p; is true, then the value of these expressions is some e; such that p; is
true. For example, the expression

CASENn>0—e1O0n<0— ey

equals e if n > 0 is true, equals ey if n < 0 is true, and equals either e; or eq if
n = 0 is true. In the latter case, the semantics of TLA™ does not specify whether
the expression equals e; or e3. The CASE expressions (16.4) are generally used
when the p; are mutually disjoint, so at most one p; can be true.

The two expressions (16.4) differ when p; is false for all 7. In that case, the
value of the first is unspecified, while the value of the second is e, the OTHER
expression. If you use a CASE expression without an OTHER clause, the value of
the expression should matter only when 37 €1 .. n:p; is true.

Formal Semantics
The IF/THEN/ELSE and CASE constructs are defined as follows in terms of
CHOOSE:
IF p THEN e; ELSE ey =
CHOOSE v : (p= (v=-r¢e1)) A (0p = (v=e2))
CASE p; — e 0O ... 0p, — e, 2
CHOOSE v : (p1A(v=1r¢€1)) V...V (pp A(v=rcey))
CASE p1 — €10 ... 0p, — ¢, JOTHER — ¢ =
CASE p1 — e10...0p, — e, 0-(p1V...Vp,) — e



16.1. CONSTANT OPERATORS

299

16.1.5 The Let/In Construct

The LET/IN construct was introduced on page 60 of Section 5.6. The expression
LET d = f IN e

equals e in the context of the definition d = f. For example
LET sq(i) = i*i IN sq(1) + sq(2) + sq(3)

equals 1% 14 2%2+ 3% 3, which equals 14. The general form of the construct is:
LET A7 ... A, IN e

where each A; has the syntactic form of any TLA™ definition. Its value is e in
the context of the definitions A;. More precisely, it equals

LET A; IN (LET Ay IN (... LET A, IN ¢e) ...)

Hence, the symbol defined in Ay can be used in the definitions As, ..., A,.

Formal Semantics

The formal semantics of the LET construct is defined in Section 17.4 (page 325)
below.

16.1.6 The Operators of Set Theory

TLA™ provides the following operators on sets:
€ ¢ U N C \ UNION SUBSET

and the following set constructors:

{e1,...,en} {z es: p} {e : z €8}

They are all described in Section 1.2 (page 11) and Section 6.1 (page 65). Equal-
ity is also an operator of set theory, since it formally means equality of sets.
TLAT provides the usual operators = and #.

The set construct {z € S : p} can also be used with z a tuple of identifiers.
For example,

{{a,b) € Nat x Nat : a > b}

is the set of all pairs of natural numbers whose first component is greater than
its second—pairs such as (3,1). In the set construct {e : = € S}, the clause
x € S can be generalized in exactly the same way as in a bounded quantifier
such as Vz € S : p. For example,

{{a,b,¢) : a,b € Nat, c € Real}

is the set of all triples whose first two components are natural numbers and
whose third component is a real number.



300 CHAPTER 16. THE OPERATORS OF TLA"

Formal Semantics

TLA is based on Zermelo-Frinkel set theory, in which every value is a set. In
set theory, € is taken as a primitive, undefined operator. We could define all
the other operators of set theory in terms of €, using predicate logic and the
CHOOSE operator. For example, set union could be defined by

SUT = cHOOSE U : Yz : (zelU) = (zeS)V(zeT)

(To reason about U, we would need axioms from which we can deduce the
existence of the chosen set U.) Another approach we could take is to let certain
of the operators be primitive and define the rest in terms of them. For example,
U can be defined in terms of UNION and the construct {ey, ..., e,} by:

SUT = uNioN {8, T}

We won’t try to distinguish a small set of primitive operators; instead, we treat
U and UNION as equally primitive. Operators that we take to be primitive are
defined mathematically in terms of the rules that they satisfy. For example,
S U T is defined by:

V:(ze(SUT)) = (zeS)Vv(zeT)

However, there is no such defining rule for the primitive operator €. We take
only the simple forms of the constructs {z € S:p} and {e:z € S} as primitive,
and we define the more general forms in terms of them.

S=T =Vaz:(ze8)=(zecT).
er # e
e¢S = =(eed).

SUT is defined by Vz : (z € (SUT))
SNT isdefinedbyVz: (ze(SNT)) =

—(e1 = e2).

i
—
8
m
~—
w &
m
3

I

8
m
8
m

SCT 2 Vz:(ze8)=(zeT).
S\T isdefined by Vz : (z € (S\T)) = (z€S)A(z ¢ T).
SUBSET S is defined by VT : (T € SUBSET S) = (T C 9).

UNION S is defined by Vz : (z€UNION S) = 3T €S :ze€T).
{er,...,en} = {1} U ... U {en},
where {e} is defined by:
z:(zefe}) = (z=c¢)

For n = 0, this construct is the empty set {}, defined by:

Ve:x ¢ {}



16.1. CONSTANT OPERATORS

301

{res:p}
where z is a bound identifier or a tuple of bound identifiers. The

expression S is outside the scope of the bound identifier(s). For z an
identifier, this is a primitive expression that is defined mathemati-
cally by

Vy:(yef{reS:p}) = (yeS)Ap

where the identifier y does not occur in S or p, and p is p with y
substituted for z. For z a tuple, the expression is defined by

{(z1,...,2,) €8 : p} =
{yeS : Bar,....zn : (y=(21,...,2)) A D)}
where y is an identifier different from the z; that does not occur in
S or p. See Section 16.1.9 for further details about tuples.

{6 ‘Y1 S Sla e ¥Yn S Sn}
where each y; has the form zq, ..., 2y or (z1, ... ,2;), and each
z; is an identifier that is bound in the expression. The expressions
S; lie outside the scope of the bound identifiers. The simple form
{e : z € S}, for z an identifier, is taken to be primitive and is
defined by:

Vy:(yele:z€8}) = Fzel:e=y)

The general form is defined inductively in terms of the simple form

by:
{e:yleSl,...,yneSn} =
UNION {{e : y1 € S1, ... ,¥n-1€ Sn-1} : yn € Sn }
{e:azy,....,0n€8Y = {e:z,€8,...,0,€8}
{e:(z1,...,z,) €8} =
{(LET z = CHOOSE (Z1,...,2,) : y=(x1,...,2)
1 = 2[1]
T, = z[n] INe):yeS}

where the z; are identifiers, and y and z are identifiers distinct from
the z; that do not occur in e or S. See section 16.1.9 for further
details about tuples.

16.1.7 Functions

Functions are described in Section 5.2 (page 48); the difference between functions
and operators is discussed in Section 6.4 (page 69). In TLA™, we write f[v] for



302 CHAPTER 16. THE OPERATORS OF TLA"

the value of the function f applied to v. A function f has a domain DOMAIN f,
and the value of f[v] is specified only if v is an element of DOMAIN f. We let
[S — T] denote the set of all functions f such that DOMAIN f = S and f[v] € T,
for all v € §.

Functions can be described explicitly with the construct

(16.5) [x € S — ¢]

This is the function f with domain S such that f[v] equals the value obtained
by substituting v for z in e, for any v € S. For example,

[n € Nat — 1/(n +1)]

is the function f with domain Nat such that f[0] = 1, f[1] = 1/2, f[2] = 1/3,
etc. We can define an identifier fen to equal the function (16.5) by writing

(16.6) fen[z € S] = e

The identifier fcn can appear in the expression e, in which case this is a recursive
function definition. Recursive function definitions were introduced in Section 5.5
(page 54) and discussed in Section 6.3 (page 67).

The EXCEPT construct describes a function that is “almost the same as”
another function. For example,

(16.7) [f EXCEPT ![u] = a, ![v] = b]

is the function ]A‘ that is the same as f, except that f[u] = a and ]A”[v] = b. More
precisely, (16.7) equals

[ € DOMAIN f +— IF & = v THEN b
ELSE IF z = u THEN a ELSE f[z]]

Hence, if neither « nor v is in the domain of f, then (16.7) equals f. If u = v,
then (16.7) equals [f EXCEPT ![v] = b].

An exception clause can have the general form ![vq]---[v,] = e. For exam-
ple,

(16.8) [f EXCEPT ![u][v] = a]

is the function ]7 that is the same as f, except that f[u] [v] equals a. That is, 7
is the same as f, except that f[u] is the function that is the same as f[u], except
that f[u][v] = a. The symbol @ occurring in an exception clause stands for the
“original value”. For example, an @ in the expression a of (16.8) denotes f[u][v].

In TLA™, a function of multiple arguments is one whose domain is a set
of tuples; and f[vy,...,v,] is an abbreviation for f[(v1,...,v,)]. The z € S
clause (16.5) and (16.6) can be generalized in the same way as in a bounded
quantifier—for example here are two different ways of writing the same function:

[m,n € Nat, r € Real — €] [(m,n,r) € Nat X Nat x Real — e]



16.1. CONSTANT OPERATORS

303

This is a function whose domain is a set of triples. It is not the same as the
function

[(m,n) € Nat x Nat, r € Real — €]

whose domain is the set (Nat x Nat) x Real of pairs like ((1,3), 1/3), whose
first element is a pair of natural numbers.

Formal Semantics

Mathematicians traditionally define a function to be a set of pairs. In TLAT,
pairs (and all tuples) are functions. We take as primitives the constructs:

fle] DOMAIN f [S— T] [z €8 €]

where z is an identifier. These constructs are defined mathematically by the
rules they satisfy. The other constructs, and the general forms of the construct
[z € S — e], are defined in terms of them. These definitions use the operator
IsAFcn, which is defined as follows so that IsAFcn(f) is true iff f is a function:

IsAFen(f) = f = [z € DOMAIN f — f[z]]

The first rule, which is not naturally associated with any one construct, is that
two functions are equal iff they have the same domain and assign the same value
to each element in their domain:

Vf,g : IsAFen(f) A IsAFen(g) =
((f = 9) = A DOMAIN f = DOMAIN g
A Yz € DOMAIN f : flz] = g[z])

The rest of the semantics of functions is given below. There is no separate
defining rule for the DOMAIN operator.

flers-- -, en]
where the e; are expressions. For n = 1, this is a primitive expression.
For n > 1, it is defined by

fler,--- ea]l = fl(er,..., en)]
The tuple (eq,...,e,) is defined in Section 16.1.9.

[y1 €51, ... ,¥n € Sy — €]
where each y; has the form z1, ...,z or (21, ... ,zx), and each z; is an
identifier that is bound in the expression. The expressions S; lie outside
the scope of the bound identifiers. The simple form [z € S — ¢], for z
an identifier, is primitive and is defined by two rules:

(DOMAIN[z € S—¢]) = S
VyesS : [ze€Se]ly] = LETz=y IN e



304 CHAPTER 16. THE OPERATORS OF TLA"

where y is an identifier different from z that does not occur in S or e.
The general form of the construct is defined inductively in terms of the
simple form by:

[z1 €81, ...,2, € Sy — €] = [{@1,...,Zn) €S1 X ... X 5, — €]
[..., 1,..., 25 €8iy ... — €] = [..., 21 €8, ...,2,k€8;, ... — €]
[... (@1, xk) €84,... — €] =
[...,y€S;,... » LET z = CHOOSE (z1,...,2) : y = (z1,...,2x)
1 = 2[1]
zp = z[k] IN €]

where y and z are identifiers that do not appear anywhere in the original
expression. See Section 16.1.9 for details about tuples.

[S — T] is defined by
Vi felS—T] =
IsAFen(f) A (S=DOMAINf) A (Vz €S : flz] € T)

where z and f do not occur in S or T, and IsAFcn is defined above.

[f EXCEPT la; = ey, ..., la, = e,]
where each a; has the form [d4]...[d}] and each d, is an expression. For
the simple case when n = 1 and a; is [d], this is defined by®

A

[f EXCEPT ![d] =¢€] =
[y € DOMAIN f — IF y = d THEN LET @ = f[d] IN e
ELSE  f[y]]

where y does not occur in f, d, or e. The general form is defined induc-
tively in terms of this simple case by:

[f EXCEPT la; = ey, ..., la, = e,] =
[[f EXCEPT la; = ey, ..., la,_1 = e,_1] EXCEPT la, = e, ]
[f EXCEPT ![dy]...[dy] = €] =
[f EXCEPT ![d1] = [@Q EXCEPT ![dg]...[d;] = e€]]
fly1 € S1, ... ,yn € S)] 2 ¢ is defined to be an abbreviation for:
f = CHOOSE f : f=[y1 €81, ...,yn € Sy €]
5Since @ is not actually an identifier, LET @ 2 st legal TLAT syntax. However, its

meaning should be clear.



16.1. CONSTANT OPERATORS 305

16.1.8 Records

TLAT borrows from programming languages the concept of a record. Records
were introduced in Section 3.2 (page 28) and further explained in Section 5.2
(page 48). As in programming languages, r.h is the h field of record r. Records
can be written explicitly as

[thelv"'vhn'_)e’n]

which equals the record with n fields, whose h; field equals e;, for i =1,...,n.
The expression

[h1 2 S1,.c by 2 Sy

is the set of all such records with e; € S;, for i = 1,...,n. These expressions
are legal only if the h; are all different. For example, [a: S, a: T] is illegal.

The EXCEPT construct, explained in Section 16.1.7 above, can be used for
records as well as functions. For example,

[r EXCEPT !.a = €]

is the record 7 that is the same as r, except that 7.a = e. An exception clause
can mix function application and record fields. For example,

[f EXCEPT ![v].a = €]

is the function f that is the same as f, except that ]A‘[v].a =e.

In TLAT, a record is a function whose domain is a finite set of strings, where
r.h means r[“h”], for a record field h. Thus, the following two expressions
describe the same record:

[fo — 7, ba — §] [z € {“fo”, “ba”} — IF = = “fo” THEN 7 ELSE §]

The name of a record field is syntactically an identifier. In the ASCII version
of TLA™, it is a string of letters, digits, and the underscore character (_) that
contains at least one letter. Strings are described below in Section 16.1.10.

Formal Semantics

The record constructs are defined in terms of function constructs.

e.h = e[“h]
[hl = €1, ... ,hn (g en] é
[y 6 {“hl”, . ’“hn”} —

CASE (y = “hy”) - e1 0 ... O(y = “h,”) — e4]
where y does not occur in any of the expressions e;. The h; must all be
distinct.



306 CHAPTER 16. THE OPERATORS OF TLA"

[hl . Sl,...,hn . Sn] é {[hl = Y1, ... ,hn = yn]
Y1 € S1, .o, Yn € Sn}
where the y; do not occur in any of the expressions S;. The h; must all
be distinct.

[r EXCEPT la; = ey, ..., la, = e,]
where a; has the form by ... by and each b, is either (i) [d], where d is an
expression, or (ii) .h, where h is a record field. It is defined to equal the
corresponding function EXCEPT construct in which each .h is replaced
by I:“h”}'

16.1.9 Tuples

An n-tuple is written in TLAT as (ey,..., e, ). As explained in Section 5.4, an
n-tuple is defined to be a function whose domain is the set {1,...,n}, where
(e1,...,en)[t] = €4, for 1 < i < n. The Cartesian product S; x --- x S, is the
set of all n-tuples (ey, ..., e,) such that e; € S;, for 1 < i < n.

In TLAT, x is not an associative operator. For example,

(1,
((1
(1,
and the tuples (1,2,3), ((1,2),3), and (1, (2,3)) are not equal. More precisely,
the triple (1,2, 3) is unequal to either of the pairs ((1,2),3) or (1, (2,3)) because
a triple and a pair have unequal domains. The semantics of TLAT does not
specify if (1,2) equals 1 or if 3 equals (2,3), so we don’t know whether or not
((1,2),3) and (1,(2,3)) are equal.

The 0-tuple ( ) is the unique function having an empty domain. The 1-tuple
(e) is different from e. That is, the semantics does not specify whether or not
they are equal. There is no special notation for writing a set of 1-tuples. The
easiest way to denote the set of all 1-tuples (e) with e € S'is {(e) : e € S}.

In the standard Sequences module, described in Section 18.1 (page 339), an
n-element sequence is represented as an n-tuple. The module defines several
useful operators on sequences/tuples.

2,3) € Nat x Nat x Nat
,2),3) € (Nat x Nat) x Nat
(2,3)) € Nat x (Nat x Nat)

Formal Semantics

Tuples and Cartesian products are defined in terms of functions (defined in
Section 16.1.7) and the set Nat of natural numbers (defined in Section 16.1.11).

(e1,...,e) = [ie{jeNat : 1<jHAGH<n)}— e
where ¢ does not occur in any of the expressions e;.



16.1. CONSTANT OPERATORS 307

Sl X oo XSn 2 {<y1, ,yn> : yleSl, ey ynGSn}
where the identifiers y; do not occur in any of the expressions §;.

16.1.10 Strings

TLA™ defines a string to be a tuple of characters. (Tuples are defined in Sec-
tion 16.1.9 above.) Thus, “abc” equals

<uabc77[1]’ “3bc” [2]7 “3bc” [3]>

The semantics of TLA™T does not specify what a character is. However, it does
specify that different characters (those having different computer representa-
tions) are different. Thus “a”[1], “b”[1], and “A”[1] (the characters a, b, and
A) are all different. The built-in operator STRING is defined to be the set of all
strings.

Although TLA™ doesn’t specify what a character is, it’s easy to define oper-
ators that assign values to characters. For example, here’s the definition of an
operator Ascii that assigns to every lower-case letter its ASCII representation.®

Ascii(char) = 96 + CHOOSE i € 1 .. 26 :
“abcdefghijklmnopgrstuvwxyz” [i] = char

This defines Ascii(“a”[1]) to equal 97, the Asci code for the letter a, and
Ascii(“2”[1]) to equal 122, the Ascil code for z. Section 11.1.4 on page 179
illustrates how a specification can make use of the fact that strings are tuples.

Exactly what characters may appear in a string is system-dependent. A
Japanese version of TLAT might not allow the character a. The standard AsciI
version contains the following characters:

abcdefghijklmnopgrstuvwazxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
0123456789

C@ES % &k — = (LI <> /N, T
(HT) (tab) (LF) (line feed) (FF) (form feed) (CR) (carriage return)

plus the space character. Since strings are delimited by a double-quote ("),
some convention is needed for typing a string that contains a double-quote.
Conventions are also needed to type characters like (LF) within a string. In
the AsciI version of TLAT, the following pairs of characters, beginning with a \
character, are used to represent these special characters:

A" \t (HT) \f (FF)
W \n (LF) \r (CR)

6This clever way of using CHOOSE to map from characters to numbers was pointed out to
me by Georges Gonthier.



308 CHAPTER 16. THE OPERATORS OF TLA"

With this convention, "a\\\"b\"" represents the string consisting of the fol-
lowing five characters: a \ " b ". In the ASCII version of TLA™, a \ character
can appear in a string expression only as the first character of one of these six
two-character sequences.

Formal Semantics

We assume a set Char of characters, which may depend on the version of TLA™.
(The identifier Char is not a pre-defined symbol of TLAT.)

STRING = Seq(Char)
where Seq is the operator defined in the Sequences module of Section 18.1
so that Seq(S) is the set of all finite sequences of elements of S.

“ ”

A
c1 ... = (c1,..,Cn)
where each c; is some representation of a character in Char.

16.1.11 Numbers

TLAT defines a sequence of digits like 63 to be the usual natural number—that
is, 63 equals 6 * 10 + 3. TLA™ also allows the binary representation \b111111,
the octal representation \o77, and the hexadecimal representation \h3F of that
number. (Case is ignored in the prefixes and in the hexadecimal representation,
so \H3F and \h3f are equivalent to \h3F.) Decimal numbers are also pre-defined
in TLAY; for example, 3.14159 equals 314159/10°.

Numbers are pre-defined in TLAT, so 63 is defined even in a module that
does not extend or instantiate one of the standard numbers modules. However,
sets of numbers like Nat and arithmetic operators like 4+ are not. You can write
a module that defines 4+ any way you want, in which case 40+ 23 need not equal
63. Of course, 40 + 23 does equal 63 for + defined by the standard numbers
modules Naturals, Integers, and Reals, which are described in Section 18.4.

Formal Semantics

The set Nat of natural numbers, along with its zero element Zero and successor
function Succ, is defined in module Peano on page 345. The meaning of a
representation of a natural number is defined in the usual manner:

0 = Zero 1 = Succ[Zero] 2 = Succ|Suce|Zero)|

The ProtoReals module on pages 346-347 defines the set Real of real numbers
to be a superset of the set Nat, and defines the usual arithmetic operators on



16.2. NONCONSTANT OPERATORS 309

real numbers. The meaning of a decimal number is defined in terms of these
operators by:

2

Cl...cm.dl...dn Cl-..cmdl...dn/lon

16.2 Nonconstant Operators

The nonconstant operators are what distinguish TLA™T from ordinary mathe-
matics. There are two classes of nonconstant operators: action operators, listed
in Table 3 on page 269, and temporal operators, listed in Table 4 on page 269.

Section 16.1 above talks about the meanings of the built-in constant opera-
tors of TLA™T, without considering their arguments. We can do that for constant
operators, since the meaning of C in the expression e; C ey doesn’t depend on
whether or not the expressions e; and es contain variables or primes. To under-
stand the nonconstant operators, we need to consider their arguments. Thus,
we can no longer talk about the meanings of the operators in isolation; we must
describe the meanings of expressions built from those operators.

A basic expression is one that contains built-in TLA™T operators, declared
constants, and declared variables. We now describe the meaning of all basic
TLA™ expressions, including ones that contain nonconstant built-in operators.
We start by considering basic constant expressions, ones containing only the
constant operators we have already studied and declared constants.

16.2.1 Basic Constant Expressions

Section 16.1 above defines the meanings of the constant operators. This in turn
defines the meaning of any expression built from these operators and declared
constants. For example, if S and T are declared by

CONSTANTS S, T'(-)

then 3z:5 C T(z) is a formula that equals TRUE if there is some value v such
that every element of S is an element of T'(v), and otherwise equals FALSE.
Whether 3z : 5 C T(z) equals TRUE or FALSE depends on what actual values
we assign to S and to T'(v), for all v; so that’s as far as we can go in assigning
a meaning to the expression.

A formula is a Boolean-valued expression. There are some basic constant
formulas that are true regardless of the values we assign to their declared
constants—for example, the formula

(SCT)=(SNT=28)

Such a formula is said to be valid.



310 CHAPTER 16. THE OPERATORS OF TLA"

Formal Semantics

Section 16.1 defines all the built-in constant operators in terms of a subset of
them called the primitive operators. These definitions can be formulated as an
inductive set of rules that define the meaning [ ¢] of any basic constant expression
c. For example, from the definition

e¢ S = —(e€f)
we get the rule

[e¢ ST = —(le] €[SD)

These rules define the meaning of a basic constant expression to be an expression
containing only primitive constant operators and declared constants.

A basic constant expression e is a formula iff its meaning [e] is Boolean-
valued, regardless of what values are substituted for the declared constants. As
explained in Section 16.1.3, this will depend on whether we are using the liberal,
moderate, or conservative interpretations of the Boolean operators.

If S and T are constants declared as above, then the meaning [Fz: S C T(z)]
of the expression 3z :.S C T(z) is the expression itself. Logicians usually carry
things further, assigning some meanings [S] and [T] to declared constants and
defining [z : S C T'(z)] toequal Iz : [S] C [T](z). For simplicity, I have short-
circuited that extra level of meaning.

We are taking as given the meaning of an expression containing only primitive
constant operators and declared constants. In particular, we take as primitive
the notion of validity for such expressions. Section 16.1 defines the meaning of
any basic constant expression in terms of these expressions, so it defines what
it means for a basic constant formula to be valid.

16.2.2 The Meaning of a State Function

A state is an assignment of values to variables. (In ZF set theory, on which the
semantics of TLA™ is based, value is just another term for set.) States were
discussed in Sections 2.1 and 2.3.

A state function is an expression that is built from declared variables, de-
clared constants, and constant operators. (State functions can also contain EN-
ABLED expressions, which are described below.) State functions are discussed on
page 25 of Section 3.1. A state function assigns a constant expression to every
state. If state function e assigns to state s the constant expression v, then we
say that v is the value of e in state s. For example, if z is a declared variable, T
is a declared constant, and s is a state that assigns to x the value 42; then the
value of £ € T in state s is the constant expression 42 € T. A Boolean-valued
state function is called a state predicate. A state predicate is valid iff it has the
value TRUE in every state.



16.2. NONCONSTANT OPERATORS

311

Formal Semantics

A state is an assignment of values to variables. Formally, a state s is a function
whose domain is the set of all variable names, where s[“x”] is the value that s
assigns to variable z. We write s[z] instead of s[“x”].

A basic state function is an expression that is built from declared variables,
declared constants, constant operators, and ENABLED expressions, which are
expressions of the form ENABLED e. An ENABLED-free basic state function is
one with no ENABLED expressions. The meaning of a basic state function is a
mapping from states to values. We let s[e] be the value that state function e
assigns to a state s. Since a variable is a state function, we thus say both that
state s assigns s[z] to variable z, and that the state function z assigns s[z] to
state s.

Using the meanings assigned to the constant operators in Section 16.1 above,
we inductively define s[e] for any ENABLED-free state function e to be an ex-
pression built from the primitive TLA™ constant operators, declared constants,
and the values assigned by s to each variable. For example, if z is a variable
and S is a constant, then

sfe ¢ S] = —(s[z] € 9)

It is easy to see that s[c] equals [c], for any constant expression c. (This
expresses formally that a constant has the same value in all states.)

To define the meaning of all basic state function, not just ENABLED-free ones,
we must define the meaning of an ENABLED expression. This is done below.

The formal semantics talks about state functions, not state predicates. Be-
cause TLAT is typeless, there is no formal distinction between a state predicate
and a state function. By a state predicate, we mean a state function e such that
s[e] is Boolean-valued for every reachable state s of some specification. See the
discussion of actions on pages 313-314.

I described the meaning of a state function as a “mapping” on states. This
mapping cannot be a function, because there is no set of all states. Since for
any set S there is a state that assigns the value S to each variable, there are too
many states to form a set. (See the discussion of Russell’s paradox on page 66.)
To be formal, we should define an operator M such that, if s is a state and e is
a syntactically correct basic state function, then M (s, e), which we write s[e],
is the basic constant expression that is the meaning of e in state s.

Actually, this way of describing the semantics isn’t right either. A state is
a mapping from variables to values (sets), not to constant expressions. Since
there are an uncountable number of sets and only a countable number of finite
sequences of strings, there are values that can’t be described by any expression.
Suppose £ is such a value, and let s be a state that assigns the value £ to the
variable z. Then s[z = {}] equals £ = {}, which isn’t a constant expression
because £ isn’t an expression. So, to be really formal, we would have to define a
semantic constant expression to be one made from primitive constant operators,



312 CHAPTER 16. THE OPERATORS OF TLA"

declared constants, and arbitrary values. The meaning of a basic state function
is a mapping from states to semantic constant expressions.

We won’t bother with these details. Instead, we define a semi-formal seman-
tics for basic expressions that is easier to understand. Mathematically sophis-
ticated readers who understand the less formal exposition should be able to fill
in the missing formal details.

16.2.3 Action Operators

A transition function is an expression built from state functions using the prim-
ing operator (") and the other action operators of TLA™T listed in Table 3 on
page 269. A transition function assigns a value to every step, where a step is
a pair of states. In a transition function, an unprimed occurrence of a variable
x represents the value of z in the first (old) state, and a primed occurrence of
x represents its value in the second (new) state. For example, if state s assigns
the value 4 to = and state ¢ assigns the value 5 to z, then the transition function
z' — x assigns to the step s — t the value 5 — 4, which equals 1 (if — has its
usual definition).

An action is a Boolean-valued transition function, such as z’ > z. We say
that action A is true on step s — ¢, or that s — ¢ is an A step, iff A assigns the
value TRUE to s — t. An action is said to be walid iff it is true on any step.

The action operators of TLAT other than ’ have the following meanings,
where A and B are actions and e is a state function.

[A], = AV (e =¢)
() 2 AN(e £e)

ENABLED A is the state function that is true in state s iff there is some state
t such that s — t is an A step.

A 1
UNCHANGED e = e = ¢
A - B is the action that is true on step s — ¢ iff there is a state u such that
s — uis an A step and u — ¢ is a B step.

Priming and the construct [A], are introduced in Section 2.2 (page 15); the
UNCHANGED operator is introduced on page 26 of Section 3.1; ENABLED is in-
troduced on page 97 of Section 8.4; the construct (A4), is defined on page 91 of
Section 8.1; and the action-composition operator “-” is introduced in Section 7.3
(page 76).



16.2. NONCONSTANT OPERATORS

313

Formal Semantics

A basic transition function is a basic expression that does not contain any tem-
poral operators. The meaning of a basic transition function e is an assignment
of a basic constant expression (s, t)[e] to any pair of states (s,t). (We use here
the more conventional notation (s, t) instead of s — ¢.) A transition function
is valid iff (s, t)[e] is valid, for all states s and ¢.

If e is a basic state function, then we interpret e as a basic transition function
by defining (s, t)[e] to equal s[e]. As indicated above, UNCHANGED and the
constructs [A], and (A). are defined in terms of priming. To define the meanings
of the remaining action operators, we first define existential quantification over
all states. Let IsAState be an operator such that IsAState(s) is true iff s is a
state—that is, a function whose domain is the set of all variable names. (It’s easy
to define IsAState using the operator IsA Fen, defined on page 303.) Existential
quantification over all states is then defined by

Jstate S 1 p = Is: IsAState(s) A p

for any formula p. The meanings of all transition functions and all state functions
(including ENABLED expressions) is then defined inductively by the definitions
already given and the following definitions of the remaining action operators:

/ A

e is the transition function defined by (s,t)[e’] = t[e] for any state
function e.

ENABLED A is the state function defined by
S[ENABLED A] = Jguatet: (s, t)[A]

for any transition function A.

A - B is the transition function defined by
(s,t)[A-B] = Fgatew: (s, u)[A] A (u,t)[B]
for any transition functions A and B.

The formal semantics talks about transition functions, not actions. Since TLA™
is typeless, there is no formal distinction between an action and an arbitrary
transition function. We could define an action A to be a transition function such
that (s, t)[A] is a Boolean for all states s and ¢. However, what we usually mean
by an action is a transition function A such that (s, ¢)[A] is a Boolean whenever
s and t are reachable states of some specification. For example, a specification
with a variable b of type BOOLEAN might contain an action b A (y' = y). We

Types are ex-
plained on
page 25.

can calculate the meaning of ENABLED (b A (y’' = y)) as follows:
S[ENABLED (b A (v' = y))]
Fstate t 2 (s, )[OA (¥ = y)] By definition of ENABLED.

= Fgtate t : (s, )[O] A ({s,t)
= Jstate t 1 s[b] A (t[y] = s[y])

for any state function e.

)
[[y/]] = <5, t)[[y]]) By definition of A and =.

By definition of /, since (s, ¢)[e] = s[e],



314 CHAPTER 16. THE OPERATORS OF TLA"

If s[b] is a Boolean, we can now continue the calculation as follows.

Elstatet : 5[[b]] A (tﬂy]] = sﬂy]])
e S[[b]] A gtate t ¢ (t[[y]] = Sﬂyﬂ) By predicate logic, since ¢ does not occur in s[b].

= S[[b]] The existence of ¢ is obvious—for example, let it equal s.

Hence, s[ENABLED (b A (y' = y))] equals s[b], if s[b] is a Boolean. However, if
s is a state that assigns the value 2 to the variable b and the value —7 to the
variable y, then

S[ENABLED (b A (¥ = 9))] = Fstate t : 2A (t[y] = —7)

The last expression may or may not equal 2. (See the discussion of the in-
terpretation of the Boolean operators in Section 16.1.3 on page 296.) If the
specification we are writing makes sense, it can depend on the meaning of
ENABLED (b A (y' = y)) only for states in which the value of b is a Boolean.
We don’t care about its value in a state that assigns to b the value 2, just as we
don’t care about the value of 3/z in a state that assigns the value “abc” to z.
See the discussion of silly expressions in Section 6.2 (page 67).

16.2.4 Temporal Operators

As explained in Section 8.1, a temporal formula F' is true or false for a behavior,
where a behavior is a sequence of states. Syntactically, a temporal formula is
defined inductively to be a state predicate or a formula having one of the forms
shown in Table 4 on page 269, where e is a state function, A is an action,
and F and G are temporal formulas. All the temporal operators in Table 4
are explained in Chapter 8—except for >, which is explained in Section 10.7
(page 156).

The formula OF is true for a behavior ¢ iff the temporal formula F is true
for o and all suffixes of 0. To define the constructs O[A]. and O(A)., we regard
an action B to be a temporal formula that is true of a behavior o iff the first
two states of o form a B step. Thus, O[A]. is true of o iff every successive pair
of states of o is a [A]. step. All the other temporal operators of TLA™T, except
3,V, and >, are defined as follows in terms of O:

OF = -O0-F

WF,.(4) = OO0-(ENABLED (A).)V OO(A),
SF.(A) = OO=(ENABLED (A).) VvV OO(A),
F~ G = 0OF = 0G)

The temporal existential quantifier 3 is a hiding operator, Iz : F' meaning
formula F with the variable z hidden. To define this more precisely, we first
define fo to be the (possibly finite) sequence of states obtained by removing



16.2. NONCONSTANT OPERATORS

315

from o all stuttering steps—that is, by removing any state that is the same as
the previous one. We then define o ~, 7 to be true iff fo and 7 are the same
except for the values that their states assign to the variable z. Thus, o~ T
is true iff o can be obtained from 7 (or vice-versa) by adding and/or removing
stuttering steps and changing the values assigned to x by its states. Finally,
Jz: F is defined to be true for a behavior o iff F is true for some behavior 7
such that o~ 7.
The temporal universal quantifier V is defined in terms of 3 by

Vz:F = -3z :-F)

The formula F %> G asserts that G does not become false before F' does.
More precisely, we define a formula H to be true for a finite prefix p of a behavior
o iff H is true for some (infinite) behavior that extends p. (In particular, H is
true of the empty prefix iff H satisfies some behavior.) Then F %> G is defined
to be true for a behavior o iff (i) F = G is true for o and (ii) for every finite
prefix p of o, if F' is true for p then G is true for the prefix of o that is one state
longer than p.

Formal Semantics

Formally, a behavior is a function from the set Nat of natural numbers to states.
(We think of a behavior o as the sequence (0], o[1], ... of states.) The meaning
of a temporal formula is a predicate on behaviors—that is, a mapping from
behaviors to Booleans. We write o |= F for the value that the meaning of F
assigns to the behavior o. The temporal formula F' is valid iff o | F is true,
for all behaviors o.

Above, we have defined all the other temporal operators in terms of O, 3,
and “>. Formally, since an action is not a temporal formula, the construct O[A4],
is not an instance of the temporal operator O, so its meaning should be defined
separately. The construct &(A)., which is similarly not an instance of <, is
then defined to equal —0O[—A]..

To define the meaning of O, we first define 0" to be the behavior obtained
by deleting the first n states of o:

o™ = [i e Nat — oli + n]]

We then define the meaning of O as follows, for any temporal formula F', tran-
sition function A and state function e:

o OF
o = 0O[A],

VnéeNat : o™ F
Vn € Nat : {o|n],o[n + 1])[[4].]

1> e

Instead of writing
o; as in Chap-
ter 8, we use here
the standard
functional nota-
tion o|z].



316 CHAPTER 16. THE OPERATORS OF TLA"

To formalize the definition of 3 given above, we first define f as follows, letting
f be the function such that o[n] = fo[f[n]], for all n:

to0 = LET fln€ Nat] = 1F n=0 THEN 0
ELSE IF o[n]=o[n —1]
THEN f[n — 1]
ELSE f[n—1]+1
S = {f[n] : n € Nat}
IN [n €S — o[CHOOSE i € Nat : f[i] = n]]

Next, let s,., be the state that is the same as state s except that it assigns to
the variable z the value v. We then define ~, by:

A
o~y T = o= [n € DOMAIN IT — T4 poln][o]]

We next define existential quantification over behaviors. This is done much as we
defined quantification over states on page 313 above; we first define IsA Behavior
so that IsABehavior(o) is true iff o is a behavior, and we then define:

Jpehavier 0 : F = Fo : IsABehavior(o) A F
We can now define the meaning of 3 by:
O’)ZH..’ZZ:F 2 Fpehavior T : (UNZT)/\(T':F)

Finally, we define the meaning of > as follows:

A

cEF®>G =
LET PrefizSat(n, H) =
Fpehavior T : AV €0 .. (n—1): 7[i] = oli]
ANTEH
IN ANolE=F=G
AY¥n € Nat : PrefizSat(n, F) = PrefizSat(n + 1, G)



Chapter 17

The Meaning of a Module

Chapter 16 defines the meaning of the built-in TLA™T operators. In doing so, it
defines the meaning of a basic expression—that is, of an expression containing
only built-in operators, declared constants, and declared variables. We now
define the meaning of a module in terms of basic expressions. Since a TLAT
specification consists of a collection of modules, this defines the semantics of
TLA™.

We also complete the definition of the syntax of TLAT by giving the remain-
ing context-dependent syntactic conditions not described in Chapter 15. Here’s
a list of some illegal expressions that satisfy the grammar of Chapter 15, and
where in this chapter you can find the conditions that make them illegal.

o F(z), if F is defined by F(z,y) = z+y (Section 17.1)
o (/' +1) (Section 17.2)

e z + 1, if x is not defined or declared (Section 17.3)

o F £ 0, if F is already defined (Section 17.5)

This chapter is meant to be read in its entirety. To try to make it as readable
as possible, I have made the exposition somewhat informal. Wherever I could,
I have used examples in place of formal definitions. The examples assume that
you understand the approximate meanings of the TLA™T constructs, as explained
in Part I. T hope that mathematically sophisticated readers will see how to fill
in the missing formalism.

17.1 Operators and Expressions

Because it uses conventional mathematical notation, TLA' has a rather rich
syntax, with several different ways of expressing the same basic type of math-

317



318 CHAPTER 17. THE MEANING OF A MODULE

ematical operation. For example, the following expressions are all formed by
applying an operator to a single argument e:

Len(e) —e {e} e’

This section develops a uniform way of writing all these expressions, as well as
more general kinds of expressions.

17.1.1 The Order and Arity of an Operator

An operator has an arity and an order. An operator’s arity describes the number

and order of its arguments. It’s the arity of the Len operator that tells us Len is defined in
that Len(s) is a legal expression, while Len(s,t) and Len(+) are not. All the the Sequences
operators of TLA™, whether built-in or defined, fall into three classes: Oth-, mOdu?if n

1st-, and 2nd-order operators.! Here is how these classes, and their arities, are pagtlees
defined:

0. E = 2/ +y defines E to be the Oth-order operator 2’ + y. A Oth-order
operator takes no arguments, so it is an ordinary expression. We represent
the arity of such an operator by the symbol _ (underscore).

1. F(z,y) = zU{z,y} defines F to be a lst-order operator. For any expres-
sions e and es, it defines F'(eq, e2) to be an expression. We represent the
arity of F by (—, _).

In general, a 1st-order operator takes expressions as arguments. Its arity
is the tuple (_,..., _), with one _ for each argument.

2. G(f(=, =), z,y) = f(z,{z,y}) defines G to be a 2nd-order operator. The

operator G takes three arguments: its first argument is a 1st-order op-
erator that takes two arguments; its last two arguments are expressions.
For any operator Op of arity (_, —), and any expressions e; and es,
this defines G(Op, e1, e2) to be an expression. We say that G has arity
((— =) = =)
In general, the arguments of a 2nd-order operator may be expressions
or lst-order operators. A 2nd-order operator has an arity of the form
(ai,...,an), where each a; is either — or (_,..., =). (We can consider
a lst-order operator to be a degenerate case of a 2nd-order operator.)

It would be easy enough to define 3rd- and higher-order operators. TLA™ does
not permit them because they are of little use and would make it harder to check
level-correctness, which is discussed in Section 17.2 below.

IEven though it allows 2nd-order operators, TLAT is still what logicians call a first-order
logic because it permits quantification only over Oth-order operators. A higher-order logic
would allow us to write the formula 3z (_) : exp.



17.1. OPERATORS AND EXPRESSIONS

319

17.1.2 )\ Expressions

When we define a Oth-order operator £ by E = exp, we can write what the
operator F equals—it equals the expression exp. We can explain the meaning
of this definition by saying that it assigns the value exp to the symbol E. To
explain the meaning of an arbitrary TLA™ definition, we need to be able to write
what a 1st- or 2nd-order operator equals—for example, the operator F' defined
by

A
Flz,y) = zU{zy}
TLA™ provides no way to write an expression that equals this operator F. (A
TLA™ expression can equal only a Oth-order operator.) We therefore generalize
expressions to A expressions, and we write the operator that F' equals as the A
expression:

Az,y: zU{z,y}

The symbols z and y in this A expression are called A\ parameters. We use A
expressions only to explain the meaning of TLA™ specifications; we can’t write
a A expression in TLA™.

We also allow 2nd-order A expressions, where the operator G defined by

G(f(=, =)z y) = fly{z.2})

is equal to the \ expression

A7) A f(—, =), @y f(y. {2, 2})

The general form of a A\ expression is Api,...,pn: exp, where exp is a
A expression, each parameter p; is either an identifier id; or has the form
id;(—, ..., —), and the id; are all distinct. We call id; the identifier of the
A parameter p;. We consider the n = 0 case, the A expression A: exp with no
parameters, to be the expression exp. This makes a A expression a generalization
of an ordinary expression.

A )\ parameter identifier is a bound identifier, just like the identifier z in
Vz: F. As with any bound identifiers, renaming the \ parameter identifiers in a
A expression doesn’t change the meaning of the expression. For example, (17.1)
is equivalent to

A abe(—, ), qg, m : abc(m,{qq, z})

For obscure historical reasons, this kind of renaming is called a conversion.

If Op is the X\ expression Api,...,p,: exp, then Op(ey,...,e,) equals the
result of replacing the identifier of the A parameter p; in exp with e;, for all ¢
in 1 .. n. For example,

MNz,y : 2U{z,y}) (TT,w+2) = TTU{z,(w+2)}

This procedure for evaluating the application of a A expression is called (§ re-
duction.



320 CHAPTER 17. THE MEANING OF A MODULE

17.1.3 Simplifying Operator Application

To simplify the exposition, I assume that every operator application is written in
the form Op(ey,...,e,). TLAT provides a number of different syntactic forms
for operator application, so I have to explain how they are translated into this
simple form. Here are all the different forms of operator application and their
translations.

e Simple constructs with a fixed number of arguments, including infix oper-
ators like +, prefix operators like ENABLED , and constructs like WF, func-
tion application, and 1F/THEN/ELSE. These operators and constructs pose
no problem. We can write +(a, b) instead of a + b, IfThenElse(p, ey, e3)
instead of

IF p THEN e; ELSE es

and Apply(f, e) instead of f[e]. An expression like a 4+ b + ¢ is an abbre-
viation for (a + b) + ¢, so it can be written +(+(a, b), ¢).

e Simple constructs with a variable number of arguments—for example,
{e1,...,e,} and [h1 — e1,..., h, — €,]. We can consider each of these
constructs to be repeated application of simpler operators with a fixed
number of arguments. For example,

{e1, ..., ent = {ertU ... U{en}
[h1'—>61,...7hn'—>€n] = [thel]@@@@[hnHen]

where @QQ is defined in the TLC module, on page 248. Of course, {e}
can be written Singleton(e) and [h +— e] can be written Record(“h”, e).
Note that an arbitrary CASE expression can be written in terms of CASE
expressions of the form

CASE p — eOq— f
using the relation:
CASE p; — e 0O ...0p, — e, =
CASE p1 — €1 O (pa V...V p,) — (CASE ps — e2 0 ... Op, — ey,)
e Constructs that introduce bound variables—for example,
JzeS:z+z>y
We can rewrite this expression as
EzistsIn(S, A z:x+ 2z > y)

where FEzistsIn is a 2nd-order operator of arity (—, (—) ). All the variants
of the 3 construct can be represented as expressions using either 3z € S: e
or 3z :e. (Section 16.1.1 shows how these variants can be translated into
expressions using only 3z : e, but those translations don’t maintain the



17.2. LEVELS

321

scoping rules—for example, rewriting 3z € S:easJz:(x € §) A e moves
S inside the scope of the bound variable z.)

All other constructs that introduce bound variables, such as {x € S : exp},
can similarly be expressed in the form Op(ey,...,e,) using A expressions
and 2nd-order operators Op. (Chapter 16 explains how to express con-
structs like {(z,y) € S: exp}, that have a tuple of bound identifiers, in
terms of constructs with ordinary bound identifiers.)

e Operator applications such as M (z)! Op(y, z) that arise from instantiation.
We write this as M! Op(z, y, 2).

e LET expressions. The meaning of a LET expression is explained in Sec-
tion 17.4 below. For now, we consider only LET-free A expressions—ones
that contain no LET expressions.

For uniformity, I will call an operator symbol an identifier, even if it is a symbol
like + that isn’t an identifier according to the syntax of Chapter 15.

17.1.4 Expressions

We can now inductively define an expression to be either a Oth-order operator, or

to have the form Op(e,...,e,) where Op is an operator and each e; is either
an expression or a lst-order operator. The expression must be arity-correct,
meaning that Op must have arity (a1,...,a,), where each a; is the arity of e;.

In other words, e; must be an expression if a; equals _, otherwise it must be
a lst-order operator with arity a,. We require that Op not be a A expression.
(If it is, we can use (3 reduction to evaluate Op(eq,..., e,) and eliminate the A
expression Op.) Hence, a A\ expression can appear in an expression only as an
argument of a 2nd-order operator. This implies that only 1st-order A expressions
can appear in an expression.

We have eliminated all bound identifiers except the ones in A expressions. We
maintain the TLAT requirement that an identifier that already has a meaning
cannot be used as a bound identifier. Thus, in any A expression A p1,..., py : €xp,
the identifiers of the parameters p; cannot appear as parameter identifiers in any
A expression that occurs in exp.

Remember that A expressions are used only to explain the semantics of TLAT.
They are not part of the language, and they can’t be used in a TLA™ specifica-
tion.

17.2 Levels

TLA™T has a class of syntactic restrictions that come from the underlying logic
TLA and have no counterpart in ordinary mathematics. The simplest of these is



322 CHAPTER 17. THE MEANING OF A MODULE

that “double-priming” is prohibited. For example, (z’ 4+ y)’ is not syntactically
well-formed, and is therefore meaningless, because the operator ’ (priming) can
be applied only to a state function, not to a transition function like 2’ + 3. This
class of restriction is expressed in terms of levels.

In TLA, an expression has one of four basic levels, which are numbered 0,
1, 2, and 3. These levels are described below, using examples that assume z, y,
and ¢ are declared by

VARIABLES 1,y CONSTANT ¢
and symbols like + have their usual meanings.

0. A constant-level expression is a constant; it contains only constants and
constant operators. Example: ¢ + 3.

1. A state-level expression is a state function; it may contain constants, con-
stant operators, and unprimed variables. Example: z + 2 x c.

2. A transition-level expression is a transition function; it may contain any-
thing except temporal operators. Example: z’ + y > c.

3. A temporal-level expression is a temporal formula; it may contain any TLA
operator. Example: Oz’ > y + ]z, 4)-

Chapter 16 assigns meanings to all basic expressions—ones containing only the
built-in operators of TLA™ and declared constants and variables. The meaning
assigned to an expression depends as follows on its level.

0. The meaning of a constant-level basic expression is a constant-level basic
expression containing only primitive operators.

1. The meaning of a state-level basic expression e is an assignment of a con-
stant expression sfe] to any state s.

2. The meaning of a transition-level basic expression e is an assignment of a
constant expression (s, ¢)[e] to any transition s — ¢.

3. The meaning of a temporal-level basic expression F' is an assignment of a
constant expression o |= F to any behavior o.

An expression of any level can be considered to be an expression of a higher level,
except that a transition-level expression is not a temporal-level expression.? For
example, if z is a declared variable, then the state-level expression z > 2 is the

2More precisely, a transition-level expression that is not a state-level expression is not a
temporal-level expression.



17.2. LEVELS

323

temporal-level formula such that o = z is the value of z > 2 in the first state of
o, for any behavior o.3

A set of simple rules inductively defines whether a basic expression is level-
correct and, if so, what its level is. Here are some of the rules:

e A declared constant is a level-correct expression of level 0.

A declared variable is a level-correct expression of level 1.

o If Op is declared to be a 1lst-order constant operator, then the expression
Op(eq,...,eyn) is level-correct iff each e; is level correct, in which case its
level is the maximum of the levels of the e;.

e ¢1 € ey is level correct iff e; and e are, in which case its level is the
maximum of the levels of e; and es.

e ¢’ is level-correct, and has level 2, iff e is level-correct and has level at
most 1.4

e ENABLED e is level-correct, and has level 1, iff e is level-correct and has
level at most 2.

e Jz: e is level-correct, and has level [, iff e is level-correct and has level [,
when z is considered to be a declared constant.

e dz:e is level-correct, and has level 3, iff e is level-correct and has any
level other than 2, when z is considered to be a declared variable.

There are similar rules for the other TLA™T operators.

A useful consequence of these rules is that level-correctness of a basic expres-
sion does not depend on the levels of the declared identifiers. In other words,
an expression e is level-correct when c is declared to be a constant iff it is level-
correct when c¢ is declared to be a variable. Of course, the level of e may depend
on the level of c.

We can abstract these rules by generalizing the concept of a level. So far, we
have defined the level only of an expression. We can define the level of a 1st- or
2nd-order operator Op to be a rule for determining the level-correctness and level
of an expression Op(eq,...,e,) as a function of the levels of the arguments e;.
The level of a 1st-order operator is a rule, so the level of a 2nd-order operator Op
is a rule that depends in part on rules—namely, on the levels of the arguments
that are operators. This makes a rigorous general definition of levels for 2nd-
order operators rather complicated. Fortunately, there’s a simpler, less general

3The expression x + 2 can be considered to be a temporal-level expression that, like the
temporal-level expression O(z + 2), is silly. (See the discussion of silliness in Section 6.2 on
page 67.)

4If e is a constant expression, then e’ equals e, so we could consider e’ to have level 0. For
simplicity, we consider e’ to have level 2 even if e is a constant.



324 CHAPTER 17. THE MEANING OF A MODULE

definition that handles all the operators of TLAT. Even more fortunately, you
don’t have to know it, so I won’t bother writing it down. All you need to know
is that there exists a way of assigning a level to every built-in operator of TLA™.
The level-correctness and level of any basic expression is then determined by
those levels and the levels of the declared identifiers that occur in the expression.

One important class of operator levels are the constant levels. Any expression
built from constant-level operators and declared constants has constant level.
The built-in constant operators of TLA™, listed in Tables 1 and 2 (pages 268 and
269) all have constant level. Any operator defined solely in terms of constant-
level operators and declared constants has constant level.

We now extend the definition of level-correctness from expressions to A ex-
pressions. We define the A\ expression Apq,...,p, : exp to be level-correct iff exp
is level-correct when the A parameter identifiers are declared to be constants
of the appropriate arity. For example, Ap, ¢(—): exp is level-correct iff exp is
level-correct with the additional declaration:

CONSTANTS p, q(_)

This inductively defines level-correctness for A expressions. The definition is
reasonable because, as observed a few paragraphs ago, the level-correctness of
erp doesn’t depend on whether we assign level 0 or 1 to the A\ parameters. One
can also define the level of an arbitrary A expression, but that would require the
general definition of the level of an operator, which we want to avoid.

17.3 Contexts

Syntactic correctness of a basic expression depends on the arities of the declared
identifiers. The expression Foo = {} is syntactically correct if Foo is declared to
be a variable, and hence of arity _, but not if it’s declared to be a (1st-order)
constant of arity (_). The meaning of a basic expression also depends on the
levels of the declared identifiers. We can’t determine those arities and levels just
by looking at the expression itself; they are implied by the context in which the
expression appears. A nonbasic expression contains defined as well as declared
operators. Its syntactic correctness and meaning depend on the definitions of
those operators, which also depend on the context. This section defines a precise
notion of a context.

For uniformity, built-in operators are treated the same as defined and de-
clared operators. Just as the context might tell us that the identifier z is a
declared variable, it tells us that € is declared to be a constant-level operator
of arity ( —, —) and that ¢ is defined to equal \a, b:—(€ (a, b)). We assume a
standard context that specifies all the built-in operators of TLAT.

To define contexts, let’s first define declarations and definitions. A declara-
tion assigns an arity and level to an operator name. A definition assigns a LET-
free A expression to an operator name. A module definition assigns the meaning



17.4. THE MEANING OF A A\ EXPRESSION

325

of a module to a module name, where the meaning of a module is defined in
Section 17.5 below.? A context consists of a set of declarations, definitions, and
module definitions such that:

C1. An operator name is declared or defined at most once by the context.
(This means that it can’t be both declared and defined.)

C2. No operator defined or declared by the context appears as the identifier of
a \ parameter in any definition’s expression.

C3. Every operator name that appears in a definition’s expression is either a
A parameter’s identifier or is declared (not defined) by the context.

C4. No module name is assigned meanings by two different module definitions.

Module and operator names are handled separately. The same string may be
both a module name that is defined by a module definition and an operator
name that is either declared or defined by an ordinary definition.

Here is an example of a context that declares the symbols U, a, b, and €,
defines the symbols ¢ and foo, and defines the module Naturals:

(17.2) {U:(_,_), a:—, b:_, €:(_,_), c¢=U(ab),
foo = \p, q(~) : €(p,U(q(b),a)), Naturals Z ...}

Not shown are the levels assigned to the operators U, a, b, and € and the
meaning assigned to Naturals.

If C is a context, a C-basic A expression is defined to be a A\ expression that
contains only symbols declared in C (in addition to A parameters). For example,
Az : €(z, U(a, b)) is a C-basic A expression if C is the context (17.2). However,
neither N(a, b) nor Az : ¢(z,b) is a C-basic A expression because neither N nor
¢ is declared in C. (The symbol c¢ is defined, not declared, in C.) A C-basic A
expression is syntactically correct if it is arity- and level-correct with the arities
and levels assigned by C to the expression’s operators. Condition C3 states that
if Op £ exp is a definition in context C, then exp is a C-basic A expression. We
add to C3 the requirement that it be syntactically correct.

We also allow a context to contain a special definition of the form Op =7
that assigns to the name Op an “illegal” value 7 that is not a A expression. This
definition indicates that, in the context, it is illegal to use the operator name Op.

17.4 The Meaning of a A\ Expression

We now define the meaning C[e] of a A expression e in a context C to be a
C-basic A expression. If e is an ordinary (nonbasic) expression, and C is the

5The meaning of a module is defined in terms of contexts, so these definitions appear to
be circular. In fact, the definitions of context and of the meaning of a module together form
a single inductive definition.



326 CHAPTER 17. THE MEANING OF A MODULE

context that specifies the built-in TLA T operators and declares the constants and
variables that occur in e, then this will define C[e] to be a basic expression. Since
Chapter 16 defines the meaning of basic expressions, this defines the meaning of
an arbitrary expression. The expression e may contain LET constructs, so this
defines the meaning of LET, the one operator whose meaning is not defined in
Chapter 16.

Basically, C[e] is obtained from e by replacing all defined operator names
with their definitions, and then applying 8 reduction whenever possible. Recall
that (8 reduction replaces

(A p1,-. ypn : exp)(er,...,ep)

with the expression obtained from exp by replacing the identifier of p; with e;,
for each i. The definition of C[[e] does not depend on the levels assigned by the
declarations of C. So, we ignore levels in the definition. The inductive definition
of C[e] consists of the following rules:

e If e is an operator symbol, then C[e] equals (i) e if e is declared in C, or
(ii) the A expression of e’s definition in C if e is defined in C.

o If e is Op(ey,...,en), where Op is declared in C, then C[e] equals the
expression Op(C[e1],...,Clexn]).

e If eis Op(ey,...,ey,), where Op is defined in C to equal the A expression
d, then C[e] equals the 3 reduction of d(C[ei],...,C[en]), where d is
obtained from d by a conversion (replacement of A parameters) so that no
A parameter’s identifier appears in both d and some C[e;].

o If e is Ap1,...,pn : exp, then Cle] equals Apy,...,p,: D[exp], where D
is the context obtained by adding to C the declarations that, for each i
in 1.. n, assign to the i*® \ parameter’s identifier the arity determined
by p;.

o If e is where d is a A expression and ezp an expression, then C[e] equals
Dlexp], where D is the context obtained by adding to C the definition that
assigns C[d] to Op.

o If eis

LET Op(pi,...,pn) = INSTANCE ... IN exp

then C[e] equals D[exp], where D is the new current context obtained by
“evaluating” the statement

Op(p1,-..,pn) = INSTANCE ...

in the current context C, as described in Section 17.5.5 below.

The last two conditions define the meaning of any LET construct, because:



17.5. THE MEANING OF A MODULE

327

The operator definition Op(p1,...,pn) £ d in a LET means:

Op = )\plw"apn:d

A function definition Op[z € S] = d in a LET means:

Op = CHOOSE Op : Op =[z € S — d]

The expression LET Op; = dy ... Op, = d,, IN exp is defined to equal

LET Op; = d; IN (LET ... IN (LET Op, = d,, IN exp)...)

The A expression e is defined to be legal (syntactically well-formed) in the con-
text C iff these rules define C[e] to be a legal C-basic expression.

17.5

The Meaning of a Module

The meaning of a module depends on a context. For an external module, which
is not a submodule of another module, the context consists of declarations and
definitions of all the built-in operators of TLA™T, together with definitions of
some other modules. Section 17.7 below discusses where the definitions of those
other modules come from.

The meaning of a module in a context C consists of six sets:

Dcl

GDef

LDef

MDef

Ass

Thm

A set of declarations. They come from CONSTANT and VARIABLE dec-
larations and declarations in extended modules (modules appearing
in an EXTENDS statement).

A set of global definitions. They come from ordinary (non-LOCAL)
definitions and global definitions in extended and instantiated mod-
ules.

A set of local definitions. They come from LOCAL definitions and
LOCAL instantiations of modules. (Local definitions are not obtained
by other modules that extend or instantiate the module.)

A set of module definitions. They come from submodules of the mod-
ule and of extended modules.

A set of assumptions. They come from ASSUME statements and from
extended modules.

A set of theorems. They come from THEOREM statements, from the-
orems in extended modules, and from the assumptions and theorems
of instantiated modules, as explained in Section 17.5.5 below.



328 CHAPTER 17. THE MEANING OF A MODULE

The A expressions of definitions in GDef and LDef, as well as the expressions
in Ass and Thm, are (C U Dcl)-basic A\ expressions. In other words, the only
operator symbols they contain (other than A parameter identifiers) are ones
declared in C or in Decl.

The meaning of a module in a context C is defined by an algorithm for
computing these six sets. The algorithm processes each statement in the module
in turn, from beginning to end. The meaning of the module is the value of those
sets when the end of the module is reached.

Initially, all six sets are empty. The rules for handling each possible type of
statement are given below. In these rules, the current context CC is defined to
be the union of C, Dcl, GDef, LDef, and MDef.

When the algorithm adds elements to the context CC, it uses « conver-
sion to ensure that no defined or declared operator name appears as a A\ pa-
rameter’s identifier in any A expression in CC. For example, if the definition
foo = Xz :z + 1 is in LDef, then adding a declaration of x to Dcl requires «
conversion of this definition to rename the A\ parameter identifier z. This «
conversion is not explicitly mentioned.

17.5.1 Extends

An EXTENDS statement has the form
EXTENDS Mq,..., M,

where each M; is a module name. This statement must be the first one in
the module. The statement sets the values of Dcl, GDef, MDef, Ass, and Thm
equal to the union of the corresponding values for the module meanings assigned
by C to the module names M ;.

This statement is legal iff the module names M, are all defined in C, and
the resulting current context CC does not assign more than one meaning to any
symbol. More precisely, if the same symbol is defined or declared by two or more
of the M ;, then those duplicate definitions or declarations must all have been
obtained through a (possibly empty) chains of EXTENDS statements from the
same definition or declaration. For example, suppose M; extends the Naturals
module, and M5 extends M. Then the three modules Naturals, M, and Mo
all define the operator 4+. The statement

EXTENDS Naturals, M1, Mo

can still be legal, because each of the three definitions is obtained by a chain of
EXTENDS statements (of length 0, 1, and 2, respectively) from the definition of
+ in the Naturals module.

When decomposing a large specification into modules, we often want a mod-
ule M to extend modules My, ..., M,,, where the M; have declared constants



17.5. THE MEANING OF A MODULE 329

and/or variables in common. In this case, we put the common declarations in a
module P that is extended by all the M ;.

17.5.2 Declarations

A declaration statement has one of the forms
CONSTANT €1,...,Cp VARIABLE 01, ..., Up

where each v; is an identifier and each ¢; is either an identifier or has the form
Op(—,..., -), for some identifier Op. This statement adds to the set Dcl the
obvious declarations. It is legal iff none of the declared identifiers is defined or
declared in CC.

17.5.3 Operator Definitions

A global operator definition® has one of the two forms

1>

Op exp Op(p1,.-. pn) = exp

where Op is an identifier, exp is an expression, and each p; is either an identifier
or has the form P(_,..., _), where P is an identifier. We consider the first
form an instance of the second with n = 0.

This statement is legal iff Op is not declared or defined in CC and the A
expression Api,..., Dy, : ezp is legal in context CC. In particular, no A parameter
in this \ expression can be defined or declared in CC. The statement adds to
GDef the definition that assigns to Op the A\ expression CC[Ap1, ...,y : exp].

A local operator definition has one of the two forms

LOCAL Op = exp LOCAL Op(p1,...,pn) = eap

It is the same as a global definition, except that it adds the definition to LDef
instead of GDef.

17.5.4 Function Definitions

A global function definition has the form

Oplfenargs] = exp

6 An operator definition statement should not be confused with a definition clause in a LET
expression. The meaning of a LET expression is described in Section 17.4.



330 CHAPTER 17. THE MEANING OF A MODULE

where fcnargs is a comma-separated list of elements, each having the form
Idy,...,Id, € S or (Idy,...,Id,) € S. Tt is equivalent to the global operator
definition

Op = CHOOSE Op : Op = [fenargs — exp]
A local function definition, which has the form
LOCAL Oplfcnargs] = exp

is equivalent to the analogous local operator definition.

17.5.5 Instantiation

We consider first a global instantiation of the form:
(17.3) I(p1,...,pm) = INSTANCE N WITH q1 < €1,...,(n < €n

For this to be legal, N must be a module name defined in CC. Let NDcl, NDef,
NAss, and NThm be the sets Dcl, GDef, Ass, and Thm in the meaning assigned
to N by CC. The ¢; must be distinct identifiers declared by NDcl. We add a
WITH clause of the form Op < Op for any identifier Op that is declared in NDcl
but is not one of the ¢;, so the ¢; constitute all the identifiers declared in NDcl.

Neither I nor any of the identifiers of the definition parameters p; may be
defined or declared in CC. Let D be the context obtained by adding to CC the
obvious constant-level declaration for each p;. Then e; must be syntactically
well-formed in the context D, and D[e;] must have the same arity as ¢;, for
eachiel..n.

The instantiation must also satisfy the following level-correctness condition.
Define module N to be a constant module iff every declaration in NDcl has
constant level, and every operator appearing in every definition in NDef has
constant level. If N is not a constant module, then for each ¢ in 1 .. n:

e If ¢; is declared in NDcl to be a constant operator, then D[e;] has constant
level.

e If ¢; is declared in NDcl to be a variable (a Oth-order operator of level 1),
then D[e;] has level 0 or 1.

The reason for this condition is explained in Section 17.8 below.
For each definition Op = \rq, ..., Tp : e in NDef, the definition

(17.4) I'Op = X p1, ..o\ P, Ti, ..., Tp 1 €

is added to GDef, where € is the expression obtained from e by substituting e;
for g;, for all i € 1 .. n. Before doing this substitution, a conversion must be



17.5. THE MEANING OF A MODULE

331

applied to ensure that CC is a correct context after the definition of I'! Op is added
to GDef. The precise definition of € is a bit subtle; it is given in Section 17.8
below. We require that the A expression in (17.4) be level-correct. (If N is
a nonconstant module, then level-correctness of this A\ expression is implied
by the level condition on parameter instantiation described in the preceding
paragraph.) Legality of the definition of Op in module N and of the WITH
substitutions implies that the A expression is arity-correct in the current context.
Remember that I!'Op(ci,...,cm,d1,...,dy,) is actually written in TLAT as
I(cr,. .., em)! Op(dy, ..., dy).

Also added to GDef is the special definition I = ?. This prevents I from
later being defined or declared as an operator name.

If NAss equals the set {Aq,..., Ax} of assumptions, then for each theorem
T in NThm, we add to Thm the theorem

AN NA, = T

(As above, T and the A; are obtained from 7T and the A4; by substituting e; for
¢i, foreach ¢in 1 .. k.)
A global INSTANCE statement can also have the two forms:

I £ INSTANCE N WITH ¢1 < €1, ..., qn < €n
INSTANCE N WITH ¢1 < €1, ..., (n < €y

The first is just the m = 0 case of (17.3); the second is similar to the first,
except the definitions added to GDef do not have I'! prepended to the operator
names. The second form also has the legality condition that none of the defined
symbols in N may be defined or declared in the current context, except in the
following case. An operator definition may be included multiple times through
chains of INSTANCE and EXTENDS statements if it is defined in a module” having
no declarations. For example, suppose the current context contains a definition
of 4+ obtained through extending the Naturals module. Then an INSTANCE N
statement is legal even though N also extends Naturals and therefore defines
+. Because the Naturals module declares no parameters, instantiation cannot
change the definition of +.

In all forms of the INSTANCE statement, omitting the WITH clause is equiv-
alent to the case n = 0 of these statements. (Remember that all the declared
identifiers of module N are either explicitly or implicitly instantiated.)

A local INSTANCE statement consists of the keyword LOCAL followed by an
INSTANCE statement of the form described above. It is handled in a similar
fashion to a global INSTANCE statement, except that all definitions are added to
LDef instead of GDef.

7An operator J!Op is defined in the module that contains the J 2 INSTANCE... statement.



332 CHAPTER 17. THE MEANING OF A MODULE

17.5.6 Theorems and Assumptions
A theorem has one of the forms
THEOREM ezp THEOREM Op = exp

where ezrp is an expression, which must be legal in the current context CC.
The first form adds the theorem CClexp] to the set Thm. The second form is
equivalent to the two statements:

Op = exp
THEOREM Op

An assumption has one of the forms
A
ASSUME ezp ASSUME Op = exp

The expression exp must have constant level. An assumption is similar to a
theorem except that CC[exp] is added to the set Ass.

17.5.7 Submodules

A module can contain a submodule, which is a complete module that begins
with

[ MODULE N

for some module name N, and ends with

L J

This is legal iff the module name N is not defined in CC and the module is legal
in the context CC. In this case, the module definition that assigns to N the
meaning of the submodule in context CC is added to MDef.

A submodule can be used in an INSTANCE statement that appears either
later in the current module or in a module that extends the current module.
Submodules of a module M are not added to the set MDef of a module that
instantiates M.

17.6 Correctness of a Module

Section 17.5 above defines the meaning of a module to consist of the six sets Dcl,
GDef, LDef, MDef, Ass, and Thm. Mathematically, we can view the meaning
of a module to be the assertion that all the theorems in Thm are consequences
of the assumptions in Ass. More precisely, let A be the conjunction of all the



17.7. FINDING MODULES

333

assumptions in Ass. The module asserts that, for every theorem T in Thm, the
formula A = T is valid.®

An assumption or theorem of the module is a (CU Del)-basic expression. For
an outermost module (not a submodule), C declares only the built-in operators
of TLAT, and Dcl declares the declared constants and variables of the module.
Therefore, each formula A = T asserted by the module is a basic expression. We
say that the module is semantically correct if each of these expressions A = T
is a valid formula in the context Dcl. Chapter 16 defines what it means for a
basic expression to be a valid formula.

By defining the meaning of a theorem, we have defined the meaning of a
TLAT specification. Any mathematically meaningful question we can ask about
a specification can be framed as the question of whether a certain formula is a
valid theorem.

17.7 Finding Modules

For a module M to have a meaning in a context C, every module N extended or
instantiated by M must have its meaning defined in C—unless N is a submodule
of M or of a module extended by M. In principle, module M is interpreted in
a context containing declarations and definitions of the built-in TLA™ operator
names and module definitions of all modules needed to interpret M. In practice,
a tool (or a person) begins interpreting M in a context Cy initially containing
only declarations and definitions of the built-in TLA™T operator names. When
the tool encounters an EXTENDS or INSTANCE statement that mentions a module
named N not defined in the current context CC of M, the tool finds the module
named N, interprets it in the context Cgy, and then adds the module definition
for N to Co and to CC.

The definition of the TLAT language does not specify how a tool finds a
module named N. A tool will most likely look for the module in a file named
N .tla.

The meaning of a module depends on the meanings of the modules that it
extends or instantiates. The meaning of each of those modules in turn may
depend on the meanings of other modules, and so on. Thus, the meaning of
a module depends on the meanings of some set of modules. A module M is
syntactically incorrect if this set of modules includes M itself.

8In a temporal logic like TLA, the formula F = G is not in general equivalent to the
assertion that G is a consequence of assumption F'. However, the two are equivalent if F' is a
constant formula, and TLAT allows only constant assumptions.



334 CHAPTER 17. THE MEANING OF A MODULE

17.8 The Semantics of Instantiation

Section 17.5.5 above defines the meaning of an INSTANCE statement in terms

of substitution. I now define precisely how that substitution is performed and

explain the level-correctness rule for instantiating nonconstant modules.
Suppose that module M contains the statement

A
I = INSTANCE N WITH @1 < €1,...,Qpn < €4

where the ¢; are all the declared identifiers of module N, and that N contains
the definition

FZe
where no A parameter identifier in e is defined or declared in the current context
of M. The INSTANCE statement then adds to the current context of M the
definition

(17.5) I'F =<

where € is obtained from e by substituting e; for ¢;, for all i in 1 .. n.

A fundamental principle of mathematics is that substitution preserves valid-
ity; substituting in a valid formula yields a valid formula. So, we want to define
€ so that, if F' is a valid formula in N, then I!F is a valid formula in M.

A simple example shows that the level rule for instantiating nonconstant
modules is necessary to preserve the validity of F'. Suppose F' is defined to
equal O[c¢" = ¢|., where ¢ is declared in N to be a constant. Then F is a tem-
poral formula asserting that no step changes c. It is valid because a constant
has the same value in every state of a behavior. If we allowed an instantiation
that substitutes a variable z for the constant ¢, then I'!F would be the formula
O[z" = z],. This is not a valid formula because it is false for any behavior in
which the value of z changes. Since z is a variable, such a behavior obviously
exists. Preserving validity requires that we not allow substitution of a noncon-
stant for a declared constant when instantiating a nonconstant module. (Since
O and ’ are nonconstant operators, this definition of F can appear only in a
nonconstant module.)

In ordinary mathematics, there is one tricky problem in making substitution
preserve validity. Consider the formula

(17.6) (n € Nat) = (Im € Nat : m > n)

This formula is valid because it is true for any value of n. Now, suppose we
substitute m + 1 for n. A naive substitution that simply replaces n by m + 1
would yield the formula

(17.7) (m+1€ Nat) = (3m € Nat : m > m+1)



17.8. THE SEMANTICS OF INSTANTIATION

335

Since the formula 3m € Nat:m > m + 1 is equivalent to FALSE, (17.7) is obvi-
ously not valid. Mathematicians call this problem wvariable capture; m is “cap-
tured” by the quantifier 3 m. Mathematicians avoid it by the rule that, when
substituting for an identifier in a formula, one does not substitute for bound
occurrences of the identifier. This rule requires that m be removed from (17.6)
by « conversion before m + 1 is substituted for n.

Section 17.5.5 defines the meaning of the INSTANCE statement in a way that
avoids variable capture. Indeed, formula (17.7) is illegal in TLA™ because the
subexpression m + 1 € Nat is allowed only in a context in which m is defined or
declared, in which case m cannot be used as a bound identifier, so the subex-
pression dm ... is illegal. The o conversion necessary to produce a syntactically
well-formed expression makes this kind of variable capture impossible.

The problem of variable capture occurs in a more subtle form in certain
nonconstant operators of TLAT, where it is not prevented by the syntactic rules.
Most notable of these operators is ENABLED. Suppose z and y are declared
variables of module N, and F is defined by

F = ENABLED (z/ =0 A y' =1)

Then F is equivalent to TRUE, so it is valid in module N. (For any state s, there
exists a state ¢ in which z = 0 and y = 1.) Now suppose z is a declared variable
of module M, and let the instantiation be

I £ INSTANCE N WITH z « 2, y < 2
With naive substitution, I'! F' would equal
ENABLED (' =0 A 2/ =1)

which is equivalent to FALSE. (For any state s, there is no state ¢ in which z =0
and z = 1 are both true.) Hence, I'! F' would not be a theorem, so instantiation
would not preserve validity.

Naive substitution in a formula of the form ENABLED A does not preserve
validity because the primed variables in A are really bound identifiers. The
formula ENABLED A asserts that there exist values of the primed variables such
that A is true. Substituting 2z’ for ' and ¢’ in the ENABLED formula is really
substitution for a bound identifier. It isn’t ruled out by the syntactic rules of
TLAT because the quantification is implicit.

To preserve validity, we must define € in (17.5) so it avoids capture of iden-
tifiers implicitly bound in ENABLED expressions. Before performing the substi-
tution, we first replace the primed occurrences of variables in ENABLED expres-
sions with new variable symbols. That is, for each subexpression of e of the
form ENABLED A and each declared variable ¢ of module N, we replace every
primed occurrence of ¢ in A with a new symbol, which we write $¢, that does
not appear in A. This new symbol is considered to be bound by the ENABLED
operator. For example, the module



336 CHAPTER 17. THE MEANING OF A MODULE

[ MODULE N
VARIABLE
G(v,A) = ENABLED (AV ({u,v} = {u,v}))

A

H = (v =u)AG(u,u # u)

L

has as its global definitions the set:

= v, A : ENABLED (A V ({u, v} = {u,v})),
H = (u' =u) A BNABLED ((v/ # u) V ({u, u} = {u,u})) }
The statement
I = INSTANCE N WITH u «
adds the following definitions to the current module:
I'G
I'H

Av, A : ENABLED (A V ({$u, v} = {z,v}))
(' = z) A ENABLED (($u’ # z) V ({$u, $u} = {z,z}))

Observe that I!H does not equal (2’ = z) A I G(z,2" # z), even though H

equals (u' = u) A G(u,u' # u) in module N and the instantiation substitutes =
for w.

As another example, consider the module

A
A

[ MODULE N
VARIABLES U, v

A (v =u) A (v #v)

B(d) ENABLED d

c B(A)

e 1e 1

The instantiation
I = INSTANCE N WITH u « T,V T
adds the following definitions to the current module

NA = (¢ =2z)A (2 #z)
I'B = Xd : ENABLED d
I'C = ENABLED (($u' = z) A ($v' # z))
Observe that I!C is not equivalent to I'B(I!A). In fact, I!C = TRUE and
I'B(I!A) = FALSE.
We say that instantiation distributes over an operator Op if

Op(er,...,en) = Op(er,...,ey)



17.8. THE SEMANTICS OF INSTANTIATION

337

for any expressions e;, where the overlining operator () denotes some arbitrary
instantiation. Instantiation distributes over all constant operators—for exam-
ple, 4+, C, and 3.° Instantiation also distributes over most of the nonconstant
operators of TLA™, like priming (') and O.

If an operator Op implicitly binds some identifiers in its arguments, then
instantiation would not preserve validity if it distributed over Op. Our rules
for instantiating in an ENABLED expression imply that instantiation does not
distribute over ENABLED. It also does not distribute over any operator defined
in terms of ENABLED—in particular, the built-in operators WF and SF.

There are two other TLA™ operators that implicitly bind identifiers: the
action composition operator “”, defined in Section 16.2.3, and the temporal
operator *&>, introduced in Section 10.7. The rule for instantiating an expression
A - B is similar to that for ENABLED A—namely, bound occurrences of variables
are replaced by a new symbol. In the expression A - B, primed occurrences of
variables in A and unprimed occurrences in B are bound. We handle a formula
of the form F > G by replacing it with an equivalent formula in which the
quantification is made explicit.'® Most readers won’t care, but here’s how that

equivalent formula is constructed. Let x be the tuple (z1,...,z,) of all declared
variables; let b, 771, ..., T, be symbols distinct from the z; and from any bound

identifiers in F' or G; and let € be the expression obtained from an expression e
by substituting the variables 7; for the corresponding variables z;. Then F' *> G
is equivalent to

(17.8) Vb : (A (b € BOOLEAN) A O[b’ = FALSE],
ANAZy, ..., T, F A OB = (x=X)))
= 3Az1,...,Z, : G AN (x=X) A Ob = (x =%X)]

(bx,X)

Here’s a complete statement of the rules for computing e, for an arbitrary
expression e.

1. Remove all %> operators by replacing each subformula of the form F > G
with the equivalent formula (17.8).

2. Recursively perform the following replacements, starting from the inner-
most subexpressions of e, for each declared variable z of N.

e For each subexpression of the form ENABLED A, replace each primed
occurrence of z in A by a new symbol $z that is different from any
identifier and from any other symbol that occurs in A.

9Recall the explanation on pages 320-321 of how we consider 3 to be a second-order
operator. Instantiation distributes over 3 because TLA1 does not permit variable capture
when substituting in A\ expressions.

10Replacing ENABLED and “” expressions by equivalent formulas with explicit quantifiers
before substituting would result in some surprising instantiations. For example, if N con-

tains the definition E(A) £ ENABLED A, then I 2 INSTANCE N would effectively obtain the
definition I1E(A) 2 A.



338

CHAPTER 17. THE MEANING OF A MODULE

e For each subexpression of the form B - C, replace each primed occur-
rence of z in B and each unprimed occurrence of x in C' by a new
symbol $z that is different from any identifier and from any other
symbol that occurs in B or C.

For example, applying these rules to the inner ENABLED expression and to
the “.” expression converts

ENABLED ((ENABLED (2’ = 1)) A ((y = z) - (2’ = y)))
to
ENABLED ((ENABLED ($2" = z)) A (($y' = z) - (2" = $y)))
and applying them again to the outer ENABLED expression yields
ENABLED ((ENABLED ($2' = $2z)) A (($y' = z) - ($22" = $y)))

where $zz is some new symbol different from z, $z, and $y.

3. Replace each occurrence of ¢; with e;, for all ¢ in 1 .. n.



Chapter 18

The Standard Modules

Several standard modules are provided for use in TLAY specifications. Some of
the definitions they contain are subtle—for example, the definitions of the set
of real numbers and its operators. Others, such as the definition of 1 .. n, are
obvious. There are two reasons to use standard modules. First, specifications
are easier to read when they use basic operators that we’re already familiar
with. Second, tools can have built-in knowledge of standard operators. For
example, the TLC model checker (Chapter 14) has efficient implementations of
some standard modules; and a theorem-prover might implement special decision
procedures for some standard operators. The standard modules of TLA™ are
described here, except for the RealTime module, which appears in Chapter 9.

18.1 Module Sequences

The Sequences module was introduced in Section 4.1 on page 35. Most of the
operators it defines have already been explained. The exceptions are:

SubSeq(s, m, n) The subsequence {s[m], sim + 1], ..., s[n]) consisting of
the m'™ through n*" elements of s. It is undefined if
m < 1 or n > Len(s), except that it equals the empty
sequence if m > n.

SelectSeq(s, Test) The subsequence of s consisting of the elements s[i] such
that Test(s[¢]) equals TRUE. For example:

PosSubSeq(s) = LET IsPos(n) = n >0
IN  SelectSeq(s, IsPos)

defines PosSubSeq(({0, 3, —2, 5)) to equal (3, 5).

339



340 CHAPTER 18. THE STANDARD MODULES

The Sequences module uses operators on natural numbers, so we might expect
it to extend the Naturals module. However, this would mean that any module
that extends Sequences would then also extend Naturals. Just in case someone
wants to use sequences without extending the Naturals module, the Sequences
module contains the statement:

LOCAL INSTANCE Naturals

This statement introduces the definitions from the Naturals module, just as an
ordinary INSTANCE statement would, but it does not export those definitions to
another module that extends or instantiates the Sequences module. The LOCAL
modifier can also precede an ordinary definition; it has the effect of making
that definition usable within the current module, but not in a module that
extends or instantiates it. (The LOCAL modifier cannot be used with parameter
declarations.)

Everything else that appears in the Sequences module should be familiar.
The module is in Figure 18.1 on the next page.

18.2 Module FiniteSets

As described in Section 6.1 on page 66, the FiniteSets module defines the two
operators IsFiniteSet and Cardinality. The definition of Cardinality is discussed
on page 70. The module itself is in Figure 18.2 on the next page.

18.3 Module Bags

A bag, also called a multiset, is a set that can contain multiple copies of the same
element. A bag can have infinitely many elements, but only finitely many copies
of any single element. Bags are sometimes useful for representing data structures.
For example, the state of a network in which messages can be delivered in any
order could be represented as a bag of messages in transit. Multiple copies of
an element in the bag represent multiple copies of the same message in transit.

The Bags module defines a bag to be a function whose range is a subset of
the positive integers. An element e belongs to bag B iff e is in the domain of B,
in which case bag B contains B[e] copies of e. The module defines the following
operators. In our customary style, we leave unspecified the value obtained by
applying an operator on bags to something other than a bag.

IsABag(B) True iff B is a bag.

BagToSet(B) The set of elements of which bag B contains at least one
copy.



18.3. MODULE BAGS 341

MODULE Sequences

Defines operators on finite sequences, where a sequence of length n is represented as a function whose domain is
the set 1 .. n (the set {1,2,...,n}). This is also how TLAT defines an n-tuple, so tuples are sequences.

LOCAL INSTANCE Naturals Imports the definitions from Naturals, but doesn’t export them.

Seq(S) £ UNION {[1 ..n— S] T ne Nat} The set of all finite sequences of elements in S.
Len(s) £ CHOOSE n € Nat : DOMAINs =1 .. n The length of sequence s.
sot 2 The sequence obtained by concatenating sequences s and ¢.

[i €1..(Len(s)+ Len(t)) — 1F i < Len(s) THEN s]i]
ELSE ¢[i — Len(s)]]

Append(s, 6) = EXe) <6> The sequence obtained by appending element e to the end of sequence s.

Head(s) = 8[1] The usual head (first)
Tail(s) 2 [Z c1.. (Len(s) _ 1) N S[i + 1“ and tail (rest) operators.
SubSeq(s, m,n) 2 [iel..(14+n—m)— s[i+m—1]] Thesequence (s[m],s[m+1],...,s[n]).

SelectSeq(s, Test(_)) £ The subsequence of s consisting of all elements s[i] such that Test(s[4]) is true.

LET F[i €0 .. Len(s)] =
IF 4 =0 THEN ()
ELSE IF Test(s[i]) THEN Append(F[: — 1], s[i])

ELSE F[i—1]

F[i] equals SelectSeq(SubSeq(s,1,1), Test).

IN  F[Len(s)]

Figure 18.1: The standard Sequences module.

MODULE FiniteSets

LOCAL INSTANCE Naturals Imports the definitions from Naturals and Sequences, but doesn’t
LOCAL INSTANCE Sequences ~ SXPOrt them.

Ist'm'teSet(S) = A set is finite iff there is a finite sequence containing all its elements.
Jseq € Seq(S) : Vse€ S : Inel.. Len(seq) : seq[n] =s

Cardinality(S) £ Cardinality is defined only for finite sets.

LET CS[T € suBSET S] = 1F T ={} THEN 0

ELSE 14 CS[T\{CHOOSE z : z € T}]
IN  CS[S]

Figure 18.2: The standard FiniteSets module.



342 CHAPTER 18. THE STANDARD MODULES

SetToBag(S) The bag that contains one copy of every element in the
set S.
BagIn(e, B) True iff bag B contains at least one copy of e. Bagln is

the € operator for bags.
EmptyBag The bag containing no elements.

CopiesIn(e, B) The number of copies of e in bag B; it is equal to 0 iff
Bagln(e, B) is false.

B1® B2 The union of bags B1 and B2. The operator @ satisfies
CopiesIn(e, B1 @ B2) =
CopiesIn(e, B1) + CopiesIn(e, B2)
for any e and any bags B1 and B2.

Ble B2 The bag B1 with the elements of B2 removed—that is,
with one copy of an element removed from B1 for each
copy of the same element in B2. If B2 has at least as
many copies of e as B1, then B1S B2 has no copies of e.

BagUnion(S) The bag union of all elements of the set S of bags. For
example, BagUnion({B1, B2, B3}) equals B1® B2® B3.
BagUnion is the analog of UNION for bags.

B1C B2 True iff, for all e, bag B2 has at least as many copies of
e as bag B1 does. Thus, C is the analog for bags of C.

SubBag(B) The set of all subbags of bag B. SubBag is the analog of
SUBSET for bags.

BagOfAll(F, B)  The bag analog of the construct {F(z) : « € B}. It is
the bag that contains, for each element e of bag B, one
copy of F(e) for every copy of e in B. This defines a bag
iff, for any value v, the set of e in B such that F(e) = v
is finite.

BagCardinality(B) If B is a finite bag (one such that BagToSet(B) is a
finite set), then this is its cardinality—the total number
of copies of elements in B. Its value is unspecified if B
is not a finite bag.

The module appears in Figure 18.3 on the next page. Note the local definition of
Sum, which makes Sum defined within the Bags module but not in any module
that extends or instantiates it.



18.3. MODULE BAGS

343

MODULE Bags
LOCAL INSTANCE Naturals TImport definitions from Naturals, but don’t export them.

IsABag(B) = B € [DOMAIN B — {n € Nat : n > 0}] Trueiff B is a bag.
BagToSet(B) = DOMAIN B The set of elements at least one copy of which is in B.
SetToBag(S) = [e €S 1] The bag that contains one copy of every element of the set S.
BagIn(e,B) = e BagToSet(B) The € operator for bags.
EmptyBag = SetToBag({})
CopiesIn(e, B) = 1F BagIn(e, B) THEN Ble] ELSE 0 The number of copies of e in B.
B1® B2 £  The union of bags Bl and B2.

[e € (DOMAIN B1) U (DOMAIN B2) +— CopiesIn(e, B1) + CopiesIn(e, B2)]
B1© B2 £  The bag Bl with the elements of B2 removed.

LET B = [e € DOMAIN B1 — CopiesIn(e, B1) — CopiesIn(e, B2)]

IN [e € {d € DOMAIN B : B[d] > 0} — Ble]]
LOCAL Sum(f) =  The sum of f[z] for all & in DOMAIN f.

LET DSum|[S € SUBSET DOMAIN f] = LET elt = CHOOSE ¢ € S : TRUE
IN IF S={} THEN 0
ELSE flelt] + DSum[S \ {elt}]
IN  DSum[DOMAIN f]

Bag U’nZOTL(S) = The bag union of all elements of the set S of bags.
[e € UNION {BagToSet(B) : B € S} +— Sum([B € S — CopiesIn(e, B)])]
B1C B2 2 A (DOMAIN B1) C (DOMAIN B2) The subset operator for bags.
A Ve € DOMAIN Bl : Blle] < B2[e]
SubBag(B) = The set of all subbags of bag B.
LET AllBagsOfSubset 2 The set of bags SB such that BagToSet(SB) C BagToSet(B).
UNION {[SB — {n € Nat : n > 0}] : SB € SUBSET BagToSet(B)}
IN  {SB € AllBagsOfSubset : ¥ e € DOMAIN SB : SB[e] < Ble|}
BagOfAll(F(-), B) £ The bag analog of the set {F(z) : « € B} for a set B.
[e € {F(d) : d € BagToSet(B)} —
Sum([d € BagToSet(B) — 1F F(d) = e THEN B[d] ELSE 0])]

BagC’ardz'nality(B) = Sum(B) The total number of copies of elements in bag B.
L

Figure 18.3: The standard Bags module.



344 CHAPTER 18. THE STANDARD MODULES

18.4 The Numbers Modules

The usual sets of numbers and operators on them are defined in the three mod-
ules Naturals, Integers, and Reals. These modules are tricky because their
definitions must be consistent. A module M might extend both the Naturals
module and another module that extends the Reals module. The module M
thereby obtains two definitions of an operator such as +, one from Naturals and
one from Reals. These two definitions of + must be the same. To make them the
same, we have them both come from the definition of + in a module ProtoReals,
which is locally instantiated by both Naturals and Reals.

The Naturals module defines the following operators:

+ * < < Nat -+ integer division

— binary minus ~ exponentiation > > .. % modulus

Except for =+, these operators are all either standard or explained in Chapter 2.
Integer division (<) and modulus (%) are defined so that the following two
conditions hold, for any integer a and positive integer b:

a%bec0..(b-1) a =bx(a+b) + (a%Dd)

The Integers module extends the Naturals module and also defines the set Int
of integers and unary minus (—). The Reals module extends Integers and intro-
duces the set Real of real numbers and ordinary division (/). In mathematics,
(unlike programming languages), integers are real numbers. Hence, Nat is a
subset of Int, which is a subset of Real.

The Reals module also defines the special value Infinity. Infinity, which
represents a mathematical oo, satisfies the following two properties:

Vr € Real : —Infinity < r < Infinity — (= Infinity) = Infinity

The precise details of the number modules are of no practical importance.
When writing specifications, you can just assume that the operators they define
have their usual meanings. If you want to prove something about a specification,
you can reason about numbers however you want. Tools like model checkers
and theorem provers that care about these operators will have their own ways of
handling them. The modules are given here mainly for completeness. They can
also serve as models if you want to define other basic mathematical structures.
However, such definitions are rarely necessary for writing specifications.
The set Nat of natural numbers, with its zero element and successor function,
is defined in the Peano module, which appears in Figure 18.4 on the next page. It
simply defines the naturals to be a set satisfying Peano’s axioms. This definition Peano’s axioms
is separated into its own module for the following reason. As explained in are discussed in
Section 16.1.9 (page 306) and Section 16.1.10 (page 307), the meanings of tuples |, & books on

. g the foundations of
and strings are defined in terms of the natural numbers. The Peano module, athematics.



18.4. THE NUMBERS MODULES 345

MODULE Peano

This module defines Nat to be an arbitrary set satisfying Peano’s axioms with zero element Zero and successor
function Succ. It does not use strings or tuples, which in TLAT are defined in terms of natural numbers.

PeanoAm'oms(N, Z, SC) = Asserts that N satisfies Peano’s axioms with zero element Z and
ANZeN successor function Sc.
A Sc € [N — N]

AVYneN :(I3meN : n=S8cm]) = (n#2)
AYS €SUBSETN : (Ze€ S)A(Vne S : Sc[n]eS)=(S=N)

ASSUME 4N, Z, Sc : PeanoAm'oms(N, Z, SC) Asserts the existence of a set satisfying Peano’s axioms.

Suce = CHOOSE Sc : 3N, Z : PeanoAzioms(N, Z, Sc)
Nat = DOMAIN Suce
Zero = CHOOSE Z : PeanoAzioms(Nat, Z, Succ)

Figure 18.4: The Peano module.

which defines the natural numbers, does not use tuples or strings. Hence, there
is no circularity.

As explained in Section 16.1.11 on page 308, numbers like 42 are defined
in TLA™ so that 0 equals Zero and 1 equals Succ[Zero|, where Zero and Succ
are defined in the Peano module. We could therefore replace Zero by 0 and
Succ[Zero] by 1 in the ProtoReals module. But doing so would obscure how the
definition of the reals depends on the definition of the natural numbers in the
Peano module.

Most of the definitions in modules Naturals, Integers, and Reals come from
module ProtoReals in Figure 18.4 on the following two pages. The definition of
the real numbers in module ProtoReals uses the well-known mathematical result
that the reals are uniquely defined, up to isomorphism, as an ordered field in
which every subset bounded from above has a least upper bound. The details
will be of interest only to mathematically sophisticated readers who are curious
about the formalization of ordinary mathematics. I hope that those readers will
be as impressed as I am by how easy this formalization is—once you understand
the mathematics.

Given the ProtoReals module, the rest is simple. The Naturals, Integers,
and Reals modules appear in Figures 18.6-18.8 on page 348. Perhaps the most
striking thing about them is the ugliness of an operator like R!4, which is
the version of + obtained by instantiating ProtoReals under the name R. It
demonstrates that you should not define infix operators in a module that may
be used with a named instantiation.



346 CHAPTER 18. THE STANDARD MODULES

: MODULE ProtoReals

This module provides the basic definitions for the Naturals, Integers, and Reals module. It does this by defining
the real numbers to be a complete ordered field containing the naturals.

EXTENDS Peano

IsModelOfReals(R, Plus, Times, Leq) =

Asserts that R satisfies the properties of the reals with a + b = Plus[a, b], a * b = Times[a, b], and (a <
b) = ((a,b) € Leq). (We will have to quantify over the arguments, so they must be values, not operators.)

LET IsAbelmnGroup(G, Id, _—l-_) 2 Asserts that G is an Abelian group with identity I/d and
A Ild e G group operation +.
AVa,be G :a+be G
AVae G:Id+a=a
AVa,byee G: (a+b)+c=a+(b+c)
AVaé€ G : dminusa € G : a+ minusa = Id
AVa,be G :a+b=b+a
a+b = Plus|a,b

axb = Timesla,b]
a<b = (a,b) € Leg
IN A Nat CR The first two conjuncts assert that Nat
AV n € Nat : Suce[n] = n + Suce|Zero] is embedded in R.
A ISAbelianGToup(R, Zero, —|—) The next three conjuncts assert that R
A IsAbelianGroup(R\ {Zero}, Succ[Zero], %) is a field.
AVa,byc€R :ax(b+c)=(axb)+ (axc)
AVa,be R : A (a < b) V (b < a) The next two conjuncts assert that R is
A (a < b) A (b < a) = (a = b) an ordered field.
AVa,byceR:AN(a<b)A(b<c)=(a<0)
ANa<b)=A(a+c)<(b+c)
A (Zero < ¢)= (axc) < (bxc)
AV S5 € SUBSET R : The last conjunct asserts that every
LET SBound(a) 2 VseS:s <a subset S of R bounded from above has
IN (3 a € R : SBound(a)) = a least upper bound sup.

(Jsup € R : A SBound(sup)
AVa e R : SBound(a) = (sup < a))
 THEOREM IR, Plus, Times, Leq : IsModelOfReals(R, Plus, Times, Leq)

r 1

RM £ CHOOSE RM : IsModelOfReals(RM .R, RM .Plus, RM.Times, RM .Leq)
Real = RM.R

Figure 18.5a: The ProtoReals module (beginning).



18.4. THE NUMBERS MODULES 347

We define Infinity, <, and — so —Infinity < r < Infinity, for any r € Real, and —(—Infinity) = Infinity.

Infinity = CHOOSE = : x ¢ Real Infinity and MinusInfinity (which will equal
Minus[nﬁnity = CHOOSE 7 : = §é Real U {Inﬁm'ty} i;]v};jz;blity) are chosen to be arbitrary values not
a+b = RM.Plus|a,b]
axb = RM.Times[a,b]
a<b = CASE (a € Real) A (b € Real) — (a,b) € RM .Leq

O (a = Infinity) A (b € Real U {MinusInfinity}) — FALSE

O (a € Real U {MinusInfinity}) A (b = Infinity) — TRUE

Oa=0b — TRUE
a—b = CASE (a € Real) A (b € Real) — CHOOSE c € Real : c+b=ua

O (a € Real) A (b = Infinity) —  MinusInfinity

O (a € Real) A (b = MinusInfinity) —  Infinity
a/b = CHOOSE ¢ € Real : a=Db*c
Int = NatU{Zero—n : n € Nat}

We define a’ (exponentiation) for a > 0, or b > 0, or a # 0 and b € Int, by the four axioms:
al=a a™tn = a™ % a" if a # 0 and m, n € Int 0=0ifb>0 ab*c = (a®)if a >0
plus the continuity condition that 0 < @ and 0 < b < ¢ imply a® < a®.
a® = LET RPos = {r € Real\{Zero} : Zero < r}
erp = CHOOSE f € [(RPos x Real) U (Real x RPos)
U ((Real\ {Zero}) x Int) — Real] :
AN € Real : A f[r,Succ|Zero]] = r
AV m,n € Int : (r # Zero) =
(flr,m + n] = flr,m]* f[r, n])
AN 1T € RPos : A f[Zero,r]| = Zero
AVs,t € Real : f[r,s=t] = f[f[r,s],1]
AVs,t € RPos : (s <t)= (f[r,s] < flr,t])
IN ezpla,b]

Figure 18.5b: The ProtoReals module (end).



348

CHAPTER 18. THE STANDARD MODULES

MODULE Naturals

LOCAL R = INSTANCE ProtoReals

5
|

1L L L (o | o T T T a1

R!Nat

a R!4+ b R!+ is the operator + defined in module ProtoReals.

aR!'— b

a Rlx b

a R!™ b ab is written in AscII as a™b.

a R'< b

b<a

(a < b)A(a#D)

b<a

{i€R!Int : (a<i)A(i<D)}

CHOOSE n € R!Int : 3r€0..(b—1) : a=b*n+r We define + and % so that

_ . a=bx(a+b)+ (a%b)
a—bx (CL : b) for all integers a and b with b > 0.

Figure 18.6: The standard Naturals module.

MODULE Integers

EXTENDS Naturals The Naturals module already defines operators like 4+ to work on all real numbers.

LOCAL R = INSTANCE ProtoReals

Int =

A
- a =

R!Int

0 — @ Unary — is written — when being defined or used as an operator argument.

Figure 18.7: The standard Integers module.

MODULE Reals

EXTENDS Integers The Integers module already defines operators like + to work on all real numbers.

LOCAL R = INSTANCE ProtoReals

Real
a/b
Infinity

R!Real
a R!/ D R!/ is the operator / defined in module ProtoReals.
R! Infinity

e e i

Figure 18.8: The standard Reals module.



Index

" (prime), 16, 82, 312
" (prime), double, 322

<0, 214
<~ 212

<~ .70, 214, 215, 218-220
<~ 212, 218

-7, 216, 220

<., 212

..., 215, 218

" (double quote), 216, 307

‘... (string), 47, 307, 308

" (exponentiation), 344

~+ (BNF operator), 181

~* (BNF operator), 181

| (BNF operator), 181

— (function/record constructor), 29,
49, 302, 303

——— (separator), 20
(end of module), 21

=, 88, 315

/ (division), 73, 344

\ (set difference), 12, 299, 300

\* (end-of-line comment), 32, 288

— (underscore), 46, 285, 318

— (minus), 289, 344

-, 289

~ (overbar), 63, 114, 334, 336, 337

-, see negation

— (set of functions), 49, 302, 304

— (step), 16, 312

> (temporal operator), 116, 156,
315, 316, 337

~ (stuttering equivalent), 315, 316

~3 918

~» (leads to), 91, 314

+ (integer division), 344

(plus), 344

(BNF operator), 181

(suffix operator), 89, 315

(Cartesian product), 53, 284, 306,
307

=, see equality

(inequality), 300

=, see implies

see equivalence

(defined to equal), 16, 31

. 325

00, see Infinity

. (syntax element), 284

. (record field), 28, 180, 305

. (integer interval), 20, 344

2,218

-, see composition of actions

* (multiplication), 344

* (BNF operator), 181

(sequence concatenation), 36, 53

(bag union), 342

(bag difference, 342

(always), 16, 89-90, 288, 314, 315

+
+
+
X

N

IERILA

o

(CASE separator), 285
(eventually), 91, 288, 314
(less than), 344
(substitution), 36

(less than or equal), 344
(subset), 12, 299, 300
(bag subset), 342

..*) (comment), 32, 288

TIMONIAT ACDOOO®



INDEX

fle] (function application), 301, 303

[A], (action operator), 17, 285, 312

[h1 — e1,..., hy — e,] (record
constructor), 29, 305

[S — T] (set of functions), 49, 302,

304

[z € S+ e] (function constructor),
49, 302, 303

[h1:81, ..., hy:Sy] (set of records),
28, 305, 306

[e] (meaning), 292, 310

(A), (action operator), 91, 285, 312

(e1,...,ey) (tuple), 27, 53, 306

{} (empty set), 12, 300

{€1,...,en} (set), 12, 299, 300

{z € S:p} (set constructor), 66, 289,
299, 301

{e:z € S} (set constructor), 66, 289,
299, 301

> (greater than), 344

> (greater than or equal), 344

A, see conjunction

N (set intersection), 12, 299, 300

V, see disjunction

U (set union), 12, 299, 300

: (in record set constructor), 28

:> (function constructor), 249

::= (BNF operator), 179

! (in EXCEPT), 29, 49, 302, 304-306

! (in operator name), 36, 39, 330,
334

?. 325

$, 335

% (modulus), 21, 344

& (BNF operator), 180

i, 314, 316

@ (in EXCEPT), 29, 302, 304

Q@ (function constructor), 249

Y, see universal quantification

V (temporal universal quantification),
110, 315

3, see existential quantification

Foo, 94

3 behavior, 316
= state) 313
3, see hiding variables
« conversion, 319
B reduction, 319
e, Hilbert’s, 73, 296
€ (syntax element), 284
in function expression, 49
€ (set membership), 11, 299
¢ (not element of), 47, 299, 300
A expression, 49, 319
C-basic, 325
A expression, legal, 327
A expression, meaning of, 325-327
A parameter, 319
0 (zero), 345
0-tuple, 37, 306
1 (one), 345
1-tuple, 306

Abadi, Martin, v
ABCorrectness module, 228, 229
abstraction, 80
abstraction, choosing an, 24
abstraction, level of, 76
action, 16, 312
as temporal formula, 89
composition, see composition of
actions
constraint, 241
execution, 16
formula, simple, 236
operator, 269, 312-314
action parameter, 46
action, next-state, see next-state ac-
tion
ACTION-CONSTRAINT statement, 241
ActionConstraint (in TLC), 241
actions, commutativity of, 77
actions, joint, 147, 152
address, memory, 47
alignment, 208, 286
alignOut TLATEX option, 217



INDEX

351

alternating bit protocol, 222
AlternatingBit module, 222, 223
always (0), 16, 89-90, 288, 314, 315
ambiguity in TLA™ grammar, 289
Analyzer, Syntactic, 207
and (A), see conjunction
and/or, 9
angle brackets, 27, 96
Append, 36
application, operator, 320
argument

of a function, 50

of an operator, 31

of declared constant, 46
argument, TLATEX option, 211
aril TLC option, 243, 251
arithmetic operator, 19
arity of an operator, 318
arity-correct, 321
array, 48, 50
array of clocks, 139
array, multidimensional, 50
ASCII representation

of characters, 307

of reserved words, 19

of specification, 19

of symbol, 19, 273
AScII version of TLAT, 275, 305, 307
Ascii-readable, 220
Ass, 327
Assert, 249
assertional reasoning, 2
assignment in TLC, 234
associativity, 10, 283
ASSUME, 42, 327, 332

checked by TLC, 241, 261
assume-guarantee specification, 156
assumption, 42, 327, 332
Asynchlnterface module, 24, 27
asynchronous interface, 23
asynchronous system, 3
atomicity, grain of, 7678
aux file, 217

axioms, Peano’s, 344

Backus-Naur Form, 179
bag, 340
BagCardinality, 342
Bagln, 342
BagOfAll, 342
Bags module, 340, 343
overridden by TLC, 237
BagToSet, 340
BagUnion, 342
barrier synchronization, 149
basic
expression, 309
state function, 311
transition function, 313
behavior, 15, 18, 314, 315
satisfying temporal formula, 18
behavior, finite, 17, 112, 130
behavior, Zeno, 120, 128
behavioral property, 1
behaviors, equivalence of, 77
benefits of specification, 75
binary hour clock, 158
binary representation, 308
BinaryHourClock module, 159, 160
blame, 145
BNF, 179, 276
BNFGrammars module, 179, 183, 184
BOOLEAN, 46, 293
Boolean operator, 9, 293, 296
precedence, 10
Boolean operator, simple, 236
Boolean value, 9
bound occurrence, 14
bound variable, 14, 109
bound, real-time, 122
bound, strong real-time, 124
bounded FIFO, 42-43
bounded quantification, 13, 293
BoundedFIFO module, 43
box (0O), see always
buffer component, 135, 140



INDEX

buffer, FIFO, 35, 140-142
built-in operator, 20

C++,7

Cle], 325

C-basic A expression, 325

cache, write-through, 54-62, 107-109

caching memory, 45

caching memory, real-time, 124—128

calculator, using TLC as, 261

capture, variable, 335

Cardinality, 66, 70, 340

cardinality, 70

carriage return, 307

Cartesian product, 53, 306

CASE, 298
evaluated by TLC, 262
parsing, 284

causality, 128

CC, 328

channel, 28, 97, 99

Channel module, 30

channel, refining, 159

ChannelRefinement module, 161, 162

character, 307

checkpoint (TLC), 252, 255, 260

Chinese, 2

Choice, 295

CHOOSE, 47, 73, 294
applied to temporal formula, 110
evaluated by TLC, 232, 234, 262
parsing, 284

circular definition, 70

class, equivalence, of a state, 246

class, Java, 237

cleanup TLC option, 252

cleverness, 80

clock, hour, see hour clock

clocks, array of, 139

closed-system specification, 44, 167

closure, machine, see machine clo-

sure
coarser-grained specification, 76

collection of all sets, 66
collision, 244, 255
comment, 32-34, 82
in TLC configuration file, 226
shading, 212
syntax, 288
typeset by TLATEX, 214
comment, end-of-line, 32
comment, nested, 32
comment, space in, 213
common subexpression, 60
communication, 152
commutativity of actions, 77
comparable values, 231, 264
complete-system specification, 44, 156
complexity, relative, 254
component, 135
CompositeFIFO module, 142, 143
composition of actions (), 76, 312,
313
and instantiation, 337
evaluated by TLC, 240
composition of specifications, 135, 168
and liveness, 152
and machine closure, 152
with disjoint state, 142
with shared state, 142—-149
Composition Rule, 138
Compositional Hiding Rule, 155
conditional constructs, 298
config TLC option, 253
ConfigFile Grammar module, 262, 263
configuration file (TLC), 225, 253,
261
grammar, 262
conjunct, property, 240
conjunct, specification, 240
conjunction (A), 9, 293
applied to temporal formulas,
88
as quantification, 13, 105
evaluated by TLC, 231
of infinitely many formulas, 13



INDEX

353

Conjunction Rule, SF, 106
Conjunction Rule, WF, 105
conjuncts, list of, 25, 286, 293
connected, strongly, 174
connectivity, 173
conservative interpretation of Bool-
ean operators, 296

CONSTANT, 25, 46, 327, 329
constant

declaration, 25

level, 324

module, 330

operator, 268, 291-309

parameter, 25, 45
CONSTANT statement, 226
constant, internal, 190
constant-level expression, 322
CONSTANTS, 25
CONSTANTS statement, 226
constraint, 226
Constraint (in TLC), 241
constraint, action, 241
constraint, global, 140
constraint, real-time, 119

on disjunction, 128
construct, 292
constructor, set, 66, 299
context, 324-325
context, current, 328
continually

enabled, 106

versus continuously, 106
continuously

enabled, 106, 122

versus continually, 106
contract, specification as, 156
contradiction, proof by, 102
conversion, o, 319
Copiesln, 342
correct, syntactically, 325
correctness of module, 332
Couturier, Dominique, v
coverage TLC option, 227, 252, 258

current context, 328

d Syntactic Analyzer option, 207
data refinement, 164
data structures, 78-79, 170
Dcl, 327
deadlock, 222, 251
deadlock TLC option, 242, 251
debugging, 253
variable, 244
decimal representation, 308
declaration, 324, 329
declaration, constant, 25
declaration, scope of, 31
declaration, variable, 19
definition, 31-32, 324
of function, 54, 329
of operator, 329
overriding, 234, 235
definition, global, 327
definition, inductive, 69
definition, local, 170, 327
definition, module, 324
delimiter, 285, 286
depth TLC option, 243, 251
derivative, 176
diameter of state graph, 254
difference, set (\), 12
differential equation, 133, 174
Differential Equations module, 177,
178
difftrace TLC option, 252, 259
directed graph, 173
discrete step, 15
disjoint-state
composition, 142-149
specification, 151
disjunction (V), 9, 293
as quantification, 13, 105
evaluated by TLC, 231
disjunction (V), real-time constraint
on, 128
disjuncts, list of, 26, 286, 293



INDEX

distribute over, 93, 114, 336
distributed system, 3
divide and conquer, 209
division

of integers, 344

of real numbers, 73
DOMAIN, 48, 302
domain of a function, 48, 302
double quote ("), 216, 307
DR1, 101
DR2, 102
dual tautology, 93
dvi file, 211, 217
dvips, 213

edge, 172

element, 11

empty set, 12

EmptyBag, 342

ENABLED, 97, 312, 313
and instantiation, 337
evaluated by TLC, 240
predicate, computing, 115
substitution in, 335

enabled, 26
continually, 106
continuously, 106, 122
repeatedly, 124

ENABLED-free state function, 311

end-of-line character, 288, 290
end-of-line comment, 32
English, 2, 98
environment, 43, 147, 156
equality (=), 284, 300

of sets, 12

versus equivalence, 10, 296

equation, differential, 133, 174
equivalence

class of a state, 246

of specifications, 21
equivalence (=), 9, 293

versus equality, 10, 296
equivalence of behaviors, 77

error report (TLC), 255
error trace (TLC), 247, 252, 259
error, locating, with TLC, 249
error, semantic, 208
error, syntactic, 208
evaluating expressions, 231
eventually (<), 91, 288, 314
eventually always (<0O), 92, 106
EXCEPT, 29, 49, 302, 304-306
execution of an action, 16
execution, terminating, 17
existential quantification (3), 12, 293
as disjunction, 13, 105
evaluated by TLC, 232
existential quantification, temporal,
see hiding variables
explanation of memory scenario, 186
expression, 317, 321
expression evaluation by TLC, 231
expression, A, see A expression
expression, basic, 309
expression, level of, 322
expression, silly, 67, 222
evaluated by TLC, 256
EXTENDS, 19, 237, 328
EXTENDS, structuring specification
with, 34

factorial, 54, 67
failed to recover state, 247
fairness and refinement, 114
fairness conditions, combining, 101,
105
fairness, expressing liveness with, 112
fairness, strong, 106—-107
fairness, weak, 96-100
real-time analog, 122
FALSE, 9, 293
FastSort, 250
field of record, 28
FIFO buffer, 35, 140-142
FIFO transmission line, 222
FIFO, bounded, 4243



INDEX

355

file name, root of, 217
file, aux, 217
file, dvi, 211, 217
file, log, 217
file, pdf, 211, 212
file, TLC configuration, see configu-
ration file
files, TLATEX output, 217
finer-grained specification, 76
fingerprint, 244, 247, 255
fingers, counting on, 11
finite behavior, 112, 130
FiniteSets module, 66, 340, 341
overridden by TLC, 237
first-order logic, 3, 318
flexible variable, 109
font of comment, 32
font size, 216
form feed, 290, 307
formal mathematics, 2
formal semantics, 292
formula, 309, 310
splitting, 60
used in a sentence, 14
formula, simple action, 236
formula, temporal, see temporal for-
mula
formula, valid, 18, 309
Frank, Douglas, v
free occurrence, 14
free variable, 14
function, 48-51, 72-73, 301
expressed with :> and @Q, 249
of multiple arguments, 50, 302
transition, 312
versus operator, 69-72
function definition, 329
function, hashing, 244
function, nondeterministic, 73
function, recursively defined, see re-
cursive function definition
function, state, 25, 310-312
functional property, 1

G, 241, 254
GDef, 327
Generalization Rule, 95
gibberish, nonsyntactic, 69
global

constraint, 140

definition, 327

function definition, 329

operator definition, 329
Gonthier, Georges, 307
grain of atomicity, 76-78
Grammar, 180
grammar, 179

of TLAT, 276-289

of TLC configuration file, 262
granularity of step, 24, 76-78
graph, 172
graph, directed, 173
graph, state (G), see state graph
graph, undirected, 173
Graphs module, 172, 175
grayLevel TLATEX option, 213
Grégoire, Jean-Charles, v, 207
Grover, Vinod, v
Guindon, 1

handshake protocol, 23

hashing function, 244

Hayden, Mark, 221

Head, 35, 53

help TLATEX option, 212

henceforth, see always

hexadecimal representation, 308

hiding variables, 39, 41, 110, 111,
221, 228, 314, 316

and composition, 154

high-level specification, 132, 169

higher-order logic, 318

Hilbert’s €, 73, 296

hoffset TLATEX option, 217

hour clock, 15, 96, 98

hour clock, binary, 158

hour clock, real-time, 117-121



INDEX

HourClock module, 19, 20
with comments, 33
hybrid specification, 132-133

identifier, 31, 277, 321
of \ parameter, 319
identifier, run, 252, 255
IF/THEN/ELSE, 16
evaluated by TLC, 231
parsing, 284, 298
iff, 9
implementation, 62, 111
under interface refinement, 165
implementation, proving, 62-64
implementing real-time constraints,
126
implication, 9
as implementation, 62, 111
implicit substitution (in INSTANCE),
40
ImpliedAction (in TLC), 241
ImpliedInit (in TLC), 241
ImpliedTemporal (in TLC), 241
implies (=), 9, 293
definition explained, 10
evaluated by TLC, 231
Implies Generalization Rule, 95
IN, see LET/IN
indentation in con/disjunction lists,
26, 286
inductive definition, 69
inductive invariant, 61
infinitely often (O<), 91, 106
Infinity, 122, 344
infix operator, 270, 278, 345
info TLATEX option, 212
Init (in TLC), 240
INIT statement, 225, 262
initial predicate, 16
evaluated by TLC, 254
initial state, 16
computed by TLC, 237, 240, 241
InnerFIFO module, 37, 38

InnerSequential module, 200, 201
InnerSerial module, 195, 196
INSTANCE, 36-40, 330-331, 334-338
INSTANCE, LOCAL, 171
INSTANCE, structuring specification
with, 34
instantaneous change, 117
instantiation, 37-40, 330-331, 334—
338
instantiation, parametrized, 39
Int (set of integers), 344
integer division, 344
integer is real number, 344
Integers module, 344, 348
overridden by TLC, 237
Integrate, 133, 174
integration, 133
interface refinement, 158-167
and implementation, 165
and liveness, 165
for open-system specifications,
165
interface, asynchronous, 23
interface, memory, 183
interface, program, 3, 78
interleaving specification, 137, 151
internal constant, 190
internal variable, 41, 111
InternalMemory module, 52
intersection (N), 12
interval, open, 174
invariance, proving, 62
invariant, 61-62
checking by TLC, 225, 242
of a specification, 25
of an action, 61
under stuttering, 90
Invariant (in TLC), 240
INVARIANT statement, 225
invariant, inductive, 61
invariant, type, 25, 80
INVARIANTS statement, 226
irreflexive, 191



INDEX

357

irreflexive partial order, 71
IsABag, 340

IsA Behavior, 316

IsAFcn, 303

IsAState, 313

IsDeriv, 176

IsFenOn, 140

IsFiniteSet, 43, 66, 340

Java class, 237

JavaTime, 249

Jefferson, David, v, 207

joint actions, 147, 152
JointActionMemory module, 150

Kalvala, Sara, v

key TLC option, 243
keyboard, 80

Knuth, Donald Ervin, 19, 211
Krishnan, Paddy, v

lambda, see A
Lamport, Leslie, 211, 221
language, 179
language, programming, 3, 67
KTRX, 211
KTEX commands in TLATEX, 219
latexCommand TLATEX option, 212
LDef, 327
leads to (~), 91, 314
LeastGrammar, 181
left associative, 283
legal A\ expression, 327
Leisenring, A. C., 296
Len, 36
LET/IN, 60, 299

meaning of, 326

parsing, 284
level, 321-324
level of abstraction, 76
level, constant, 324
level-correct, 323
lexeme, 179
lexeme, TLA+, 275, 289

liberal interpretation of Boolean op-
erators, 296
limit, definition of, 177
line feed, 307
line numbers, 212
linearizable memory, 51, 100, 185
list of conjuncts, 25, 286, 293
list of disjuncts, 26, 286, 293
liveness
and composition, 152
considered unimportant, 116
expressed with fairness, 112
in interface refinement, 165
liveness property, 3, 87
checked by TLC, 228, 242, 247
LOCAL, 171, 327, 329, 331, 340
local
definition, 170, 327
function definition, 330
INSTANCE, 331
operator definition, 329
log file, 217
logic, first-order, 3, 318
logic, higher-order, 318
logic, predicate, 12-14, 293
logic, propositional, 9-11, 293
logic, temporal, see temporal logic
logical property, 1
logical thinking, danger to, 7
lossy transmission line, 222
lower-level specification, 169

machine closure, 111-114, 130, 200,
230

and composition, 152
mapping, refinement, 63, 228
mathematics, 2, 9, 21, 22, 65, 174
MaxTime, 119, 123
MCAlternatingBit module, 226, 227
MDef, 327
meaning, 292

of X\ expression, 325327

of temporal formula, 88



INDEX

Melville, Herman, iii
memory address, 47
memory interface, 183
Memory module, 51, 53
memory system, 45
memory value, 47
memory, caching, 45
memory, linearizable, 51, 100, 185
memory, real-time caching, 124-128
memory, sequentially consistent, 195
memory, serial, 188
MemorylInterface module, 48
MinTime, 119, 123
model, 225
model checking, 221, 226, 241
model value, 230, 259
model, specification as, 76
moderate interpretation of Boolean
operators, 296

MODULE, 19
module, 19

correctness, 332

definition, 324

end, 21

finding, 333

name, 325

overriding, 237

unit, 285, 286
module, constant, 330
module, meaning of, 317, 327-332
module, standard, 272, 339
modulus, 21, 344
Modus Ponens Rule, 95
monolithic specification, 136, 167
multi-line comment, 214
multiset, 340
mutual recursion, 68, 233

names
of modules and operators, 325
of sets, 36
Nat (set of natural numbers), 12,
21, 308, 344

natural number, 11
Naturals module, 19, 344, 348
overridden by TLC, 237
Nbhd, 174
negation (), 9, 293
of temporal formula, 88
nested comments, 32
nested quantifiers, 13
Nezt (in TLC), 240
NEXT statement, 225, 264
next-state action, 16
evaluated by TLC, 237
next-state action, finding error in,
259
next-state action, invariant of, 61
next-state action, subaction of, 111
nice temporal formula, 236
Nil, 181
node, 172
noEpilog TLATEX option, 214
non-machine closed specification, 200
checking, 230
nonconstant operator, 309-316
nondeterministic function, 73
nondeterministic operator, 73
noninterleaving specification, 137
nonsense, 71
nonsyntactic gibberish, 69
nonterminal symbol, 179
nonZeno specification, 130
noProlog TLATEX option, 214
nops TLATEX option, 213
not, see negation
now, 117
nowarning TLC option, 253
NowNext, 120
number, 345
number TLATEX option, 212
number, natural, 11
numbers, line, 212
NZ, 130

occurrence, bound, 14



INDEX

359

occurrence, free, 14
Ogata, Kazuhiro, v
one (1), 345
one-line comment, 214
one-tuple, 306
OneOf, 182
open interval, 174
open set, 177
open-system specification, 44, 156—
158, 167
interface refinement, 165
OpenlInterval, 174
operator, 31, 317
application, 320
definition, 329
name, 325
of arithmetic, 19
precedence, 271, 283
semantics, 291-316
symbol, user-definable, 270
versus function, 69-72
operator, action, 269, 312-314
operator, arity of, 318
operator, Boolean, 9, 293, 296
precedence, 10
operator, built-in, 20
operator, constant, 268, 291-309
with arguments, 46
operator, defined in standard mod-
ule, 272
operator, infix, 270, 278, 345
operator, nonconstant, 309-316
operator, nondeterministic, 73
operator, order of, 318
operator, postfix, 270, 278
operator, prefix, 270, 278
operator, recursive definition of, 70
operator, simple Boolean, 236
operator, temporal, 269, 314-316
option (Syntactic Analyzer), 207
d, 207
s, 207
option (TLATEX), 211

alignOut, 217
grayLevel, 213
help, 212
hoffset, 217
info, 212
latexCommand, 212
noEpilog, 214
noProlog, 214
nops, 213
number, 212
out, 217
psCommand, 213
ps, 213
ptSize, 216
shade, 212
style, 218
textheight, 216
textwidth, 216
tlaOut, 218
voffset, 217
option (TLC), 251
aril, 243, 251
cleanup, 252
config, 253
coverage, 227, 252, 258
deadlock, 242, 251
depth, 243, 251
difftrace, 252, 259
key, 243
nowarning, 253
recover, 252, 255, 260
seed, 251
simulate, 251
terse, 252
workers, 253
option argument (TLATEX), 211
or (V), see disjunction
order of an operator, 318
order, irreflexive partial, 71
order, total, 191
OTHER, 298
out TLATEX option, 217
output of TLC, 253



360

INDEX

overriding
a definition, 234, 235
a module, 237

package, tlatex, 218
Pahalawatta, Kapila, v
Palais, Richard, v
paradox, Russell’s, 66
parameter, A, 319
parameter, action, 46
parameter, constant, 25, 45
parametrized instantiation, 39
parent (in a tree), 174
parentheses, 10, 284, 287
parentheses, eliminating, 26
parsing, 179
partial order, irreflexive, 71
path, 173
pdf file, 211, 212
Peano module, 308, 344, 345
Peano’s axioms, 344
performance, 2
permutation, 245
Permutations, 245, 250
philosophy, Greek, 128
Pnueli, Amir, 2
point (unit of measure), 216
PosReal, 174
possibility, 113
postfix operator, 270, 278
Postscript, 211, 212
power set, 65
precedence, 10
of Boolean operator, 10
of operators, 271, 283
of temporal operators, 92
range, 283
predicate logic, 12-14, 293
predicate, initial, 16
evaluated by TLC, 254
predicate, state, see state predicate
prefix operator, 270, 278
prime ('), 16, 82, 312, 313

prime (), double, 322
primitive operator of semantics, 292
Print, 249, 259
processor, 47
product, Cartesian, 53, 306
production (of grammar), 179
program interface, 3, 78
programming language, 3, 67
proof

by contradiction, 102

of implementation, 62—-64

of invariance, 62

rule, temporal, 95

rule, TLA, 18
property checking by TLC, 229, 240
property conjunct, 240
PROPERTY statement, 225, 237
property, behavioral, 1
property, functional, 1
property, liveness, 3, 87

checked by TLC, 228, 242, 247
property, logical, 1
property, safety, 3, 87, 153
propositional logic, 9-11, 293
protocol, alternating bit, 222
protocol, handshake, 23
ProtoReals module, 308, 344, 346
ps TLATEX option, 213
psCommand TLATEX option, 213
pseudo-random number generator, 243,

251

ptSize TLATEX option, 216

quantification, 81
of temporal formula, 88, 109-
110
over tuple, 293
quantification, bounded, 13, 293
quantification, existential (3), 12
quantification, unbounded, 13, 232,
293
quantification, universal (V), 12
quantifier, 12, 293



INDEX

361

nesting, 13
parsing, 284
Quantifier Rule, WF, 105
queue of unexplored states (i), 241,
254
quote, double ("), 216, 307
quotes, single (...”), 214

range of a function, 48
range, precedence, 283
Rd, 186
reachable state, 226
Real (set of real numbers), 67, 308,
344
real time, 117-134
real-time
bound, 122
caching memory, 124-128
constraint, 119
implementing, 126
on disjunction, 128
constraints, combining, 128
hour clock, 117-121
Reals module, 344, 348
RealTime module, 123, 125
RealTimeHourClock module, 119, 121
reasoning, assertional, 2
receiver, 23, 35, 144, 222
component, 135, 140
record, 28, 305
as function, 49, 50
field, 28
recover TLC option, 252, 255, 260
recursion, mutual, 68, 233
recursive function definition, 54, 67—
69, 302
evaluated by TLC, 233
redeclaration, 32
reduction, 3, 319
refinement mapping, 63, 228
and fairness, 114
refinement of channel, 159
refinement, data, 164

refinement, interface, see interface
refinement

RegisterInterface module, 185, 186

relation as set of pairs, 191

relation, next-state, see next-state
action

relative complexity, 254

rely-guarantee specification, 156

renaming, instantiation without, 40

renaming, parameter, 319

repeatedly enabled, 124

replacement in TLC, 234, 261

request, 47

resource, shared, 127

response, 47

rigid variable, 109

root of file name, 217

root of tree, 174

round-robin scheduling, 127

RTBound, 122

RTMemory module, 125, 126

RTnow, 120, 123

RTWriteThroughCache module, 129

Rudalics, Martin, v

run identifier, 252, 255

running the Syntactic Analyzer, 207

running TLATREX, 211

running TLC, 251

Russell’s paradox, 66

s Syntactic Analyzer option, 207
safety property, 3, 87, 153
Samborski, Dmitri, 211
scenario, 186

scheduling shared resource, 127
scheduling, round-robin, 127
Schreiner, Wolfgang, v

scope, 31

second (unit of time), 117
seed, 243, 251, 254

seed TLC option, 251
SelectSeq, 339

semantic



362

INDEX

correctness, 333
error, 208
part of syntax, 275, 291
semantics of TLA™, 317
deviation by TLC, 262
semantics, formal, 292
semantics, primitive operator of, 292
sender, 23, 35, 144, 222
component, 135, 140
sentence, 179
Seq, 35
sequence, 35, 53, 306
Sequences module, 35, 53, 339, 341
overridden by TLC, 237
sequentially consistent memory, 195
serial memory, 188
SerialMemory module, 195
set, 11, 65-66
constructor, 66, 299
difference (\), 12
equality, 12, 300
of all sets, 66
theory, 3, 11, 43, 300
set, empty, 12
set, open, 177
set, power, 65
set, symmetry, 246
set, too big to be, 66
sets, collection of all, 66
sets, naming, 36
SetToBag, 342
SF, 106, 285, 314
and instantiation, 337
SF Conjunction Rule, 106
shade TLATEX option, 212
shading comments, 212
shared resource, scheduling, 127
shared-state
composition, 142-149
specification, 151
Shared-State Composition Rule, 146
silly expression, 67, 222
evaluated by TLC, 256

simple

action formula, 236

Boolean operator, 236

temporal formula, 236
simulate TLC option, 251
simulation, 226, 243, 251
simulation, step, 63

checked by TLC, 242
single quotes (“...”), 214
Sort, 235, 250
SortSeq, 250
sound, 296
space character, 290, 307
space in comment, 213
specification, 1

as abstraction, 24

as model, 76

by scientists, 15

conjunct, 240

invariant, 25

parameter, 25, 45

splitting, 34

standard form, 221

structure, 32-34
SPECIFICATION statement, 225, 237,

264
specification, assume-guarantee, 156
specification, benefits of, 75
specification, closed-system, 44, 167
specification, coarser-grained, 76
specification, complete-system, 44,
156

specification, disjoint-state, 151
specification, ex post facto, 228
specification, finer-grained, 76
specification, high-level, 132, 169
specification, hybrid, 132-133
specification, interleaving, 137, 151
specification, lower-level, 169
specification, monolithic, 136, 167
specification, non-machine closed, 200

checking, 230
specification, noninterleaving, 137



INDEX

363

specification, nonZeno, 130
specification, open-system, 44, 156—
158, 167
specification, rely-guarantee, 156
specification, shared-state, 151
specification, Zeno, 128-132
specifications, composition of, 135,
168
splitting a specification, 34
SRTBound, 124
standard form of specification, 221
standard module, 339
standard module, operators defined
in, 272
state, 15, 18, 30, 310, 311
computed by TLC, 237
in G, 241
printed by TLC, 256
specifying universe, 18
state formula, temporal, 236
state function, 25, 310-312
basic, 311
state graph (G), 241
diameter, 254
state predicate, 25, 310, 311
as temporal formula, 88
state, initial, 16
computed by TLC, 237, 240, 241
state, reachable, 226
state, successor, 237
state-level expression, 322
step, 16, 151, 312
satisfying an action, 16
stuttering, 315
step simulation, 63
checked by TLC, 242
step, discrete, 15
step, granularity of, 24, 76-78
step, stuttering, 17, 90
STRING, 180, 307, 308
string, 182, 307
represented by TLC, 262
strong fairness, 106107

strong real-time bound, 124
strongly connected, 174
structure of a specification, 32-34
stuttering step, 17, 90, 315
stuttering, invariant under, 90
style TLATEX option, 218
subaction, 111, 131
SubBag, 342
subgraph, 173
submodule, 119, 125, 141, 327, 332
subscript, 96, 153, 285
SubSeq, 339
subsequence operator, 339
SUBSET, 65, 299, 300
subset, 12
substitution, 334
substitution, implicit (in INSTANCE),
40

substitution, instantiation as, 37
suce, 49
successor function, 49, 308
successor state, 237
symbol, 31

user-definable, 270
symbol, ASCII representation, 19, 273
symbol, nonterminal, 179
symbol, terminal, 179
symmetry, 245, 250
symmetry set, 246
SYMMETRY statement, 245, 264
synchronization, barrier, 149
Syntactic Analyzer, 207
syntactic error, 208
syntactically correct, 325
syntax, 275
syntax, semantic conditions of, 291
system, 156
system versus environment, 43
system, asynchronous, 3
system, distributed, 3
system, hybrid, 132
system, memory, 45

tab character, 287, 290, 307



364

INDEX

table, truth, 10, 11
Tail, 36, 53
tautology
checking with TLC, 261
of predicate logic, 13
of propositional logic, 11, 296
of temporal logic, 92-95
versus proof rule, 95
tautology, dual, 93
temporal
existential quantification, see hid-
ing variables
formula, 18, 88-92, 314
checked by TLC, 242
evaluated by TLC, 235
syntax, 288
valid, 315
formula, meaning of, 88
formula, nice, 236
formula, simple, 236
logic, 2, 116
tautology, 92-95
logic of actions, 2
operator, 269, 314-316
precedence, 92
proof rule, 95
state formula, 236
theorem, 92
universal quantification, 110, 315
Temporal (in TLC), 240
temporal-level expression, 322
terminal symbol, 179
terminating execution, 17
termination, 222
terse TLC option, 252
TEX, 19, 211
textheight TLATEX option, 216
textwidth TLATEX option, 216
THEOREM, 20, 327, 332
theorem, 18, 327, 332
theorem, temporal, 92
thinking, 83
Thm, 327

threads used by TLC, 242, 253
time, real, 117-134
time, unit of, 117
Timer, 119, 123
timer, 118
TLA, 2
TLA proof rule, 18
TLA web page, 1, 19, 63, 207, 211,
221

TLAT, 3
tlaOut TLATEX option, 218
TLAPlusGrammar module, 276
TLATEX, 211, 286, 288

output files, 217

web page, 211
TLATEX, running, 211
tlatex WTEX package, 218
TLC, 221-264
TLC module, 248

overridden by TLC, 237
TLC value, 230
TLC, running, 251
Tok, 182
tok, 180
token, 180
tool, TLA™, 1, 3, 207
total order, 191
trace, TLC error, 247, 252, 259
transition function, 312
transition function, basic, 313
transition-level expression, 322
transitive, 191
transmission line, FIFO, 222
tree, 174
TRUE, 9, 293
truth table, 10, 11
tuple, 27, 53, 306
tuple, quantification over, 293
tuple, sequence as, 35
Tuttle, Mark, v, 221
two-phase handshake, 23
type in programming language, 67
type invariant, 25, 80



INDEX

365

type of a variable, 25, 30
typesetting specifications, 19, 211

U, 241, 254
uid, 1
unbounded quantification, 13, 232,
293
UNCHANGED, 26, 312
evaluated by TLC, 238
undirected graph, 173
UNION, 65, 299, 300
union (U), 12
unit of time, 117
unit, module, 285, 286
universal quantification (V), 12, 293
as conjunction, 13, 105
evaluated by TLC, 232
universal quantification, temporal, 110,
315
universe specified by state, 18, 43,
135
unless, 102
untyped, 30, 67, 296
url, 1
user-definable symbol, 270

valid formula, 18, 309
valid temporal formula, 315
value, 310
value as set, 43
value, Boolean, 9
value, memory, 47
value, model, 230, 259
value, TLC, 230
values, comparable, 231, 264
VARIABLE, 19, 327, 329
variable
capture, 335
declaration, 19
hiding, see hiding variables
variable, bound, 14, 109
variable, debugging, 244
variable, flexible, 109
variable, free, 14

variable, internal, 41, 111
variable, rigid, 109

variable, type of, 25, 30
variable, visible, 41
VARIABLES, 25

version of TLC, 221

view, 243

VIEW statement, 243, 264
visible variable, 41

voffset TLATEX option, 217

weak fairness, 96-100
real-time analog, 122
weak fairness, equivalence to strong
fairness, 106
web page, TLA, 1, 19, 63, 207, 211,
221
web page, TLATEX, 211
WF, 97, 285, 314
and instantiation, 337
WF Conjunction Rule, 105
WEF Quantifier Rule, 105
WEF, equivalence to SF, 106
WITH, 36

omitted, 40
witness, 62
workers TLC option, 253
Wr, 186

write-through cache, 54-62, 107-109
Write ThroughCache module, 57
writing, 1

writing, how to start, 24, 79
writing, when to start, 82

Yu, Yuan, v

Zeno behavior, 120, 128

Zeno of Elea, 128

Zeno specification, 128-132
Zermelo-Frankel set theory, 43, 300
Zero, 308

zero (0), 345

zero-tuple, 37, 306

ZF, 43, 300



