

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2010 by Michael Halvorson

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2010924441

ISBN: 978-0-7356-2669-0

Printed and bound in the United States of America.

4 5 6 7 8 9 10 11 12 QG 7 6 5 4 3 2

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information about
international editions, contact your local Microsoft Corporation office or contact Microsoft Press International directly
at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to mspinput@microsoft.com.

Microsoft, Microsoft Press, Access, ActiveX, Arc, Azure, DataTips, Excel, Expression, Halo, IntelliSense, Internet Explorer,
MS, MSDN, MS-DOS, PowerPoint, SharePoint, Silverlight, SQL Server, Visual Basic, Visual C#, Visual C++, Visual
InterDev, Visual Studio, Windows, Windows Azure, Windows Server, Windows Vista and Zoo Tycoon are either registered
trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Other product and company
names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fictitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any express,
statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will be held
liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Devon Musgrave
Project Editor: Valerie Woolley
Editorial Production: Christian Holdener, S4Carlisle Publishing Services
Technical Reviewer: Technical Review services provided by Content Master, a member of CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X16-88509

										 [2012-03-16]

For Henry

		 v

Contents at a Glance

Part I	 Getting Started with Microsoft Visual Basic 2010
	 1	 Exploring the Visual Studio Integrated Development

Environment . 3
	 2	 Writing Your First Program . 37
	 3	 Working with Toolbox Controls . . 67
	 4	 Working with Menus, Toolbars, and Dialog Boxes 97

Part II	 Programming Fundamentals
	 5	 Visual Basic Variables and Formulas,

and the .NET Framework . 123
	 6	 Using Decision Structures . . 159
	 7	 Using Loops and Timers . 181
	 8	 Debugging Visual Basic Programs . 209
	 9	 Trapping Errors by Using Structured Error Handling 227
	 10	 Creating Modules and Procedures . 247
	 11	 Using Arrays to Manage Numeric and String Data 273
	 12	 Working with Collections . 297
	 13	 Exploring Text Files and String Processing 313

Part III	 Designing the User Interface
	 14	 Managing Windows Forms and Controls at Run Time 351
	 15	 Adding Graphics and Animation Effects 375
	 16	 Inheriting Forms and Creating Base Classes 393
	 17	 Working with Printers . 415

Part IV	Database and Web Programming
	 18	 Getting Started with ADO.NET . 441
	 19	 Data Presentation Using the DataGridView Control 467
	 20	 Creating Web Sites and Web Pages by Using Visual

Web Developer and ASP.NET . 491

		 vii

Table of Contents
Acknowledgments . xv

Introduction . xvii

Part I	 Getting Started with Microsoft Visual Basic 2010

	 1	 Exploring the Visual Studio Integrated Development
Environment . 3

The Visual Studio Development Environment . 4

The Visual Studio Tools . 7

The Designer . 10

Running a Visual Basic Program . . 11

The Properties Window . 13

Moving and Resizing the Programming Tools . 17

Moving and Resizing Tool Windows . 18

Docking Tool Windows . 19

Hiding Tool Windows . . 21

Switching Among Open Files and Tools
by Using the IDE Navigator . 22

Opening a Web Browser Within Visual Studio . . 23

Getting Help . 24

Managing Help Settings . 25

Using F1 Help . 26

Customizing IDE Settings to Match
Step-by-Step Exercises . 29

Setting the IDE for Visual Basic Development . 29

Checking Project and Compiler Settings . 31

One Step Further: Exiting Visual Studio . 33

Chapter 1 Quick Reference . 34

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

viii	 Table of Contents

	 2	 Writing Your First Program . 37
Lucky Seven: Your First
Visual Basic Program . 37

Programming Steps . 38

Creating the User Interface . 38

Setting the Properties . 45

The Picture Box Properties . 49

Writing the Code . . 52

A Look at the Button1_Click
Procedure . 56

Running Visual Basic Applications . 58

Sample Projects on Disk . . 59

Building an Executable File . 60

Deploying Your Application . 62

One Step Further: Adding to a Program . 63

Chapter 2 Quick Reference . 64

	 3	 Working with Toolbox Controls . . 67
The Basic Use of Controls: The Hello
World Program . 67

Using the DateTimePicker Control . 73

The Birthday Program . 73

Controls for Gathering Input . . 78

Using Group Boxes and Radio Buttons . 81

Processing Input with List Boxes . 84

A Word About Terminology . 89

One Step Further: Using the LinkLabel Control . 91

Chapter 3 Quick Reference . 95

	 4	 Working with Menus, Toolbars, and Dialog Boxes 97
Adding Menus by Using the MenuStrip Control . 97

Adding Access Keys to Menu Commands . . 99

Processing Menu Choices . 102

Adding Toolbars with the ToolStrip Control . 107

Using Dialog Box Controls . . 110

Event Procedures That Manage Common
Dialog Boxes . 112

One Step Further: Assigning Shortcut Keys to Menus 117

Chapter 4 Quick Reference . 119

	 Table of Contents	 ix

Part II	 Programming Fundamentals
	 5	 Visual Basic Variables and Formulas,

and the .NET Framework . 123
The Anatomy of a Visual Basic Program Statement . 123

Using Variables to Store Information . . 124

Setting Aside Space for Variables: The Dim Statement 124

Implicit Variable Declaration . . 126

Using Variables in a Program . 127

Using a Variable to Store Input . . 130

Using a Variable for Output . 133

Working with Specific Data Types . 135

Constants: Variables That Don’t Change . . 142

Working with Visual Basic Operators . . 143

Basic Math: The +, –, *, and / Operators . 144

Using Advanced Operators: \, Mod, ^, and & . 147

Working with Math Methods in the .NET Framework 152

One Step Further: Establishing Order of Precedence . 155

Using Parentheses in a Formula . 156

Chapter 5 Quick Reference . 156

	 6	 Using Decision Structures . . 159
Event-Driven Programming . . 159

Using Conditional Expressions . 161

If . . . Then Decision Structures . 161

Testing Several Conditions in an If . . . Then
Decision Structure . . 162

Using Logical Operators in Conditional Expressions 167

Short-Circuiting by Using AndAlso and OrElse . 169

Select Case Decision Structures . 171

Using Comparison Operators with a Select
Case Structure . 173

One Step Further: Detecting Mouse Events . 177

Chapter 6 Quick Reference . 179

	 7	 Using Loops and Timers . 181
Writing For . . . Next Loops . 181

Using a Counter Variable in a Multiline TextBox Control 183

Creating Complex For . . . Next Loops . 185

Using a Counter That Has Greater Scope . 189

x	 Table of Contents

Writing Do Loops . 192

Avoiding an Endless Loop . 193

The Timer Control . 196

Creating a Digital Clock by Using a Timer Control . 197

Using a Timer Object to Set a Time Limit . 200

One Step Further: Inserting Code Snippets . 203

Chapter 7 Quick Reference . 207

	 8	 Debugging Visual Basic Programs . 209
Finding and Correcting Errors . . 209

Three Types of Errors . 210

Identifying Logic Errors . 211

Debugging 101: Using Debugging Mode . . 212

Tracking Variables by Using a Watch Window . 217

Visualizers: Debugging Tools That Display Data . 220

Using the Immediate and Command Windows . . 221

Switching to the Command Window . . 223

One Step Further: Removing Breakpoints . 224

Chapter 8 Quick Reference . 225

	 9	 Trapping Errors by Using Structured Error Handling 227
Processing Errors by Using the Try . . . Catch Statement 227

When to Use Error Handlers . 228

Setting the Trap: The Try . . . Catch Code Block . 229

Path and Disc Drive Errors . . 229

Writing a Disc Drive Error Handler . . 233

Using the Finally Clause to Perform Cleanup Tasks . 234

More Complex Try . . . Catch Error Handlers . 236

The Exception Object . 236

Specifying a Retry Period . 239

Using Nested Try . . . Catch Blocks . 242

Comparing Error Handlers with Defensive
Programming Techniques . 242

One Step Further: The Exit Try Statement . . 243

Chapter 9 Quick Reference . 244

	 10	 Creating Modules and Procedures . 247
Working with Modules . . 247

Creating a Module . 248

Working with Public Variables . 251

	 Table of Contents	 xi

Creating Procedures . 255

Writing Function Procedures . 256

Function Syntax . . 257

Calling a Function Procedure . 258

Using a Function to Perform a Calculation . . 258

Writing Sub Procedures . 262

Sub Procedure Syntax . 262

Calling a Sub Procedure . 263

Using a Sub Procedure to Manage Input . 264

One Step Further: Passing Arguments by Value
and by Reference . 268

Chapter 10 Quick Reference . 270

	 11	 Using Arrays to Manage Numeric and String Data 273
Working with Arrays of Variables . 273

Creating an Array . 274

Declaring a Fixed-Size Array . 275

Setting Aside Memory . 276

Working with Array Elements . 277

Declaring an Array and Assigning It Initial Values 278

Creating a Fixed-Size Array to Hold Temperatures 279

Creating a Dynamic Array . 283

Preserving Array Contents by Using ReDim Preserve . 287

Using ReDim for Three-Dimensional Arrays . 288

One Step Further: Processing Large Arrays
by Using Methods in the Array Class . . 288

The Array Class . 288

Chapter 11 Quick Reference . 295

	 12	 Working with Collections . 297
Working with Object Collections . 297

Referencing Objects in a Collection . 298

Writing For Each . . . Next Loops . 298

Experimenting with Objects in the Controls Collection 299

Using the Name Property in a For Each . . . Next Loop 302

Creating Your Own Collections . . 304

Declaring New Collections . 304

One Step Further: VBA Collections . 309

Entering the Word Macro . 310

Chapter 12 Quick Reference . 311

xii	 Table of Contents

	 13	 Exploring Text Files and String Processing 313
Reading Text Files . 313

The My Namespace . 314

The StreamReader Class . . 316

Using the ReadAllText Method . . 317

Writing Text Files . 321

The WriteAllText Method . . 321

The StreamWriter Class . 322

Using the WriteAllText Method . 323

Processing Strings with the String Class . 326

Sorting Text . 329

Working with ASCII Codes . 330

Sorting Strings in a Text Box . 331

Examining the Sort Text Program Code . 334

Protecting Text with Basic Encryption . 336

One Step Further: Using the Xor Operator . 340

Examining the Encryption Program Code . 342

Chapter 13 Quick Reference . 345

Part III	 Designing the User Interface

	 14	 Managing Windows Forms and Controls at Run Time 351
Adding New Forms to a Program . 351

How Forms Are Used . 352

Working with Multiple Forms . 352

Using the DialogResult Property in the Calling Form 358

Positioning Forms on the Windows Desktop . 359

Minimizing, Maximizing, and Restoring Windows 364

Adding Controls to a Form at Run Time . 364

Organizing Controls on a Form . 367

One Step Further: Specifying the Startup Object . 371

Chapter 14 Quick Reference . 373

	 15	 Adding Graphics and Animation Effects 375
Adding Artwork by Using
the System.Drawing Namespace . 376

Using a Form’s Coordinate System . 376

The System.Drawing.Graphics Class . 376

Using the Form’s Paint Event . 378

	 Table of Contents	 xiii

Adding Animation to Your Programs . 380

Moving Objects on the Form . 380

The Location Property . 381

Creating Animation by Using a Timer Object . 382

Expanding and Shrinking Objects While a Program Is Running 386

One Step Further: Changing Form Transparency . 388

Chapter 15 Quick Reference . 390

	 16	 Inheriting Forms and Creating Base Classes 393
Inheriting a Form by Using the Inheritance Picker . 393

Creating Your Own Base Classes . . 399

Adding a New Class to Your Project . 401

One Step Further: Inheriting a Base Class . 408

Chapter 16 Quick Reference . 412

	 17	 Working with Printers . 415
Using the PrintDocument Class . . 415

Printing Text from a Text Box Object . 420

Printing Multipage Text Files . . 424

One Step Further: Adding Print Preview and Page Setup Dialog Boxes 430

Chapter 17 Quick Reference . 437

Part IV	Database and Web Programming
	 18	 Getting Started with ADO.NET . 441

Database Programming with ADO.NET . 441

Database Terminology . 442

Working with an Access Database . 444

The Data Sources Window . 452

Using Bound Controls to Display
Database Information . . 458

One Step Further: SQL Statements, LINQ,
and Filtering Data . 461

Chapter 18 Quick Reference . 466

	 19	 Data Presentation Using the DataGridView Control 467
Using DataGridView to Display Database Records . 467

Formatting DataGridView Cells . 479

Adding a Second Data Grid View Object . 482

One Step Further: Updating the Original Database . 485

Chapter 19 Quick Reference . 488

xiv	 Table of Contents

	 20	 Creating Web Sites and Web Pages by Using Visual
Web Developer and ASP.NET . 491

Inside ASP.NET . 491

Web Pages vs. Windows Forms . 493

Server Controls . 493

HTML Controls . 494

Building a Web Site by Using Visual
Web Developer . 495

Considering Software Requirements
for ASP.NET Programming . 495

Using the Web Page Designer . 498

Adding Server Controls to a Web Site . 501

Writing Event Procedures for Web Page Controls 504

Customizing the Web Site Template . 509

Displaying Database Records on a Web Page . 512

One Step Further: Setting Web Site Titles
in Internet Explorer . 519

Chapter 20 Quick Reference . 522

Appendix: Where to Go for More Information . 523

Index . 529

Microsoft is interested in hearing your feedback so we can continually improve our books and learning
resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

		 xv

Acknowledgments
Writing a computer programming book is fascinating because the whole process begins well
before the software is actually finished. Authors meet with software developers and computer
book publishers, explore product specifications and early releases of the software, review
the comments and suggestions that readers of previous editions have offered, develop
a writing plan and schedule, and begin testing their ideas with beta versions of the product.
This iterative process produces important insights and continues (with mounting fervor) until
the software is complete and the final books are shipped to the printer.

Microsoft Press is a fantastic place to write a computer programming book. At each stage in
the publishing process, talented team members work together to cultivate valuable technical
contacts and resources, build visionary product deployment strategies, explore the hidden
benefits of emerging technologies, and pick the right words and images to describe them.
Microsoft Visual Basic 2010 Step by Step, now in its eighth edition, has benefited significantly
from this dynamic and innovative publishing environment over the years.

I gratefully acknowledge the support and assistance of the following people who helped
to plan, edit, test, produce, and market our book this time (in the order that I worked with
them): Ben Ryan, Devon Musgrave, Valerie Woolley, Susan McClung, and Christian Holdener.
In particular, Valerie Woolley enthusiastically kept my writing on schedule and insured that
our book would fit well in the Step by Step series that Microsoft Press is so well known for. I
am also very grateful to the Microsoft Visual Studio 2010 development team for providing me
with beta and release candidate software to work with.

As always, I offer my deepest gratitude and affection to my family for their continued
support of my writing projects and various academic pursuits.

		 xvii

Introduction
Microsoft Visual Basic 2010 is an important upgrade and enhancement of the popular Visual
Basic programming language and compiler, a technology that enjoys an installed base of
millions of programmers worldwide. Visual Basic 2010 is not a stand-alone product but
a key component of Microsoft Visual Studio 2010—a comprehensive development system
that allows you to create powerful applications for Windows, the Web, handheld devices,
and a host of other environments. Whether you purchase one of the commercial editions of
Visual Studio 2010 (described later in this Introduction) or you download Visual Basic 2010
Express for a free test-drive of the software, you are in for an exciting experience. The latest
features of Visual Basic will increase your productivity and programming prowess, especially
if you enjoy using and integrating information from databases, entertainment media, Web
pages, and Web sites. In addition, an important benefit of learning Visual Basic and the Visual
Studio Integrated Development Environment (IDE) is that you can use many of the same
tools to write programs for Microsoft Visual C++ 2010, Microsoft Visual C# 2010, Microsoft
Visual Web Developer 2010, and other popular products.

Microsoft Visual Basic 2010 Step by Step is a comprehensive introduction to Visual Basic
programming using the Visual Basic 2010 software. I’ve designed this practical, hands-on
tutorial with a variety of skill levels in mind and by following the premise that programmers
learn by doing. In my opinion, the best way to master a complex technology like Visual Basic
is to learn essential programming techniques through carefully prepared tutorials that can
be completed on your own schedule and at your own pace. And although I have significant
experience with college teaching and corporate project management, this book is not
a dry textbook or an “A to Z” programmer’s reference. Instead, it is a practical hands-on
programming tutorial that puts you in charge of your learning, developmental milestones,
and achievements. By using this book, programmers who are new to this topic will learn
Visual Basic software development fundamentals in the context of useful, real-world
applications; and experienced Visual Basic programmers can quickly master the essential
tools and techniques offered in the Visual Basic 2010 upgrade.

Complementing this comprehensive approach is the book’s structure—4 topically organized
parts, 20 chapters, and 56 step-by-step exercises and sample programs. By using this book,
you’ll quickly learn how to create professional-quality Visual Basic 2010 applications for the
Windows operating system and a variety of Web browsers. You’ll also have fun!

Table of Contents
Introduction . xvii

Visual Basic Versions . xviii

Downloading Visual Basic 2010 Express . xix

Finding Your Best Starting Point in This Book . xix

Hardware and Software Requirements . xx

Prerelease Software . xxi

Installing and Using the Practice Files . xxi

Installing the Practice Files . xxi

Using the Practice Files . xxii

Uninstalling the Practice Files . xxvi

Conventions and Features in This Book . xxvi

Conventions . xxvii

Other Features . . xxvii

Helpful Support Links . . xxvii

Visual Studio 2010 Software Support . xxviii

Support for This Book . xxviii

We Want to Hear from You . . xxviii

xviii	 Introduction

Visual Basic Versions
So how did we get here, anyway? Between 1991 and 1998, Microsoft released six versions
of Visual Basic (versions 1.0 through 6.0), which revolutionized software development for
Windows by introducing event-driven programming to a wide audience based on the
QuickBasic programming language and an IDE. After a significant period of additional
development and innovation, Microsoft released Visual Basic .NET 2002, an object-oriented
programming language closely related to Visual Basic but implemented on the Microsoft
.NET Framework, a comprehensive library of coded solutions intended to be used by most
new applications that run on the Windows platform. As improved versions of Visual Basic
came out in 2003, 2005, and 2008, Visual Basic became a component within the Visual
Studio suite, and significant support was added to the product for database, Internet,
and team development projects, as well as continued improvements to the .NET Framework.
Visual Basic 2010 is now so tightly integrated with Visual Studio that it is available only
as a component in the Visual Studio 2010 programming suite, which includes Visual C#,
Visual C++, Visual Web Developer, and other Microsoft .NET development tools. Since
2005, both Visual Basic and Visual Studio have been marketed without the “.NET” moniker,
although they are still based on the .NET Framework technology.

Visual Studio 2010 is distributed in several different product configurations, including
Professional, Premium, Ultimate, and Express. I’ve written this book to be compatible
with all editions of Visual Basic 2010 and Visual Studio 2010, but especially with the tools
and techniques available in Visual Studio 2010 Professional and Visual Basic 2010 Express.
Although Visual Basic 2010 is similar in many ways to Visual Basic 2008, there are many
important differences and improvements, so I recommend that you complete the exercises
in this book using the Visual Basic 2010 software.

Note  The Visual Studio 2010 software is not included with this book. The CD distributed with
most versions of this book contains practice files, sample databases, and other useful information
that requires the Visual Studio 2010 software (sold separately) for use. If you don’t have Visual
Studio, you can download Visual Basic 2010 Express for free, and it contains an amazing palette
of features, though obviously not all the features of Visual Studio Professional, Premium, or
Ultimate. As you complete the exercises in this book, I will note from time to time which features
are unavailable to you if you are using Visual Basic 2010 Express. Also note that if you are using
Visual Basic 2010 Express and you want to complete Chapter 20, “Creating Web Sites and Web
Pages by Using Visual Web Developer and ASP.NET,” you will need to download Visual Web
Developer 2010 Express to complete the exercises. Visual Web Developer is included in Visual
Studio Professional, Premium, and Ultimate, but not Visual Basic Express.

	 Introduction	 xix

Downloading Visual Basic 2010 Express
As noted previously, if you don’t have Visual Studio 2010 Professional, Visual Studio 2010
Premium, or Visual Studio 2010 Ultimate, you can complete most of the exercises in this
book by downloading Visual Basic 2010 Express from the Web for free. This will give you
an opportunity to learn Visual Basic programming and see for yourself if you want to
upgrade to a full release of the Visual Studio software.

To download Visual Basic 2010 Express, complete the following steps:

	 1.	 Open a Web browser (such as Internet Explorer), and go to http://www.microsoft.com/
express.

	 2.	 Follow the instructions on the screen to download Visual Basic 2010 Express.

On the Express Web site, you will also see an Express product feature chart that compares
the Express product to the full versions of Visual Studio. Although there are some key
differences between the full versions and Visual Basic 2010 Express, many of these
differences have no effect on how you learn the essential techniques and features of
Visual Basic programming. After you experiment with the Express product, you can decide
whether you want to upgrade to one of the full versions of Visual Studio or not. Now, let’s
get started learning about Visual Basic and how this programming course works!

Finding Your Best Starting Point in This Book
This book is designed to help you build skills in a number of essential areas. You can use it if
you’re new to programming, switching from another programming language, or upgrading
from Visual Basic 2008. Use the following table to find your best starting point in this book.

If you are . . . Follow these steps

New to
programming

	 1.	 Install the practice files as described in the section “Installing and Using the
Practice Files,” later in this Introduction.

	 2.	 Learn basic skills for using Visual Basic 2010 by working sequentially from
Chapter 1 through Chapter 17.

	 3.	 Complete Part IV, “Database and Web Programming,” as your level of
interest or experience dictates.

Upgrading from
Visual Basic 2005
or 2008

	 1.	 Install the practice files as described in “Installing and Using the
Practice Files.”

	 2.	 Complete Chapters 1 through 4, skim Chapters 5 through 17, and complete
Chapters 18 through 20.

xx	 Introduction

If you are . . . Follow these steps

Upgrading from
Visual Basic 6.0

	 1.	 Install the practice files as described in the section “Installing and Using the
Practice Files.”

	 2.	 Read Chapters 1 through 4 carefully to learn the new features of the Visual
Studio 2010 development environment.

	 3.	 Skim Chapters 5 through 13 to review the fundamentals of event-driven
programming, using variables, and writing decision structures. Give special
attention to Chapters 5, 6, 9, and 12.

	 4.	 Work sequentially from Chapters 14 through 20 to learn the new Visual
Basic 2010 features related to user interface design, database programming,
and Web programming.

Referencing
this book after
working through
the chapters

	 1.	 Use the index to locate information about specific topics, and use the table
of contents to locate information about general topics.

	 2.	 Read the Quick Reference at the end of each chapter for a brief review of
the major tasks in the chapter. The Quick Reference topics are listed in the
same order as they’re presented in the chapter.

Hardware and Software Requirements
You’ll need the following hardware and software to complete the exercises in this book:

n	 Windows 7, Windows Vista, Windows XP, Windows Server 2003, or Windows
Server 2008

n	 Visual Studio 2010 (Professional, Premium, or Ultimate) or Visual Basic 2010 Express

n	 1.6 GHz processor

n	 1 GB RAM

n	 3 GB of available hard drive space

n	 5400 RPM hard disk drive

n	 DirectX 9–capable video card that runs at a display resolution of 1024 × 768 or higher

n	 DVD drive

You also need to have Administrator-level access to your computer.

Note  This book and the practice files were tested using Visual Studio 2010 Professional and
Visual Basic 2010 Express on Windows 7. You might notice a few differences if you’re using
other editions of Visual Studio 2010. In particular, if you’re using Visual Basic 2010 Express, a few
features will be unavailable to you. In addition, all the screen shots in this book were captured
using Windows 7. If you are using another version of Windows or Windows Server, you’ll notice
a few differences in some of the screen shots.

	 Introduction	 xxi

Prerelease Software
This book was reviewed and tested against the Release Candidate of Visual
Studio 2010. The Release Candidate was the last preview before the final release of
Visual Studio 2010. This book is expected to be fully compatible with the final release of
Visual Studio 2010 and Visual Basic 2010. If there are any changes or corrections for this
book, they will be collected and added to an easy-to-access Microsoft Knowledge Base
article on the Web. See “Support for This Book,” later in this Introduction.

Digital Content for Digital Book Readers: If you bought a digital-only edition of this book, you can
enjoy select content from the print edition’s companion CD.
Visit http://go.microsoft.com/fwlink/?LinkId=187514 to get your downloadable content. This content
is always up-to-date and available to all readers.

Installing and Using the Practice Files
The CD inside this book contains the practice files that you’ll use as you perform the exercises
in the book. For example, when you’re learning how to display database tables on a form
by using the DataGridView control, you’ll open one of the practice files—an academic
database named Faculty2010.accdb—and then use Visual Studio database programming
tools to access the database. By using the practice files, you won’t waste time creating files
that aren’t relevant to the exercise. Instead, you can concentrate on learning how to master
Visual Basic 2010 programming techniques. With the files and the step-by-step instructions
in the chapters, you’ll also learn by doing, which is an easy and effective way to acquire and
remember new skills.

Important  Before you break the seal on the CD, be sure that this book matches your version
of the software. This book is designed for use with Visual Studio 2010 and the Visual Basic 2010
programming language. To find out what software you’re running, you can check the product
package, or you can start the software, open a project, and then click About Microsoft Visual
Studio on the Help menu at the top of the screen.

Installing the Practice Files
Installing the practice files on your hard disk requires approximately 10 megabytes (MB) of
disk space. Follow these steps to install the practice files on your computer’s hard disk drive
so that you can use them with the exercises in this book.

	 1.	 Remove the CD from the package inside this book and insert it into your CD drive.

Note  An End-User License Agreement (EULA) should open automatically. If this
agreement does not appear, you can double-click StartCD.exe on the CD. If you have
Windows 7 or Windows Vista, click Computer on the Start menu, double-click the icon for
your CD drive, and then double-click StartCD.exe.

xxii	 Introduction

	 2.	 Review the EULA. If you accept the terms, select the Accept option, and then click Next.

A menu appears with options related to the book.

	 3.	 Click Practice Files.

	 4.	 Follow the on-screen instructions.

Note  For best results when using the practice files with this book, accept the preselected
installation location, which by default is C:\Vb10sbs. If you change the installation location,
you’ll need to adjust the paths in several practice files manually to locate essential
components, such as artwork and database files, when you use them. Trust me—it is good
to use the default installation location.

	 5.	 When the files have been installed, remove the CD from your drive and replace it in the
package inside the back cover of your book.

If you accepted the default settings, a folder named C:\Vb10sbs has been created on
your hard disk drive, and the practice files have been placed in that folder. You’ll find
one folder in C:\Vb10sbs for each chapter in the book. (Some of the files represent
completed projects, and others will require that you enter some program code.)
If you have trouble running any of the practice files, refer to the text in the book that
describes those files.

Using the Practice Files
Each chapter in this book explains when and how to use the practice files for that chapter.
When it’s time to use a practice file, the book includes instructions for opening the file.
The chapters are built around scenarios that simulate real programming projects so that you
can easily apply the skills you learn to your own work.

Note  Visual Basic 2010 features a new file format for its projects and solutions. Accordingly, you
won’t be able to open the practice files for this book if you’re using an older version of the Visual
Basic or Visual Studio software. To see what version of Visual Basic or Visual Studio you’re using,
click the About command on the Help menu.

Visual Studio is extremely customizable and can be configured to open and save projects
and solutions in different ways. The instructions in this book generally rely on the default
setting for Visual Studio. For more information about how settings within the development
environment affect how you write programs and use the practice files, see the section
“Customizing IDE Settings to Match Step-by-Step Exercises” in Chapter 1, “Exploring the
Visual Studio Integrated Development Environment.”

	 Introduction	 xxiii

For those of you who like to know all the details, here’s a list of the Visual Basic projects
included on the CD. Each project is located in its own folder and has several support files.
Look at all the things you will be doing!

Project Description

Chapter 1

MusicTrivia A simple trivia program that welcomes you to the programming course
and displays a digital photo.

Chapter 2

Lucky7 Your first program—a game that simulates a Las Vegas Lucky Seven slot
machine.

Chapter 3

Birthday Uses the DateTimePicker control to pick a date.

CheckBox Demonstrates the CheckBox control and its properties.

Hello A Hello World program that demonstrates the Label and TextBox controls.

List Box Demonstrates the ListBox control for gathering input.

Radio Button Demonstrates the RadioButton control for gathering input.

WebLink Demonstrates the LinkLabel control that opens a Web browser in your Visual
Basic application.

Chapter 4

Menu Demonstrates how to use Visual Studio dialog box controls, toolbars,
and menus.

Chapter 5

Advanced Math Advanced use of operators for integer division, remainder division,
exponentiation, and string concatenation.

Basic Math Basic use of operators for addition, subtraction, multiplication, and division.

Constant Tester Uses a constant to hold a fixed mathematical entity.

Data Types Demonstrates Visual Basic fundamental data types and their use with variables.

Framework Math Demonstrates the .NET Framework classes with mathematical methods.

Input Box Receives input with the InputBox function.

Variable Test Declares and uses variables to store information.

Chapter 6

Select Case Uses a Select . . . Case decision structure and a ListBox control to display
a welcome message in several languages.

User Validation Uses the If . . . Then . . . Else decision structure and a MaskedTextBox control to
manage a logon process.

Chapter 7

Celsius
Conversion

Converts temperatures from Fahrenheit to Celsius by using a Do loop.

Digital Clock A simple digital clock program that demonstrates the Timer control.

xxiv	 Introduction

Project Description

For Loop Demonstrates using a For . . . Next loop to display text in a TextBox control,
and using the Chr function to create a wrap character.

For Loop Icons Uses a global counter variable in an event procedure as an alternative to loops.
This program also displays images by using a PictureBox control.

Timed Password Demonstrates how to use a Timer control to create a logon program with
a password time-out feature.

Windows Version
Snippet

Shows how to use the Insert Snippet command to display the current version of
Windows running on a user’s computer.

Chapter 8

Debug Test A simulated debugging problem, designed to be solved using the Visual Studio
debugging tools.

Chapter 9

Disc Drive Error Crashes when a CD or DVD drive is used incorrectly. This project is used as the
basis of a Visual Basic error handler.

Disc Drive
Handler

Completed error handler for loading files that demonstrates the Try . . . Catch
syntax.

Chapter 10

Text Box Sub A general-purpose Sub procedure that adds items to a list box.

Track Wins A clean version of the Lucky7 slot machine project from Chapter 2, which you
enhance by using public variables and a function that computes the game’s
win rate.

Chapter 11

Array Class Sorts Shows how to create and manipulate large integer arrays. Demonstrates the
Array.Sort and Array.Reverse methods and how to use a ProgressBar control to
give the user visual feedback during long sorts.

Dynamic Array Computes the average temperature for any number of days by using
a dynamic array.

Fixed Array Computes the average weekly temperature by using a fixed-length array.

Chapter 12

Controls
Collection

Uses a For Each . . . Next loop and the Visual Studio Controls collection to move
objects on a form.

URL Collection Demonstrates a user-defined collection containing a list of Uniform Resource
Locators (URLs), or Web addresses, recently visited by the user.

Chapter 13

Encrypt Text Demonstrates the Chr, Asc, Length, Substring, and FileExists methods, as well
as a simple encryption scheme to jumble the text in files. Teaches useful
text-processing techniques.

Quick Note A simple note-taking utility that demonstrates the Clock.LocalTime property;
the WriteAllText method; and the TextBox, MenuStrip, and SaveFileDialog
controls.

	 Introduction	 xxv

Project Description

Sort Text A text file editor with a menu bar that demonstrates how to manage Open,
Close, Save As, Insert Date, Sort Text, and Exit commands in a program.
Contains a ShellSort module for sorting arrays that can be added to other
programming projects.

Text Browser Displays the contents of a text file in a Visual Basic program. Demonstrates
menu and dialog box commands, a Try . . . Catch error handler, the ReadAllText
method, and serves as a foundation for the other programs in this chapter.

Xor Encryption Explores the StreamWriter class and the OpenTextFileWriter and ReadAllText
methods for file management, as well as using the Xor operator to encrypt files
with a hidden code that is entered by the user.

Chapter 14

Add Controls Demonstrates how controls are added to a Windows Form at run time by using
program code (not the Designer).

Anchor and Dock Uses the Anchor and Dock properties of a form to align objects at run time.

Desktop Bounds Uses the StartPosition and DesktopBounds properties to position a Windows
Form at run time. Also demonstrates the FormBorderStyle property, Rectangle
structure, and ShowDialog method.

Lucky Seven Help The enhanced Lucky7 program (Track Wins) from Chapter 10, which you enhance
again through the addition of a second form to display Help information.

Chapter 15

Draw Shapes Demonstrates a few of the useful graphics methods in the System.Drawing
namespace, including DrawEllipse, FillRectangle, and DrawCurve.

Moving Icon Animates an icon on the form, moving it from the top of the form to the
bottom each time that you click the Move Down button.

Transparent Form Demonstrates how to change the transparency of a form by using the Me
object and the Opacity property.

Zoom In Simulates zooming in, or magnifying, a picture box object on a form
(in this case, a high-resolution image of the planet Earth).

Chapter 16

Form Inheritance Uses the Visual Studio Inheritance Picker to create a form that inherits its
characteristics and functionality from another form.

Person Class Demonstrates how to create new classes, properties, and methods in a Visual
Basic project. The new Person class is an employee record with first name, last
name, and date of birth fields, and it contains a method that computes the
current age of an employee.

Chapter 17

Print Dialogs Demonstrates how to create Print Preview and Page Setup dialog boxes.

Print File Handles more sophisticated printing tasks, including printing a multipage text
file with wrapping lines. Includes lots of code to use in your own projects.

Print Graphics Prints graphics from within a Visual Basic program by using an error handler,
the Print method, and the DrawImage method.

Print Text Demonstrates how simple text is printed in a Visual Basic program.

xxvi	 Introduction

Project Description
Chapter 18

ADO Faculty
Form

Demonstrates how ADO.NET is used to establish a connection to a Microsoft
Access 2007 database and display information from it.

Chapter 19
DataGridView
Sample

Shows how the DataGridView control is used to display multiple tables of
data on a form. Also demonstrates how navigation bars, datasets, and table
adapters are interconnected and bound to objects on a form.

Chapter 20
Chap20 Demonstrates using Visual Web Developer and ASP.NET 4 to create a car loan

calculator that runs in a Web browser, offers Help information, and displays
faculty database records.

Uninstalling the Practice Files
Use the following steps to remove the practice files added to your hard disk drive by the
Visual Basic 2010 Step by Step installation program. After uninstalling the practice files, you
can delete manually any Visual Basic project files that you have created on your own, should
you choose to do so.

If you are running the Windows 7 or Windows Vista operating system:

	 1.	 In Control Panel, in the Programs category, click Uninstall A Program.

	 2.	 Select VB 2010 SBS in the list of programs, and then click Uninstall.

	 3.	 Follow the on-screen instructions to remove the practice files.

If you are running the Windows XP operating system:

	 1.	 In Control Panel, open Add Or Remove Programs.

	 2.	 In the Currently Installed Programs list, click VB 2010 SBS. Then click Remove.

	 3.	 Follow the on-screen instructions to remove the practice files.

Conventions and Features in This Book
Before you start the exercises in this book, you can save time by understanding how
I provide instructions and the elements I use to communicate information about Visual Basic
programming. The following lists identify stylistic conventions and discuss helpful features
of the book.

	 Introduction	 xxvii

Conventions
n	 The names of all program elements—controls, objects, methods, functions, properties,

and so on—appear in italic.

n	 Hands-on exercises for you to follow are given in numbered lists of steps (1, 2,
and so on). A round bullet (•) indicates an exercise that has only one step.

n	 Text that you need to type appears in bold.

n	 As you work through steps, you’ll occasionally see tables with lists of properties that
you’ll set in Visual Studio. Text properties appear within quotes, but you don’t need to
type the quotes.

n	 A plus sign (+) between two key names means that you must press those keys at the
same time. For example, “Press Alt+Tab” means that you hold down the Alt key while
you press Tab.

n	 Readeraids labeled Note, Tip, and Important provide additional information or alternative
methods for a step. You should read these before continuing with the exercise.

Other Features
n	 You can learn special programming techniques, background information, or features

related to the information being discussed by reading the sidebars that appear
throughout the chapters. These sidebars often highlight difficult terminology or
suggest future areas for exploration.

n	 You can learn about options or techniques that build on what you learned in a chapter
by trying the One Step Further exercise at the end of that chapter.

n	 You can get a quick reminder of how to perform the tasks you learned by reading the
Quick Reference table at the end of a chapter. These handy tables are also designed
to be used as a topical reference after you complete the book and you need a quick
reminder about how to perform a programming task.

Helpful Support Links
You are invited to check out the following links that provide support for the Visual Studio
2010 software and this book’s contents.

xxviii	 Introduction

Visual Studio 2010 Software Support
For questions about the Visual Studio 2010 software, I recommend two Microsoft Web sites:

n	 http://msdn.microsoft.com/vbasic/ (the Microsoft Visual Basic Developer Center
home page)

n	 http://www.microsoft.com/communities/ (the home of technical communities related to
Microsoft software products and technologies)

Both Web sites give you access to professional Visual Basic developers, Microsoft employees,
Visual Basic blogs, newsgroups, webcasts, technical chats, and interesting user groups.
For additional information about these and other electronic and printed resources, see the
Appendix, “Where to Go for More Information.”

Support for This Book
Every effort has been made to ensure the accuracy of this book and the contents of the
companion CD. As corrections or changes are collected, they will be added to a Microsoft
Knowledge Base article. Microsoft Press provides support for books and companion CDs
at the following Web site:

http://www.microsoft.com/learning/support/books/

If you have comments, questions, or ideas regarding the book or the companion CD,
or questions that are not answered by visiting the sites previously mentioned, please send
them to Microsoft Press via an e-mail message to mspinput@microsoft.com.

Please note that Microsoft software product support is not offered through these addresses,
nor does the author of this book offer direct product support.

We Want to Hear from You
We welcome your feedback about this book. Please share your comments and ideas through
the following short survey:

http://www.microsoft.com/learning/booksurvey

Your participation helps Microsoft Press create books that better meet your needs and your
standards.

Note  We hope that you will give us detailed feedback in our survey. If you have questions about
our publishing program, upcoming titles, or Microsoft Press in general, we encourage you to
interact with us using Twitter at http://twitter.com/MicrosoftPress. For support issues, use only the
e-mail address shown previously.

		 1

Part I

Getting Started with Microsoft
Visual Basic 2010

In this part:

Chapter 1: Exploring the Visual Studio Integrated
 Development Environment . 3

Chapter 2: Writing Your First Program . 37

Chapter 3: Working with Toolbox Controls . 67

Chapter 4: Working with Menus, Toolbars, and Dialog Boxes 97

In Part I, you’ll receive an overview of essential Microsoft Visual Basic 2010 programming
techniques and an introduction to the tools and features that you will work with during most
Visual Basic programming sessions. You’ll learn to use the Visual Studio 2010 Integrated
Development Environment (IDE), with its fulsome collection of programming tools, windows,
and menu commands, and you’ll receive step-by-step instruction on how to build and run
several interesting programs from scratch. This is the place to start if you’re new to Visual
Basic programming or upgrading from an earlier version.

Chapter 2 introduces how controls, forms, properties, and program code can be used in
combination to create an entertaining Lucky Seven slot machine game. Chapter 3 provides
an overview of the most useful Toolbox controls, which help you present information
or program choices to the user, gather input, work with dates and times, and connect
to the Web. Chapter 4 focuses on adding menus, toolbars, and dialog boxes to Visual Basic
programs that will give your program the flair of a commercial Windows application.

Table of Contents

Getting Started with Microsoft Visual Basic 2010

Exploring the Visual Studio Integrated Development Environment . 3
The Visual Studio Development Environment . 4

The Visual Studio Tools . 7

The Designer . 10

Running a Visual Basic Program . . 11

The Properties Window . 13

Moving and Resizing the Programming Tools . 17

Moving and Resizing Tool Windows . 18

Docking Tool Windows . 19

Hiding Tool Windows . . 21

Switching Among Open Files and Tools
by Using the IDE Navigator . 22

Opening a Web Browser Within Visual Studio . . 23

Getting Help . 24

Managing Help Settings . 25

Using F1 Help . 26

Customizing IDE Settings to Match
Step-by-Step Exercises . 29

Setting the IDE for Visual Basic Development . 29

Checking Project and Compiler Settings . 31

One Step Further: Exiting Visual Studio . 33

Chapter 1 Quick Reference . 34

		 3

Chapter 1

Exploring the Visual Studio
Integrated Development
Environment

After completing this chapter, you will be able to:

n	 Use the Visual Studio Integrated Development Environment.

n	 Open and run a Visual Basic program.

n	 Change property settings.

n	 Move, resize, dock, and automatically hide tool windows.

n	 Use the IDE Navigator.

n	 Open a Web browser within Visual Studio.

n	 Get Help and manage Help settings.

n	 Customize IDE settings to match this book’s step-by-step instructions.

Are you ready to start working with Microsoft Visual Studio 2010? This chapter gives
you the skills you need to get up and running with the Visual Studio 2010 Integrated
Development Environment (IDE)—the place where you will write Microsoft Visual Basic
programs. You should read this chapter whether you are new to Visual Basic programming
or you have used previous versions of Visual Basic or Visual Studio.

In this chapter, you’ll learn the essential Visual Studio menu commands and programming
procedures. You’ll open and run a simple Visual Basic program named Music Trivia;
you’ll change a programming setting called a property; and you’ll practice moving, sizing,
docking, and hiding tool windows. You’ll also learn how to switch between files and tools
with the IDE Navigator, open a Web browser within Visual Studio, get more information
by using the online Help documentation, and customize the IDE to match this book’s
step-by-step instructions. These are common tasks that you’ll use in most Visual Studio
programming sessions, and they will soon become second nature to you (if they are
not already).

4	 Part I  Getting Started with Microsoft Visual Basic 2010

The Visual Studio Development Environment
First, a quick note to readers upgrading from Visual Studio 2008: Although there have
been lots of internal improvements to Visual Studio 2010, the Visual Studio 2010 IDE is largely
the same IDE that you worked with in Visual Studio 2008. But because you may be new to
Visual Studio, I’m going to explain the basics in this chapter. Also, if you’re new to Visual
Studio, something else that you should know is that although the programming language
you’ll be learning in this book is Visual Basic, most of the features in the Visual Studio IDE
apply equally to Visual Basic, Microsoft Visual C++, and Microsoft Visual C#. All of these
programs (or more properly, compiler technologies) are available to you in the same IDE,
which you can experiment with now by starting Visual Studio and looking at the product.

Important  But wait a second. If you haven’t yet installed this book’s practice files, please
do so now because we are about to use them. Take a moment to work through the sections
entitled “Finding Your Best Starting Point” and “About the CD and Practice Files” in this book’s
Introduction, and then follow the installation steps. (I recommend that you place the project
files and related subfolders in the C:\Vb10sbs folder on your computer.) You also need a current
version of Visual Studio 2010 installed, such as Visual Studio 2010 Professional edition. (Most of
the exercises will also work with Visual Studio 2010 Express.) Return to this point in Chapter 1
when you’re ready to go.

Start Visual Studio 2010

	 1.	 On the Windows taskbar, click Start, click All Programs, and then click the Microsoft
Visual Studio 2010 folder.

The folders and icons in the Microsoft Visual Studio 2010 folder appear in a list.

	 2.	 Click the Microsoft Visual Studio 2010 icon.

Tip  If you are using Visual Basic 2010 Express, click the Microsoft Visual Basic 2010
Express icon.

If this is the first time you are starting Visual Studio, the program will take a few
moments to configure the environment. If you are prompted to identify your
programming preferences at this time, select Visual Basic development settings.

When Visual Studio starts, you see the development environment on the screen with
its many menus, tools, and component windows, as shown here. (These windows are
sometimes called tool windows.) You also should see a Start Page containing a set of
tabs with links, guidance and learning resources, news, and project options. The Start
Page is a comprehensive source of information about your project, as well as resources

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 5

within the Visual Basic development community. This is one avenue for receiving new
information about Visual Studio after you purchase the software. (The screen shown
here is probably less detailed than the one you’ll see, but I’ve captured the screens
in 800 x 600 resolution so that you can read the text in them clearly.)

The first thing most developers do when they start Visual Studio is open an existing
project—either a completed solution they want to work with again or an ongoing
development project. Try opening an existing project that I created for you—the Music
Trivia program.

Open a Visual Basic project

	 1.	 On the Start Page, click the Open Project link.

The Open Project dialog box shown in the following screen shot opens on the screen.
(You can also display this dialog box by clicking the Open Project command on the File
menu or by pressing CTRL+O.) Even if you haven’t used Visual Studio before, the Open
Project dialog box will seem straightforward because it resembles the familiar Open
dialog box in Microsoft Office Word or Microsoft Office Excel.

6	 Part I  Getting Started with Microsoft Visual Basic 2010

Tip  In the Open Project dialog box, you see a number of storage locations along the left side
of the window. The Projects folder under Microsoft Visual Studio 2010 is particularly useful.
By default, Visual Studio saves your programming projects in this Projects folder, giving each
project its own subfolder. We’ll use a different projects folder to organize your programming
coursework, however, as you’ll learn below. Additional locations, such as Favorites and Libraries,
will also be available to you, depending on how your computer and operating system has been
configured. (The screen shots in this book show Windows 7.)

	 2.	 Browse to the C:\Vb10sbs folder on your hard disk.

The C:\Vb10sbs folder is the default location for this book’s extensive sample file
collection, and you’ll find the files there if you followed the instructions in the section
entitled “Installing and Using the Practice Files” in the Introduction. If you didn’t install
the sample files, close this dialog box and install them now by using the CD included
with this book.

	 3.	 Open the Chap01\Musictrivia folder, and then double-click the MusicTrivia solution file.
(If your system shows file name extensions, this file will end with .sln.)

Visual Studio loads the MusicTrivia form, properties, and program code for the
MusicTrivia solution. The Start Page may still be visible in the center of the screen.
In the upper-right corner of the screen, Solution Explorer lists some of the files
in the solution.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 7

Troubleshooting  If you see an error message indicating that the project you want to
open is in a newer file format, you might be trying to load Visual Basic 2010 files into
an older version of the Visual Basic software. (Earlier versions of Visual Basic can’t open
the Visual Basic 2010 projects included on the companion CD.) To check which version
of Visual Basic you’re using, click the About command on the Help menu.

Visual Studio provides a special check box named Always Show Solution to control several
options related to solutions within the IDE. The check box is located on the Projects
and Solutions/General tab of the Options dialog box, which you open by clicking the Options
command on the Tools menu. If the check box is selected, a subfolder is created for each new
solution, placing the project and its files in a separate folder beneath the solution. Also, if
you select the Always Show Solution check box, a few options related to solutions appear in
the IDE, such as commands on the File menu and a solution entry in Solution Explorer. If you
like the idea of creating separate folders for solutions and seeing solution-related commands
and settings, select this check box. You’ll learn more about these options at the end of the
chapter.

Projects and Solutions
In Visual Studio, programs under development are typically called projects or solutions
because they contain many individual components, not just one file. Visual Basic 2010
programs include a project file (.vbproj) and a solution file (.sln), and if you examine
these files within a file browsing utility such as Windows Explorer, you’ll notice that the
solution file icons have a tiny 10 in them, an indication of their version number. (Visual
Basic 2010 is referred to as VB 10 internally.)

A project file contains information specific to a single programming task. A solution file
contains information about one or more projects. Solution files are useful to manage
multiple related projects. The samples included with this book typically have a single
project for each solution, so opening the project file (.vbproj) has the same effect as
opening the solution file (.sln). But for a multi-project solution, you will want to open
the solution file. Visual Basic 2010 offers a new file format for its projects and solutions,
but the basic terminology that you might have learned while using Visual Basic 2005
or 2008 still applies.

The Visual Studio Tools
At this point, you should take a few moments to study the Visual Studio IDE and identify
some of the programming tools and windows that you’ll be using as you complete this
course. If you’ve written Visual Basic programs before, you’ll recognize many (but perhaps

8	 Part I  Getting Started with Microsoft Visual Basic 2010

not all) of the programming tools. Collectively, these features are the components that you
use to construct, organize, and test your Visual Basic programs. A few of the programming
tools also help you learn more about the resources on your system, including the larger
world of databases and Web site connections available to you. There are also several
powerful Help tools.

The menu bar provides access to most of the commands that control the development
environment. Menus and commands work as they do in all Windows-based programs, and
you can access them by using the keyboard or the mouse. Located below the menu bar is
the Standard toolbar, a collection of buttons that serve as shortcuts for executing commands
and controlling the Visual Studio IDE. My assumption is that you’ve used Word, Excel, or some
other Windows-based application enough to know quite a bit about toolbars, and how to
use familiar toolbar commands, such as Open, Save, Cut, and Paste. But you’ll probably be
impressed with the number and range of toolbars provided by Visual Studio for programming
tasks. In this book, you’ll learn to use several toolbars; you can see the full list of toolbars at any
time by right-clicking any toolbar in the IDE.

Along the bottom of the screen, you may see the Windows taskbar. You can use the taskbar
to switch between various Visual Studio components and to activate other Windows-based
programs. You might also see taskbar icons for Windows Internet Explorer, antivirus utilities,
and other programs installed on your system. In most of my screen shots, I’ll hide the taskbar,
to show more of the IDE.

The following screen shot shows some of the tools and windows in the Visual Studio IDE.
Don’t worry that this screen looks different from your current development environment
view. You’ll learn more about these elements (and how you adjust your views) as you work
through the chapter.

The main tools visible in this Visual Studio IDE are the Designer, Solution Explorer, the
Properties window, and the Toolbox, as shown here. You might also see more specialized
tools, such as Server Explorer and Object Browser, or they may appear as tabs within the
IDE. Because no two developers’ preferences are exactly alike, it is difficult to predict what
you’ll see if your Visual Studio software has already been used. (What I show is essentially
the “fresh download” or “out-of-the-box” view.)

If a tool isn’t visible and you want to see it, click the View menu and select the tool. Because
the View menu has expanded steadily over the years, Microsoft has moved some of the less
frequently used View tools to a submenu called Other Windows. Check there if you don’t see
what you need.

The exact size and shape of the tools and windows depend on how your development
environment has been configured. With Visual Studio, you can align and attach, or dock,
windows to make visible only the elements that you want to see. You can also partially
conceal tools as tabbed documents along the edge of the development environment

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 9

and then switch back and forth between documents quickly. Trying to sort out which tools
are important to you now and which you can learn about later is a difficult early challenge
when you’re learning the busy Visual Studio interface. Your development environment will
probably look best if you set your monitor and Windows desktop settings so that they
maximize your screen space, but even then things can get a little crowded.

Tip  Although I use a screen resolution of 800 × 600 for most of the screen shots in this
book—so that you can see the IDE clearly—I usually use 1280 x 1024 for writing code. You can
change the screen resolution in Windows 7 by right-clicking the Windows desktop and clicking
Screen Resolution. In Windows Vista, you right-click the Windows desktop and click Personalize.

The purpose of all this tool complexity is to add many new and useful features to the IDE while
providing clever mechanisms for managing the clutter. These mechanisms include features
such as docking, auto hiding, floating, and a few other window states that I’ll describe later
in this chapter. If you’re just starting out with Visual Studio, the best way to deal with this feature
tension is to hide the tools that you don’t plan to use often to make room for the important
ones. The crucial tools for beginning Visual Basic programming—the ones you’ll start using right
away in this book—are the Designer, the Properties window, Solution Explorer, and the Toolbox.
You won’t use the Server Explorer, Class View, Object Browser, or Debug windows until later in
the book.

10	 Part I  Getting Started with Microsoft Visual Basic 2010

In the following exercises, you’ll start experimenting with the crucial tools in the Visual Studio
IDE. You’ll also learn how to display a Web browser within Visual Studio and how to hide the
tools that you won’t use for a while.

The Designer
If you completed the last exercise (“Open a Visual Basic project”), the MusicTrivia project is
loaded in the Visual Studio development environment. However, the user interface, or form,
for the project might not yet be visible in Visual Studio. (More sophisticated projects might
contain several forms, but this simple trivia program needs only one.) To make the form of
the MusicTrivia project visible in the IDE, you display it by using Solution Explorer.

Display the Designer

	 1.	 Locate the Solution Explorer window near the upper-right corner of the Visual Studio
development environment. If you don’t see Solution Explorer (if it is hidden as a tab
in a location that you cannot see or isn’t currently visible), click Solution Explorer on
the View menu to display it.

When the MusicTrivia project is loaded, Solution Explorer looks like this:

	 2.	 Click the MusicTrivia.vb form in the Solution Explorer window.

All form files, including this one, have a tiny form icon next to them so that you can
easily identify them. When you click the form file, Visual Studio highlights it in Solution
Explorer, and some information about the file appears in the Properties window (if it is
visible).

	 3.	 At the top of the Solution Explorer window, click the View Designer button in Solution
Explorer to display the program’s user interface.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 11

The MusicTrivia form is displayed in the Designer, as shown here:

Notice that a tab called MusicTrivia.vb [Design] is visible near the top of the Designer.
You can click this tab to display the program code associated with the MusicTrivia form,
and as other tabs appear at the top of the Designer, you can switch back and forth
among them by clicking the desired tab. You’ll learn more about program code
and the Code Editor tab in Chapter 2, “Writing Your First Program.”

Now try running a Visual Basic program with Visual Studio.

Running a Visual Basic Program
Music Trivia is a simple Visual Basic program designed to familiarize you with the programming
tools in Visual Studio. The form you see now has been customized with five objects (two labels,
a picture, and two buttons), and I’ve added three lines of program code to make the trivia
program ask a simple question and display the appropriate answer. (The program “gives away”
the answer now because it is currently in design mode, but the answer is hidden when you run
the program.) You’ll learn more about creating objects and adding program code in Chapter 2.
For now, try running the program in the Visual Studio IDE.

Run the Music Trivia program

	 1.	 Click the Start Debugging button (the green right-pointing arrow) on the Standard
toolbar to run the Music Trivia program in Visual Studio.

Tip  You can also press F5 or click the Start Debugging command on the Debug menu to
run a program in the Visual Studio development environment.

12	 Part I  Getting Started with Microsoft Visual Basic 2010

Visual Studio loads and compiles the project into an assembly (a structured collection
of modules, data, and manifest information for a program), prepares the program for
testing or debugging, and then (if the compilation is successful) runs the program in
the development environment. While the program is running, an icon for the program
appears on the Windows taskbar. After a moment, you see the MusicTrivia form again,
this time with the photograph and answer label hidden from view, as shown here:

Music Trivia now asks its important question: “What rock and roll instrument is often
played with sharp, slapping thumb movements?”

	 2.	 Click the Answer button to reveal the solution to the question.

The program displays the answer (The Bass Guitar) below the question and then
displays a photograph of an obscure Seattle bass player demonstrating the technique,
as shown here. The test program works.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 13

	 3.	 Click Quit to close the program.

The form closes, and the Visual Studio IDE becomes active again.

Thinking About Properties
In Visual Basic, each user interface (UI) element in a program (including the form itself)
has a set of definable properties. You can set properties at design time by using the
Properties window. Properties can also be referenced in code to do meaningful work
while the program runs. (UI elements that receive input often use properties to convey
information to the program.) At first, you might find properties a difficult concept to
grasp. Viewing them in terms of something from everyday life can help.

Consider this bicycle analogy: a bicycle is an object you use to ride from one place to
another. Because a bicycle is a physical object, it has several inherent characteristics. It has
a brand name, a color, gears, brakes, and wheels, and it’s built in a particular style. (It might
be a road bike, a mountain bike, or a tandem bike.) In Visual Basic terminology, these
characteristics are properties of the bicycle object. Most of the bicycle’s properties were
defined when the bicycle was built. But others (tires, travel speed, and options such as
reflectors and mirrors) are properties that change while the bicycle is used. The bike might
even have intangible (that is, invisible) properties, such as manufacture date, current owner,
value, or rental status. And to add a little more complexity, a company or shop might
own one bicycle or (the more likely scenario) an entire fleet of bicycles, all with different
properties. As you work with Visual Basic, you’ll set the properties of a variety of objects,
and you’ll organize them in very useful ways.

The Properties Window
In the IDE, you can use the Properties window to change the characteristics, or property
settings, of the UI elements on a form. A property setting is a quality of one of the objects in
your program. You can change property settings from the Properties window while you’re
creating your user interface, or you can add program code via the Code Editor to change one
or more property settings while your program is running. For example, the trivia question
that the Music Trivia program displays can be modified to appear in a different font or
font size or with a different alignment. (With Visual Studio, you can display text in any font
installed on your system, just as you can in Excel or Word.)

The Properties window contains an Object list that itemizes all the UI elements (objects) on
the form. The window also lists the property settings that can be changed for each object.
You can click one of two convenient buttons to view properties alphabetically or by category.
You’ll practice changing the Font property of the first label in the Music Trivia program now.

14	 Part I  Getting Started with Microsoft Visual Basic 2010

Change a property

	 1.	 Click the Label1 object on the form. (Label1 contains the text “What rock and roll
instrument is often played with short, slapping thumb movements?”)

To work with an object on a form, you must first select the object. When you select
an object, resize handles appear around it, and the property settings for the object
are displayed in the Properties window.

	 2.	 Click the Properties Window button on the Standard toolbar.

This button depicts a hand pointing and is on the right side of the toolbar. The
Properties window might or might not be visible in Visual Studio, depending on how
it’s been configured and used on your system. It usually appears below Solution
Explorer on the right side of the development environment. (If it is visible, you don’t
need to click the button, but you should click the window to activate it.)

You’ll see a window similar to the one shown in the following screen shot:

The Properties window lists all the property settings for the first label object (Label1)
on the form. (In Visual Basic 2010, more than 65 properties are associated with labels.)
Property names are listed in the left column of the window, and the current setting
for each property is listed in the right column. Because there are so many properties
(including some that are rarely modified), Visual Studio organizes them into categories
and displays them in outline view. If a category has a triangular arrow sign (>) next to
it, you can click the arrow to display all the properties in that category. If a category
has a dark rotated arrow next to it, the properties are all visible, but you can hide the
list under the category name by clicking the arrow again.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 15

Tip  The Properties window has two handy buttons at the top of the window that you can
use to further organize properties. Clicking the Alphabetical button lists all the properties
in alphabetical order and puts them in just a few categories. Clicking the Categorized
button organizes the property list into many logical categories. I recommend Categorized
view if you are new to Visual Studio.

	 3.	 Scroll the Properties window list box until the Font property is visible.

The Properties window scrolls like a regular list box. If you are in Categorized view, Font
is in the Appearance category.

	 4.	 Click the Font property name (in the left column).

The current font (Microsoft Sans Serif) is partially displayed in the right column, and
a button with three dots on it appears by the font name. This button is called an ellipsis
button and indicates that a dialog box is available to customize the property setting.

	 5.	 Click the Font ellipsis button in the Properties window.

Visual Studio displays the Font dialog box, shown here, which you can use to specify
new formatting characteristics for the text in the selected label on your form. The Font
dialog box contains more than one formatting option; for each option you select,
a different property setting will be modified.

	 6.	 Change the font style from Regular to Oblique (that is, Italic), and then click OK to
confirm your changes.

Visual Studio records your changes and adjusts the property settings accordingly.
You can examine the changes by viewing your form in the Designer or by expanding
the Font property in the Properties window.

16	 Part I  Getting Started with Microsoft Visual Basic 2010

Now change a property setting for the Label2 object (the label that contains the text
“The Bass Guitar”).

	 7.	 In the Designer, click the second label object (Label2).

When you select the object, resize handles surround it.

	 8.	 Click the Font property in the Properties window.

The Label2 object has its own unique set of property settings. Although the property
names are the same as those of the Label1 object, the values in the property settings
are distinct and allow the Label2 object to act independently on the form.

	 9.	 Click the Font ellipsis button, set the font style to Bold and the font size to 12 points,
and then click OK.

	 10.	 Scroll to the ForeColor property in the Properties window, and then click it in the left
column.

	 11.	 Click the ForeColor arrow in the right column, click the Custom tab, and then click
a dark purple color.

The text in the Label2 object is now bold and purple on the form, as shown here.

Congratulations! You’ve just learned how to set properties in a Visual Basic program by using
the Visual Studio Properties window—one of the important skills in becoming a Visual Basic
programmer.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 17

Moving and Resizing the Programming Tools
With numerous programming tools to contend with on the screen, the Visual Studio IDE
can become a pretty busy place. To give you complete control over the shape and size of
the elements in the development environment, Visual Studio lets you move, resize, dock,
and auto hide most of the interface elements that you use to build programs.

To move one of the tool windows in Visual Studio, simply click the title bar and drag the
object to a new location. If you align one window along the edge of another window, it
attaches to that window, or docks itself. Dockable windows are advantageous because they
always remain visible. (They don’t become hidden behind other windows.) If you want to
see more of a docked window, simply drag one of its borders to view more content.

If you want to completely close a window, click the Close button in the upper-right corner
of the window. You can always open the window again later by clicking the appropriate
command on the View menu.

If you want an option somewhere between docking and closing a window, you might try
auto hiding a tool window at the side of the Visual Studio IDE by clicking the tiny Auto Hide
pushpin button on the right side of the tool’s title bar. This action removes the window
from the docked position and places the title of the tool at the edge of the development
environment in an unobtrusive tab. When you auto hide a window, you’ll notice that the tool
window remains visible as long as you keep the mouse pointer in the area of the window.
When you move the mouse to another part of the IDE, the window slides out of view.

To restore a window that you have auto hidden, click the tool tab at the edge of the
development environment or hold your mouse over the tab. (You can recognize a window
that is auto hidden because the pushpin in its title bar is pointing sideways.) By holding the
mouse pointer over the title, you can use the tools in what I call “peek-a-boo” mode—in other
words, to quickly display an auto hidden window, click its tab, check or set the information
you need, and then move the mouse to make the window disappear. If you ever need the
tool displayed permanently, click the Auto Hide pushpin button again so that the point of
the pushpin faces down, and the window then remains visible.

Another useful feature of Visual Studio is the ability to display windows as tabbed documents
(windows with tab handles that partially hide behind other windows) and to dock windows by
using the docking guides that appear as tiny squares on the perimeter of the IDE, as well as
a centrally located “guide diamond,” as shown on the next page.

David E
Sticky Note
Stopped read here when installing Windows Updates.

18	 Part I  Getting Started with Microsoft Visual Basic 2010

The docking guides are changeable icons that appear on the surface of the IDE when you
move a window or tool from a docked position to a new location. Because the docking
guides are associated with shaded, rectangular areas of the IDE, you can preview the results
of your docking maneuver before you actually make it. In Visual Studio 2010, this feature has
significantly improved, and you can preview a variety of different configurations with the
docking guides, none of which remain permanent until you release the mouse button.

Because docking and auto hiding techniques take some practice to master, I recommend that
you use the following exercises to experiment with the window-management features of the
IDE. After you complete the exercises here, feel free to configure the Visual Studio tools in
a way that seems comfortable for you.

Moving and Resizing Tool Windows
To move and resize one of the programming tool windows in Visual Studio, follow these
steps. This exercise demonstrates how to manipulate the Properties window, but you can
work with a different tool window if you want to.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 19

Move and resize the Properties window

	 1.	 If the Properties window isn’t visible in the development environment, click the
Properties Window button on the Standard toolbar.

The Properties window is activated in the IDE, and its title bar is highlighted.

	 2.	 Double-click the Properties window title bar to display the window as a floating
(undocked) window.

	 3.	 Using the Properties window title bar, drag the window to a new location in the
development environment, but don’t dock it (yet).

Moving windows around the Visual Studio IDE gives you some flexibility with the
tools and the look of your development environment. Now you’ll resize the Properties
window to see more object property settings at once.

	 4.	 Point to the lower-right corner of the Properties window until the pointer changes to
a double-headed arrow (the resizing pointer). Then drag the lower-right border of the
window down and to the right to enlarge the window, as shown here.

You can work more quickly and with more clarity of purpose in a bigger window.
Feel free to move or resize a window when you need to see more of its contents.

Docking Tool Windows
If a tool window is floating over the development environment, you can return it to its original
docked position by holding down the CTRL key and double-clicking the window’s title bar.
(Notice that in the previous exercise, you double-clicked the title bar to undock a docked

20	 Part I  Getting Started with Microsoft Visual Basic 2010

window.) You can also attach or dock a floating tool in a different place. You might want to do
this if you need to make more room in Visual Studio for a particular programming task, such
as creating a user interface with the Designer. Try docking the Properties window in a different
location now.

Dock the Properties window

	 1.	 Verify that the Properties window (or another tool that you want to dock) is floating
over the Visual Studio IDE in an undocked position.

If you completed the previous exercise, the Properties window is undocked now.

	 2.	 Drag the title bar of the Properties window to the top, bottom, right, or left edge of the
development environment (your choice!), taking care to drag the mouse pointer over
one of the docking guides on the perimeter of the Visual Studio IDE, or a collection
of four or more docking guides, called collectively a guide diamond.

As you move the mouse over a docking guide, the Properties window snaps into place,
and a blue-shaded rectangle indicates how your window will appear when you release
the mouse button, as shown here. Note that there are several valid docking locations
for tool windows in Visual Studio, so you might want to try two or three different spots
until you find one that looks right to you. (A window should be located in a place that’s
handy and not in the way of other needed tools.)

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 21

	 3.	 Release the mouse button to dock the Properties window.

The window snaps into place in its new home.

Tip  To switch between dockable, tabbed documents, hidden windows, and floating
windows, right-click the window’s title bar (or tab, if it is a tabbed document), and then
click the option you want. Although the Properties window works very well as a dockable
window, you’ll probably find that larger windows (the Visual Studio Start Page, for
example) work best as tabbed document windows.

	 4.	 Try docking the Properties window several more times in different places to get the feel
of how docking works.

I guarantee that although a few of these window procedures seem confusing at first,
after a while they’ll become routine for you. In general, you want to create window
spaces that have enough room for the information you need to see and use while you
work on more important tasks in the Designer and in the Code Editor.

Hiding Tool Windows
To hide a tool window, click the Auto Hide pushpin button on the right side of the title bar to
conceal the window beneath a tool tab on the edge of the IDE, and click it again to restore the
window to its docked position. You can also use the Auto Hide command on the Window menu
(or right-click a title bar and select Auto Hide) to auto hide a tool window. Give it a try now.

Use the Auto Hide feature

	 1.	 Locate the Auto Hide pushpin button on the title bar of the Properties window.

The pushpin is currently in the “down,” or “pushed in,” position, meaning that the
Properties window is “pinned” open and auto hide is disabled.

	 2.	 Click the Auto Hide button on the Properties window title bar.

The Properties window slides off the screen and is replaced by a small tab named
Properties. The benefit of enabling auto hide, of course, is that the process frees up
additional work space in Visual Studio. But the hidden window is also quickly accessible.

	 3.	 Hold the mouse pointer over the Properties tab. (You can also click the Properties tab
if you want.)

The Properties window immediately reappears.

	 4.	 Move the mouse elsewhere within the IDE, and the window disappears again.

	 5.	 Finally, display the Properties window again, and then click the pushpin button on the
Properties window title bar.

22	 Part I  Getting Started with Microsoft Visual Basic 2010

The Properties window returns to its familiar docked position, and you can use it
without worrying about it sliding away.

Spend some time moving, resizing, docking, and auto hiding tool windows in Visual
Studio now, to create your version of the perfect work environment. As you work
through this book, you’ll want to adjust your window settings periodically to adapt
your work area to the new tools you’re using.

Tip  Visual Studio lets you save your window and programming environment settings and
copy them to a second computer or share them with members of your programming team.
To experiment with this feature, click the Import And Export Settings command on the Tools
menu and follow the wizard instructions to export (save) or import (load) settings from a file.

Switching Among Open Files and Tools
by Using the IDE Navigator

Visual Studio has a feature that makes it even easier to switch among open files and
programming tools in the development environment. This feature is called the IDE Navigator,
and it lets you cycle through open files and tools by using key combinations, in much the
same way that you cycle through open programs on the Windows taskbar. Give it a try now.

Use the IDE Navigator

	 1.	 Hold down the CTRL key and press TAB to open the IDE Navigator.

The IDE Navigator opens and displays the active (open) files and tools in the IDE. Your
screen will look similar to the following:

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 23

	 2.	 While holding down the CTRL key, press TAB repeatedly to cycle through the active
files until the file you want is highlighted.

To cycle through the files in the reverse direction, hold down CTRL+SHIFT and press
TAB. (If you want this to look even more impressive, open another window or two so
that the cycle order is more apparent.)

	 3.	 While holding down the CTRL key, press the arrow keys to cycle through both the
active files and the active tools.

You can also select an active file (or tool) by clicking its name.

	 4.	 When you’re finished with the IDE Navigator, release the CTRL key.

The last selected item in the IDE Navigator will become active.

Tip  To cycle through active tools without opening the IDE Navigator, you can also press
ALT+F7. SHIFT+ALT+F7 lets you cycle through the tools in the reverse direction.

Opening a Web Browser Within Visual Studio
A handy feature in Visual Studio is the ability to open a simple Web browser within the
development environment. The browser appears as a tabbed document window in the IDE,
so it takes up little space but can be opened immediately when needed. You could open
a stand-alone Web browser (such as Internet Explorer) and keep it nearby on the Windows
taskbar, but running a Web browser within Visual Studio makes examining Web sites and
copying data into Visual Studio even easier. Try using the Visual Studio Web browser now.

Open the Visual Studio Web browser

	 1.	 Click the Other Windows submenu on the View menu, and then click the Web Browser
command.

The Web Browser window appears, as shown on the next page.

The browser is a tabbed document window by default, but you can change it into
a floating window or a docked window by right-clicking the window title bar and then
clicking the Float or Dock command.

Tip  You can change the default page that appears in the Web Browser window by
changing the setting in the Options dialog box. Open the Options dialog box by clicking
Options on the Tools menu. Select the Show All Settings check box, expand Environment,
and then click Web Browser. Change the Home Page setting to a Uniform Resource
Locator (URL) that you want for the default page.

24	 Part I  Getting Started with Microsoft Visual Basic 2010

	 2.	 Experiment with the browser and how it functions within the IDE.

Although the browser is more basic than Internet Explorer or another full-featured
browser, you may find it a useful addition to the Visual Studio tool collection. You can
also open and run Internet Explorer (or another browser) directly from the Windows
taskbar.

	 3.	 When you’re finished, click the Close button on the right side of the Web browser tab
or title bar to close the window.

Getting Help
Visual Studio includes Help documentation that you can use to learn more about the Visual
Studio IDE, the Visual Basic programming language, and the Microsoft .NET Framework.
Take a moment to explore these Help resources now before moving on to Chapter 2, where
you’ll build your first program.

If you have used Visual Studio 2008, you will notice some differences in the Visual Studio
2010 Help documentation. Most significantly, Help is now hosted within your Web browser.
Table 1-1 highlights the major differences that you should be aware of.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 25

TABLE 1-1  Comparing Help Between Versions of Visual Studio

Visual Studio 2008 Help Documentation Visual Studio 2010 Help Documentation

Local Help opened in a stand-alone
application viewer named Microsoft
Document Explorer.

Local Help is browser-based and opens in your Web
browser.

Document Explorer was coupled with Visual
Studio and could be updated only when
Visual Studio was updated.

Because Help is browser-based and decoupled from
Visual Studio, it can be updated more frequently.

Local Help was updated on a less frequent
schedule.

Help can be updated on demand using the Help
Library Manager.

F1 Help sometimes took a long time to open. F1 Help is faster and search results are improved.

Help had a complete TOC tree of all topics. Help has a simplified TOC tree that just displays the
parent, peer, and child topics.

Local Help included an index. Help no longer includes an index.

Local Help and online Help experiences are
very different.

Local Help and online Help experiences are very
similar.

Help documentation typically lists multiple
languages, such as Visual Basic, C#, C++,
and JScript, making it harder to read the
documentation.

Help documentation displays the different languages
in a tabbed view and displays just the language you
are interested in.

Note  Because Help is decoupled in Visual Studio 2010 and can be updated regularly, your
experience might be different from the text and steps described in the next section.

Managing Help Settings
Visual Studio includes a Help Library Manager to manage your Help documentation and
settings. Using the Help Library Manager, you can choose online or local Help, check for
updates online, and find or remove content.

Help documentation for Visual Studio 2010 is delivered in two ways: local or online. Local
Help is typically installed during Visual Studio 2010 setup. (You can also add it later by using
the Help Library Manager.) Local Help is updated periodically, but you have to check the
Help Library Manager for updates. Online Help is available at http://msdn.microsoft.com/
library/. If you have an Internet connection, it is typically better to use online Help because
you will always be using the latest version of the Help documentation.

26	 Part I  Getting Started with Microsoft Visual Basic 2010

Manage Help settings

	 1.	 On the Help menu, click Manage Help Settings. If you see a Set Local Content Location
dialog box, click OK to accept the default location. The Help Library Manager appears,
as shown here.

	 2.	 Click Choose Online Or Local Help.

In the Settings box that opens, you can select the type of Help you plan to use.

	 3.	 If you have an Internet connection, make sure that the I Want To Use Online Help radio
button is selected, and then click OK.

	 4.	 In the Help Library Manager window, click Install Content From Online.

	 5.	 Explore the Help content, which you can install locally if you choose.

	 6.	 Click Cancel.

	 7.	 Explore the other options in the Help Library Manager.

	 8.	 When you are finished, exit the Help Library Manager.

Using F1 Help
What is the fastest way to get help on what you are working on in Visual Studio?
The quickest approach is usually to press the F1 key. Visual Studio has been designed to
offer “context-sensitive help” related to the keyword or task that you are working with.
Although F1 Help may not always display the exact information that you want, it usually
puts you in the part of the Help documentation that will get you started. So when you
need help, think of using the F1 key.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 27

Use F1 Help

	 1.	 Click the Label1 object on the form.

	 2.	 Press the F1 key. If a dialog box appears asking if you want to view Help content on
the Internet, click Yes.

The Label topic on MSDN should appear.

Tip  If you don’t have an Internet connection but you do have local Help installed, you
can try switching your Help settings to use local Help instead.

	 3.	 Switch back to Visual Studio.

	 4.	 Click the Answer button on the form.

	 5.	 Press the F1 key.

The Button topic on MSDN should appear. Depending on your view, your screen looks
something like this:

MSDN currently has different views. The view I’m showing you here is called lightweight view.
You can select lightweight view by clicking the Lightweight View link or the Switch View link.
The Switch View link is shown in the bottom right corner of the screen.

28	 Part I  Getting Started with Microsoft Visual Basic 2010

Inside MSDN Help
There are a couple of things to notice that will help you best utilize the Help documentation.
First, version information is listed at the top of the content window. MSDN supports multiple
versions of Visual Studio and the .NET Framework. As you’ll learn later in the book, the
current version of the .NET Framework is version 4.

In the Syntax section of the Help content, be sure that the VB tab is selected. When you
select this tab, you will see only Visual Basic syntax and code snippets. The other languages
will be hidden from view, making it easier to read the documentation. Your selection will be
remembered the next time you open the documentation.

On the left side of the Help window is a simplified table of contents (TOC). The title of the
topic currently being displayed is in bold and a different color. Above the current topic are
the parent topics, and below it are the child topics. Beneath the TOC is the Related Links
section. This section displays the peers of the current topic. You can click any links in the TOC
area to navigate within the documentation. Above the TOC is a search box, which is another
way to search the documentation.

Table 1-2 lists some useful tips about Help as you learn about the Visual Studio IDE,
Visual Basic, and the .NET Framework.

TABLE 1-2  Help Topic Locations in Visual Studio 2010

To Get Help Do This

Help documentation Click View Help on the Help menu.
or
Open http://msdn.microsoft.com/library/ in
a browser to view online Help.

Visual Studio IDE Select the item in Visual Studio and press the F1 key.
or
Search the Help documentation for “Visual Studio
2010.”

A dialog box in Visual Studio Click the Help button (the question mark) on the
dialog box title bar.

Visual Basic Search the Help documentation for “Getting Started
with Visual Basic.”

.NET Framework Search the Help documentation for “.NET
Framework 4.”

Windows Forms Search the Help documentation for “Getting Started
with Windows Forms.”

A keyword or program statement in the
Code Editor

Select the keyword or program statement and press
the F1 key.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 29

Customizing IDE Settings to Match
Step-by-Step Exercises

Like the tool windows and other environment settings within the IDE, the compiler settings
within Visual Studio are highly customizable. It is important to review a few of these settings
now so that your version of Visual Studio is configured in a way that is compatible with the
step-by-step programming exercises that follow. You will also learn how to customize Visual
Studio generally so that as you gain programming experience, you can set up Visual Studio
in the way that is most productive for you.

Setting the IDE for Visual Basic Development
The first setting that you need to check was established when Visual Studio was first installed
on your machine. During setup, you were asked how you wanted Visual Studio to configure
your general development environment. Since Visual Studio is a multi-purpose programming
tool, you had many options—Visual Basic development, Visual C++ development, Visual C#
development, Web development, and so on. The selection you made configured not only
the Code Editor and the development tools available to you, but also the menu and toolbar
commands and the contents of several tool windows. For this reason, if you plan to use
this book to learn Visual Basic programming but originally configured your software for
a different language, a few of the menu commands and procedures described in this book
will not exactly match your current software configuration.

Fortunately, you can fix this inconsistency and practice changing your environment settings
by using the Import And Export Settings command on the Tools menu. The following
steps show you how to change your environment setting to Visual Basic development, the
recommended setting for this book.

Set the IDE for Visual Basic development

	 1.	 On the Tools menu, click Import And Export Settings.

Tip  If you are using Visual Basic 2010 Express, click the Tools menu, click Settings,
and then click Import And Export Settings.

You can use the wizard that appears to save your environment settings for use on
another computer, load settings from another computer, or reset your settings.

	 2.	 Click Reset All Settings, and then click Next.

Visual Studio asks you if you want to save your current settings in a file before you
configure the IDE for a different type of programming. It is always a good idea to save
your current settings as a backup, so that you can return to them if the new ones don’t
work out.

30	 Part I  Getting Started with Microsoft Visual Basic 2010

	 3.	 Verify that the Yes, Save My Current Settings radio button is selected, and note the file
name and folder location in which Visual Studio plans to save the settings.

If you want to go back to these settings, you’ll use this same wizard and the Import
Selected Environmental Settings radio button to restore them.

	 4.	 Click Next to view the default list of settings that you can use for Visual Studio.

Depending on what Visual Studio components are installed, you will see a list of
settings similar to those shown in the following screen shot:

	 5.	 Click Visual Basic Development Settings (if it is not already selected), and click Finish.

Tip  If you are using Visual Basic 2010 Express, click Expert Settings, and click Finish.

The wizard switches your IDE settings, including menu commands, toolbars,
and settings within a few dialog boxes, tool windows, and the Code Editor.

Feel free to repeat this customization process any time that you need to reset your
settings (for example, if you make a customization mistake that you regret), or if you
want to customize Visual Studio for another programming tool.

	 6.	 Click Close to close the wizard.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 31

Checking Project and Compiler Settings
If you just reset your environment settings for Visual Basic development, you are now ready
to begin the programming exercises. But if you didn’t reset your settings—for example, if
you were already configured for Visual Basic development and have been using Visual Studio
2010 for a while, or if your computer is a shared resource used by other programmers who
might have modified the default settings (perhaps in a college computer lab)—complete the
following steps to verify that your settings related to projects, solutions, and the Visual Basic
compiler match those that I use in the book.

Check project and compiler settings

	 1.	 Click the Options command on the Tools menu to display the Options dialog box.

The Options dialog box is your window to many of the customizable settings within
Visual Studio. To see all the settings that you can adjust, click to select the Show All
Settings check box in the lower-left corner of the dialog box.

	 2.	 Expand the Projects And Solutions category and then click the General item in the
Options dialog box.

This group of check boxes and options configures the Visual Studio project and
solution settings.

	 3.	 So that your software matches the settings used in this book, adjust your settings to
match those shown in the following dialog box:

In particular, I recommend that you clear the Always Show Solution and Save New
Projects When Created check boxes if they are selected. The first option shows
additional solution commands in the IDE, which are not necessary for solutions that

32	 Part I  Getting Started with Microsoft Visual Basic 2010

contain only one project (the situation for most programs in this book). The second
option causes Visual Studio to postpone saving your project until you click the Save
All command on the File menu and provide a location for saving the file. This “delayed
save” feature allows you to create a test program, compile and debug the program,
and even run it without actually saving the project on disk—a useful feature when you
want to create a quick test program that you might want to discard instead of saving.
(An equivalent situation in word-processing terms is when you open a new Word
document, enter an address for a mailing label, print the address, and then exit Word
without saving the file.) With this default setting, the exercises in this book prompt you
to save your projects after you create them, although you can also save your projects
in advance by selecting the Save New Projects When Created check box.

You’ll also notice that I have typed “C:\Vb10sbs” in the Projects Location text box to
indicate the default location for this book’s sample files. Most of the projects that
you create will be stored in this folder, and they will have a “My” prefix to distinguish
them from the completed project I provide for you to examine. (Be sure to change this
setting on your computer as well.)

After you have adjusted these settings, you’re ready to check four Visual Basic compiler
settings.

	 4.	 Click the VB Defaults item in the Options dialog box.

Visual Studio displays a list of four compiler settings: Option Explicit, Option Strict,
Option Compare, and Option Infer. Your screen looks like this:

Although a detailed description of these settings is beyond the scope of this chapter,
you’ll want to verify that Option Explicit is set to On and Option Strict is set to Off—the
default settings for Visual Basic programming within Visual Studio. Option Explicit On

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 33

is a setting that requires you to declare a variable before using it in a program—a very
good programming practice that I want to encourage. Option Strict Off allows variables
and objects of different types to be converted in certain circumstances without
generating a compiler error. (For example, a number can be assigned to a text box
object without error.) Although this is a potentially worrisome programming practice,
Option Strict Off is a useful setting for certain types of demonstration programs. If you
don’t keep this setting, a few projects will display error messages when you run them.

Option Compare determines the comparison method when different strings are
compared and sorted. For more information about comparing strings and sorting text,
see Chapter 13, “Exploring Text Files and String Processing.”

Option Infer was a new setting in Visual Basic 2008. When you set Option Strict to Off
and Option Infer to On, you can declare variables without explicitly stating a data type;
or rather, if you make such a declaration, the Visual Basic compiler will infer (or take
an educated guess) about the data type based on the initial assignment you made for
the variable. The designers of Visual Basic created this setting to make writing code
easier while still maintaining the benefits of type declaration. You’ll learn more about
the feature in Chapter 5, “Visual Basic Variables and Formulas, and the .NET
Framework.”

As a general rule, I recommend that you set Option Infer to Off to avoid unexpected
results in how variables are used in your programs. I have set Option Infer to Off in
most of the sample projects included on the companion CD.

	 5.	 Feel free to examine additional settings in the Options dialog box related to your
programming environment and Visual Studio. When you’re finished, click OK to close
the Options dialog box.

You’re ready to exit Visual Studio and start programming.

One Step Further: Exiting Visual Studio
Each chapter in this book concludes with a section titled “One Step Further” that enables
you to practice an additional skill related to the topic at hand. After the “One Step Further”
tutorial, I’ve compiled a Quick Reference table in each chapter that reprises the important
concepts discussed in the chapter, so that if you need to refer to a concept quickly, you can
have ready access to it.

When you’re finished using Visual Studio for the day, save any projects that are open,
and close the development environment. Give it a try.

34	 Part I  Getting Started with Microsoft Visual Basic 2010

Exit Visual Studio

	 1.	 Save any changes you’ve made to your program by clicking the Save All button on the
Standard toolbar.

As you learned in the preceding section, the default behavior in Visual Studio 2010
is that you give your program a name when you begin a project or solution, but you
don’t specify a file location and save the project until you click the Save All button or
the Save All command on the File menu. You’ve made a few changes to your project, so
you should save your changes now.

	 2.	 On the File menu, click the Exit command.

The Visual Studio program closes. Time to move on to your first program in Chapter 2!

Chapter 1 Quick Reference

To Do This

Start Visual Studio Click Start on the taskbar, click All Programs, click the Microsoft Visual Studio
2010 folder, and then click the Microsoft Visual Studio 2010 program icon.

Open an existing
project

Start Visual Studio. Click Open Project on the File menu.
or (if possible)
On the Start page, click the project in the Recent Projects pane.

Compile and run a
program

Click the Start Debugging button on the Standard toolbar.
or
Press F5.

Set properties Click the form object whose properties you want to set. In the Properties
window, click the property name in the left column, and then change the
corresponding property setting in the right column.

Resize a tool window Display the tool as a floating window (if it is currently docked), and resize it
by dragging its edges.

Move a tool window Display the tool as a floating window (if it is in a docked state), and then
drag its title bar.

Dock a tool window With the mouse pointer, drag the window’s title bar over a docking guide to
preview how it will appear, and then release the mouse button to snap the
tool into place.

Restore a floating
tool window

Hold down the CTRL key and double-click the window’s title bar.

Auto hide a docked
tool window

Click the Auto Hide pushpin button on the right side of the title bar of
the tool window. The window hides behind a small tab at the edge of the
development environment until you hold the mouse over it.

Disable Auto Hide
for a docked tool
window

Click the tool tab, and then click the Auto Hide pushpin button.

	 Chapter 1  Exploring the Visual Studio Integrated Development Environment	 35

To Do This

Switch between
active files

Hold down the CTRL key and press TAB to display the IDE Navigator. While
holding down the CTRL key, press TAB to scroll through the list of active files.
Use the arrow keys to scroll through both the list of active files and tools.
You can also click a file or tool in the IDE Navigator to switch to it.

Switch between
active tools

Press ALT+F7 to scroll in a forward direction through the active tools in
the IDE. Press ALT+SHIFT+F7 to scroll in the reverse direction.

Get Help Select the object or program statement in Visual Studio and then press
the F1 key.

Manage Help Settings Click Manage Help Settings on the Help menu to open the Help Library
Manager.

Configure the Visual
Studio environment
for Visual Basic
development

Click the Import And Export Settings command on the Tools menu, click
Reset All Settings, and then click the Next button. Click Yes, Save My Current
Settings, and then the Next button. Finally, click Visual Basic Development
Settings and the Finish button, and then click Close.

Customize IDE
settings

Click the Options command on the Tools menu, and then customize Visual
Studio settings by category. To view and customize project settings, click the
General item in the Projects And Solutions category. To view and customize
compiler settings, click the VB Defaults item in the same category.

Exit Visual Studio On the File menu, click Exit.

		 37

Chapter 2

Writing Your First Program
After completing this chapter, you will be able to:

n	 Create the user interface for a new program.

n	 Set the properties for each object in your user interface.

n	 Write program code.

n	 Save and run the program.

n	 Build an executable file.

As you learned in Chapter 1, “Exploring the Visual Studio Integrated Development
Environment,” the Microsoft Visual Studio 2010 Integrated Development Environment (IDE)
contains several powerful tools to help you run and manage your programs. Visual Studio
also contains everything you need to build your own applications for Windows and the Web
from the ground up.

In this chapter, you’ll learn how to create a simple but attractive user interface with the
controls in the Visual Studio Toolbox. Next you’ll learn how to customize the operation
of these controls with property settings. Then you’ll see how to identify just what your
program should do by writing program code. Finally, you’ll learn how to save and run your
new program (a Las Vegas–style slot machine) and how to compile it as an executable file.

Lucky Seven: Your First Visual Basic Program
The Windows-based application you’re going to construct is Lucky Seven, a game program
that simulates a lucky number slot machine. Lucky Seven has a simple user interface and can
be created and compiled in just a few minutes using Microsoft Visual Basic. Here’s what your
program will look like when it’s finished:

Table of Contents

Writing Your First Program . 37
Lucky Seven: Your First Visual Basic Program . . 37

Programming Steps . 38

Creating the User Interface . 38

Setting the Properties . 45

The Picture Box Properties . 49

Writing the Code . . 52

A Look at the Button1_Click Procedure . 56

Running Visual Basic Applications . 58

Sample Projects on Disk . . 59

Building an Executable File . 60

Deploying Your Application . 62

One Step Further: Adding to a Program . 63

Chapter 2 Quick Reference . 64

38	 Part I  Getting Started with Microsoft Visual Basic 2010

Programming Steps
The Lucky Seven user interface contains two buttons, three lucky number boxes, a digital
photo depicting your winnings, and the label “Lucky Seven.” I produced these elements
by creating seven objects on the Lucky Seven form and then changing several properties
for each object. After I designed the interface, I added program code for the Spin and End
buttons to process the user’s button clicks and produce the random numbers. To re-create
Lucky Seven, you’ll follow three essential programming steps in Visual Basic: Create the user
interface, set the properties, and write the program code. Table 2-1 shows the process for
Lucky Seven.

TABLE 2-1  Building the Lucky Seven Program

Programming Step Number of Items

1.  Create the user interface. 7 objects

2.  Set the properties. 13 properties

3.  Write the program code. 2 objects

Creating the User Interface
In this exercise, you’ll start building Lucky Seven by first creating a new project and then
using controls in the Toolbox to construct the user interface.

Create a new project

	 1.	 Start Visual Studio 2010.

	 2.	 On the Visual Studio File menu, click New Project.

Tip  You can also start a new programming project by clicking the blue New Project link
on the Start Page.

The New Project dialog box opens, as shown on the following page.

The New Project dialog box provides access to the major project types available for
writing Windows and Web applications. If you indicated during setup that you are
a Visual Basic programmer, Visual Basic is your primary development option (as shown
here), but the other languages in Visual Studio (Visual C#, Visual C++, and Visual F#)
are always available through this dialog box. Although you will select a basic Windows

	 Chapter 2  Writing Your First Program	 39

application project in this exercise, this dialog box is also the gateway to other types
of development projects, such as a Web application, console application, Microsoft
Office add-in, Windows Azure Cloud Service, Silverlight application, or Visual Studio
deployment project.

Near the top of the New Project dialog box, you will notice a drop-down list box.
This feature allows you to specify the version of the Microsoft .NET Framework that
your application will target. This feature is sometimes called multi-targeting, meaning
that through it, you can select the target environment that your program will run on.
For example, if you retain the default selection of .NET Framework 4, any computer that
your application will run on must have .NET Framework 4 installed. (Not to worry—the
.NET Framework is usually installed as part of the operating system installation, or when
you install a new Visual Basic program that you have written.) Unless you have a specific
need, you can just leave this drop-down list at its default setting of .NET Framework 4.
Visual Basic 2010 Express does not include this drop-down list. You’ll learn more about
the .NET Framework in Chapter 5, “Visual Basic Variables and Formulas, and the .NET
Framework.”

	 3.	 Click the Windows Forms Application icon in the central Templates area of the dialog
box, if it is not already selected.

Visual Studio prepares the development environment for Visual Basic Windows
application programming.

40	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 In the Name text box, type MyLucky7.

Visual Studio assigns the name MyLucky7 to your project. (You’ll specify a folder
location for the project later.) I’m recommending the “My” prefix here so you
don’t confuse your new application with the Lucky7 project I’ve created for you
on disk.

Tip  If your New Project dialog box contains Location and Solution Name text boxes,
you need to specify a folder location and solution name for your new programming
project now. The presence of these text boxes is controlled by a check box in the Project
And Solutions category of the Options dialog box, but it is not the default setting. (You
display this dialog box by clicking the Options command on the Tools menu.) Throughout
this book, you will be instructed to save your projects (or discard them) after you have
completed the programming exercise. For more information about this “delayed saving”
feature and default settings, see the section entitled “Customizing IDE Settings to Match
Step-by-Step Exercises” in Chapter 1.

	 5.	 Click OK to create the new project in Visual Studio.

Visual Studio cleans the slate for a new programming project and displays the blank
Windows form that you will use to build your user interface.

Now you’ll enlarge the form and create the two buttons in the interface.

Create the user interface

	 1.	 Point to the lower-right corner of the form until the mouse pointer changes to
a resizing pointer, and then drag to increase the size of the form to make room for
the objects in your program.

As you resize the form, scroll bars might appear in the Designer to give you access to
the entire form you’re creating. Depending on your screen resolution and the Visual
Studio tools you have open, you might not be able to see the entire form at once.
Don’t worry about this—your form can be small, or it can fill the entire screen because
the scroll bars give you access to the entire form.

Size your form so that it is about the size of the form shown on the following page. If
you want to match my example exactly, you can use the width and height dimensions
(485 pixels × 278 pixels) shown in the lower-right corner of the screen.

To see the entire form without obstruction, you can resize or close the other
programming tools, as you learned in Chapter 1. (Return to Chapter 1 if you have
questions about resizing windows or tools.)

Now you’ll practice adding a button object on the form.

	 Chapter 2  Writing Your First Program	 41

	 2.	 Click the Toolbox tab to display the Toolbox window in the IDE.

The Toolbox contains all the controls that you’ll use to build Visual Basic programs in
this book. The controls suitable for creating a Windows application are visible now
because you selected the Windows Application project type earlier. Controls are
organized by type, and by default the Common Controls category is visible. (If the
Toolbox is not visible now, click Toolbox on the View menu to display it.)

	 3.	 Double-click the Button control in the Toolbox, and then move the mouse pointer away
from the Toolbox.

Visual Studio creates a default-sized button object on the form and hides the Toolbox,
as shown here:

42	 Part I  Getting Started with Microsoft Visual Basic 2010

The button is named Button1 because it is the first button in the program. (You should make
a mental note of this button name—you’ll see it again when you write your program code.)
The new button object is selected and enclosed by resize handles. When Visual Basic is in
design mode (that is, whenever the Visual Studio IDE is active), you can move objects on the
form by dragging them with the mouse, and you can resize them by using the resize handles.
While a program is running, however, the user can’t move user interface (UI) elements unless
you’ve changed a property in the program to allow this. You’ll practice moving and resizing
the button now.

Move and resize a button

	 1.	 Point to the button so that the pointer changes to a four-headed arrow, and then drag
the button down and to the right.

The button moves across the surface of the form. If you move the object near the edge
of the form or another object (if other objects are present), it automatically aligns itself
to a hidden grid when it is an inch or so away. A little blue “snapline” also appears to
help you gauge the distance of this object from the edge of the form or the other
object. The grid is not displayed on the form by default, but you can use the snapline
to judge distances with almost the same effect.

	 2.	 Position the mouse pointer on the lower-right corner of the button.

When the mouse pointer rests on a resize handle of a selected object, it
becomes a resizing pointer. You can use the resizing pointer to change the size
of an object.

	 3.	 Enlarge the button by dragging the pointer down and to the right.

When you release the mouse button, the button changes size and snaps to the grid.

	 4.	 Use the resizing pointer to return the button to its original size.

Now you’ll add a second button to the form, below the first button.

Add a second button

	 1.	 Click the Toolbox tab to display the Toolbox.

	 2.	 Click the Button control in the Toolbox (single-click this time), and then move the
mouse pointer over the form.

The mouse pointer changes to crosshairs and a button icon. The crosshairs are
designed to help you draw the rectangular shape of the button on the form, and you
can use this method as an alternative to double-clicking to create a control of the
default size.

	 3.	 Click and drag the pointer down and to the right. Release the mouse button to
complete the button, and watch it snap to the form.

	 Chapter 2  Writing Your First Program	 43

	 4.	 Resize the button object so that it is the same size as the first button, and then move it
below the first button on the form. (Use the snapline feature to help you.)

Tip  At any time, you can delete an object and start over again by selecting the object
on the form and then pressing DELETE. Feel free to create and delete objects to practice
creating your user interface.

Now you’ll add the labels used to display the numbers in the program. A label is a special
user interface element designed to display text, numbers, or symbols when a program runs.
When the user clicks the Lucky Seven program’s Spin button, three random numbers appear
in the label boxes. If one of the numbers is a 7, the user wins.

Add the number labels

	 1.	 Double-click the Label control in the Toolbox.

Visual Studio creates a label object on the form. The label object is just large enough
to hold the text contained in the object (it is rather small now), but it can be resized.

	 2.	 Drag the Label1 object to the right of the two button objects.

Your form looks something like this:

	 3.	 Double-click the Label control in the Toolbox to create a second label object.

This label object will be named Label2 in the program.

	 4.	 Double-click the Label control again to create a third label object.

	 5.	 Move the second and third label objects to the right of the first one on the form.

Allow plenty of space between the three labels because you will use them to display
large numbers when the program runs.

Now you’ll use the Label control to add a descriptive label to your form. This will be
the fourth and final label in the program.

	 6.	 Double-click the Label control in the Toolbox.

44	 Part I  Getting Started with Microsoft Visual Basic 2010

	 7.	 Drag the Label4 object below the two command buttons.

When you’ve finished, your four labels should look like those in the following
screen shot. (You can move your label objects if they don’t look quite right.)

Now you’ll add a picture box to the form to graphically display the payout you’ll receive
when you draw a 7 and hit the jackpot. A picture box is designed to display bitmaps, icons,
digital photos, and other artwork in a program. One of the best uses for a picture box is to
display a JPEG image file.

Add a picture

	 1.	 Click the PictureBox control in the Toolbox.

	 2.	 Using the control’s drawing pointer, create a large rectangular box below the second
and third labels on the form.

Leave a little space below the labels for their size to grow as I mentioned earlier.
When you’ve finished, your picture box object looks similar to this:

This object will be named PictureBox1 in your program; you’ll use this name later in
the program code.

Now you’re ready to customize your interface by setting a few properties.

	 Chapter 2  Writing Your First Program	 45

Setting the Properties
As you discovered in Chapter 1, you can change properties by selecting objects on the form
and changing their settings in the Properties window. You’ll start by changing the property
settings for the two buttons.

Set the button properties

	 1.	 Click the first button (Button1) on the form.

The button is selected and is surrounded by resize handles.

	 2.	 Click the Properties window title bar.

Tip  If the Properties window isn’t visible, click the Properties Window command on the
View menu, or press F4.

	 3.	 At the top of the Properties window, click the Categorized button.

For information about categorized properties, see the section entitled “The Properties
Window” in Chapter 1.

	 4.	 Resize the Properties window (if necessary) so that there is plenty of room to see the
property names and their current settings.

Once you get used to setting properties, you will probably use the Properties window
without enlarging it, but making it bigger helps when you first try to use it. The
Properties window in the following screen shot is a good size for setting properties:

46	 Part I  Getting Started with Microsoft Visual Basic 2010

The Properties window lists the settings for the first button. These include settings
for the background color, text, font height, and width of the button. Because there are
so many properties, Visual Studio organizes them into categories and displays them
in outline view. If you want to see the properties in a category, click the arrow sign (>)
next to the category title.

	 5.	 If it is not already visible, scroll in the Properties window until you see the Text property
located in the Appearance category.

	 6.	 Double-click the Text property in the first column of the Properties window.

The current Text setting (“Button1”) is highlighted in the Properties window.

	 7.	 Type Spin, and then press ENTER.

The Text property changes to “Spin” in the Properties window and on the button
on the form. Now you’ll change the Text property of the second button to “End.”
(You’ll select the second button in a new way this time.)

	 8.	 Open the Object list at the top of the Properties window.

A list of the interface objects in your program appears as follows:

	 9.	 Click Button2 System.Windows.Forms.Button (the second button) in the list box.

The property settings for the second button appear in the Properties window, and
Visual Studio highlights Button2 on the form.

	 10.	 Double-click the current Text property (“Button2”), type End, and then press ENTER.

The text of the second button changes to “End.”

	 Chapter 2  Writing Your First Program	 47

Tip  Using the Object list is a handy way to switch between objects in your program.
You can also switch between objects on the form by clicking each object.

Now you’ll set the properties for the labels in the program. The first three labels will hold
the random numbers generated by the program and will have identical property settings.
(You’ll set most of them as a group.) The descriptive label settings will be slightly different.

Set the number label properties

	 1.	 Click the first number label (Label1), hold down the SHIFT key, click the second
and third number labels, and then release the SHIFT key. (If the Properties window is
in the way, move it to a new place.)

A selection rectangle and resize handles appear around each label you click. You’ll
change the TextAlign, BorderStyle, and Font properties now so that the numbers that
will appear in the labels will be centered, boxed, and identical in font and font size.
(All these properties are located in the Appearance category of the Properties window.)
You’ll also set the AutoSize property to False so that you can change the size of the
labels according to your precise specifications. (The AutoSize property is located in the
Layout category.)

Tip  When more than one object is selected, only those properties that can be changed
for the group are displayed in the Properties window.

	 2.	 Click the AutoSize property in the Properties window, and then click the arrow that
appears in the second column.

	 3.	 Set the AutoSize property to False so that you can size the labels manually.

	 4.	 Click the TextAlign property, and then click the arrow that appears in the second
column.

A graphical assortment of alignment options appears in the list box; you can use
these settings to align text anywhere within the borders of the label object.

	 5.	 Click the center option (MiddleCenter).

The TextAlign property for each of the selected labels changes to MiddleCenter.

	 6.	 Click the BorderStyle property, and then click the arrow that appears in the second
column.

The valid property settings (None, FixedSingle, and Fixed3D) appear in the list box.

	 7.	 Click FixedSingle in the list box to add a thin border around each label.

48	 Part I  Getting Started with Microsoft Visual Basic 2010

	 8.	 Click the Font property, and then click the ellipsis button (the button with three dots
that’s located next to the current font setting).

The Font dialog box opens.

	 9.	 Change the font to Times New Roman, the font style to Bold, and the font size to 24,
and then click OK.

The label text appears in the font, style, and size you specified.

Now you’ll set the text for the three labels to the number 0—a good “placeholder” for
the numbers that will eventually fill these boxes in your game. (Because the program
produces the actual numbers, you could also delete the text, but putting a placeholder
here gives you something to base the size of the labels on.)

	 10.	 Click a blank area on the form to remove the selection from the three labels, and then
click the first label.

	 11.	 Double-click the Text property, type 0, and then press ENTER.

The text of the Label1 object is set to 0. You’ll use program code to set this property
to a random “slot machine” number later in this chapter.

	 12.	 Change the text in the second and third labels on the form to 0 also.

	 13.	 Move and resize the labels now so that they are appropriately spaced.

Your form looks something like this:

Now you’ll change the Text, Font, and ForeColor properties of the fourth label.

Set the descriptive label properties

	 1.	 Click the fourth label object (Label4) on the form.

	 2.	 Change the Text property in the Properties window to Lucky Seven.

	 3.	 Click the Font property, and then click the ellipsis button.

	 4.	 Use the Font dialog box to change the font to Arial, the font style to Bold, and the font
size to 18. Then click OK.

The font in the Label4 object is updated, and the label is resized automatically to hold
the larger font size because the object’s AutoSize property is set to True.

	 Chapter 2  Writing Your First Program	 49

	 5.	 Click the ForeColor property in the Properties window, and then click the arrow in
the second column.

Visual Studio displays a list box with Custom, Web, and System tabs for setting the
foreground colors (the color of text) of the label object. The Custom tab offers many of
the colors available in your system. The Web tab sets colors for Web pages and lets you
pick colors using their common names. The System tab displays the current colors used
for user interface elements in your system.

	 6.	 Click the purple color on the Custom tab.

The text in the label box changes to purple.

Now you’re ready to set the properties for the last object.

The Picture Box Properties
When the person playing your game hits the jackpot (that is, when at least one 7 appears in
the number labels on the form), the picture box object will contain a picture in JPEG format
of a person dispensing money. (I am supplying you with this digitized image, but you can
substitute your own if you like.) You need to set the SizeMode property to accurately size the
picture and set the Image property to specify the name of the JPEG file that you will load
into the picture box. You also need to set the Visible property, which specifies the picture
state at the beginning of the program.

Set the picture box properties

	 1.	 Click the picture box object on the form.

	 2.	 Click the SizeMode property in the Properties window (listed in the Behavior category),
click the arrow in the second column, and then click StretchImage.

Setting SizeMode to StretchImage before you open a graphic causes Visual Studio to
resize the graphic to the exact dimensions of the picture box. (Typically, you set this
property before you set the Image property.)

	 3.	 Click the Image property in the Properties window, and then click the ellipsis button
in the second column.

The Select Resource dialog box opens.

	 4.	 Click the Local Resource radio button, and then click the Import button.

	 5.	 In the Open dialog box, navigate to the C:\Vb10sbs\Chap02 folder.

This folder contains the digital photo PayCoins.jpg.

	 6.	 Select PayCoins.jpg, and then click Open.

An screen shot of one person paying another appears in the Select Resource
dialog box. (The letter “W” represents winning.)

50	 Part I  Getting Started with Microsoft Visual Basic 2010

	 7.	 Click OK.

The PayCoins photo is loaded into the picture box. Because the photo is relatively small
(24 KB), it opens quickly on the form.

	 8.	 Resize the picture box object now to fix any distortion problems that you see in the
image.

I sized my picture box object to be 144 pixels wide by 146 pixels high. You can match
this size by using the width and height dimensions located on the lower-right side
of the Visual Studio IDE. (The dimensions of the selected object are given on the
lower-right side, and the location on the form of the object’s upper-left corner is given
to the left of the dimensions.)

This particular image displays best when the picture box object retains a square shape.

Note  As you look at the picture box object, you might notice a tiny shortcut arrow called
a smart tag near its upper-right corner. This smart tag is a button that you can click to
quickly change a few common picture box settings and open the Select Resource dialog
box. (You’ll see the smart tag again in Chapter 4, “Working with Menus, Toolbars, and
Dialog Boxes,” when you use the ToolStrip control.)

Now you’ll change the Visible property to False so that the image will be invisible when
the program starts.

	 9.	 Click the Visible property in the Behavior category of the Properties window, and then
click the arrow in the second column.

The valid settings for the Visible property appear in a list box.

	 10.	 Click False to make the picture invisible when the program starts.

	 Chapter 2  Writing Your First Program	 51

Setting the Visible property to False affects the picture box when the program runs, but
not now, while you’re designing it. Your completed form looks similar to this:

Tip  You can also double-click property names that have True and False settings (so-called
Boolean properties), to toggle back and forth between True and False. Default Boolean
properties are shown in regular type, and changed settings appear in bold.

	 11.	 You are finished setting properties for now, so if your Properties window is floating,
hold down the CTRL key and double-click its title bar to return it to the docked
position.

Reading Properties in Tables
In this chapter, you’ve set the properties for the Lucky Seven program step by step.
In future chapters, the instructions to set properties will be presented in table format
unless a setting is especially tricky. Table 2-2 lists the properties you’ve set so far in the
Lucky Seven program, as they’d look later in the book. Settings you need to type in are
shown in quotation marks. You shouldn’t type the quotation marks.

TABLE 2-2  Lucky Seven Properties

Object Property Setting

Button1 Text “Spin”

Button2 Text “End”

Label1, Label2, Label3 AutoSize
BorderStyle
Font
Text
TextAlign

False
FixedSingle
Times New Roman, Bold, 24-point
“0”
MiddleCenter

Label4 Text
Font
ForeColor

“Lucky Seven”
Arial, Bold, 18-point
Purple

PictureBox1 Image
SizeMode
Visible

“C:\Vb10sbs\Chap02\Paycoins.jpg”
StretchImage
False

52	 Part I  Getting Started with Microsoft Visual Basic 2010

Writing the Code
Now you’re ready to write the code for the Lucky Seven program. Because most of the
objects you’ve created already “know” how to work when the program runs, they’re ready
to receive input from the user and process it. The inherent functionality of objects is one
of the great strengths of Visual Studio and Visual Basic—after objects are placed on a form
and their properties are set, they’re ready to run without any additional programming.
However, the “meat” of the Lucky Seven game—the code that actually calculates random
numbers, displays them in boxes, and detects a jackpot—is still missing from the program.
This computing logic can be built into the application only by using program statements—
code that clearly spells out what the program should do at each step of the way. Because
the Spin and End buttons drive the program, you’ll associate the code for the game with
those buttons. You enter and edit Visual Basic program statements in the Code Editor.

In the following steps, you’ll enter the program code for Lucky Seven in the Code Editor.

Use the Code Editor

	 1.	 Double-click the End button on the form.

The Code Editor appears as a tabbed document window in the center of the Visual
Studio IDE, as shown here:

	 Chapter 2  Writing Your First Program	 53

Inside the Code Editor are program statements associated with the current form.
Program statements that are used together to perform some action are typically
grouped in a programming construct called a procedure. A common type of procedure
is a Sub procedure, sometimes called a subroutine. Sub procedures include a Sub
keyword in the first line and end with End Sub. (I’ll talk about the Public and Private
keywords later.) Procedures are typically executed when certain events occur, such as
when a button is clicked. When a procedure is associated with a particular object and
an event, it is called an event handler or an event procedure.

When you double-clicked the End button (Button2), Visual Studio automatically added
the first and last lines of the Button2_Click event procedure, as the following code
shows. (The first line was wrapped to stay within the book margins.) You may notice
other bits of code in the Code Editor (words like Public and Class), which Visual Studio
has added to define important characteristics of the form, but I won’t emphasize
them here.

Private Sub Button2_Click(ByVal sender As System.Object, _

  ByVal e As System.EventArgs) Handles Button2.Click

End Sub

The body of a procedure fits between these lines and is executed whenever a user
activates the interface element associated with the procedure. In this case, the event
is a mouse click, but as you’ll see later in the book, it could also be a different type
of event.

	 2.	 Type End, and then press the ENTER key.

When you type the statement, Visual Studio recognizes End as a unique reserved word
or keyword and displays it in a list box with Common and All tabs. Microsoft calls this
auto-extend feature IntelliSense because it tries to intelligently help you write code,
and you can browse through various Visual Basic keywords and objects alphabetically.
(In this way, the language is partially discoverable through the IDE itself.)

After you press the ENTER key, the letters in End turn blue and are indented, indicating
that Visual Basic recognizes End as one of several hundred unique keywords within
the Visual Basic language. You use the End keyword to stop your program and
remove it from the screen. In this case, End is also a complete program statement,
a self-contained instruction executed by the Visual Basic compiler, the part of Visual
Studio that processes or parses each line of Visual Basic source code, combining the
result with other resources to create an executable file. Program statements are a little
like complete sentences in a human language—statements can be of varying lengths
but must follow the grammatical “rules” of the compiler. In Visual Studio, program
statements can be composed of keywords, properties, object names, variables,
numbers, special symbols, and other values. You’ll learn more about how program
statements are constructed in Chapter 5.

As you enter program statements and make other edits, the Code Editor handles many
of the formatting details for you, including adjusting indentation and spacing and

54	 Part I  Getting Started with Microsoft Visual Basic 2010

adding any necessary parentheses. The exact spelling, order, and spacing of items within
program statements is referred to as statement syntax. In the early days of compilers,
programmers were almost totally responsible for getting the precise syntax for each
program statement correct on their own, but now sophisticated development tools such
as Visual Studio help immensely with the construction of accurate program statements.

When you pressed the ENTER key, the End statement was indented to set it apart
from the Private Sub and End Sub statements. This indenting scheme is one of the
programming conventions you’ll see throughout this book to keep your programs clear
and readable. The group of conventions regarding how code is organized in a program
is often referred to as program style.

Now that you’ve written the code associated with the End button, you’ll write code for the
Spin button. These program statements will be a little more extensive and will give you
a chance to learn more about statement syntax and program style. You’ll study many of the
program statements later in this book, so you don’t need to know everything about them
now. Just focus on the general structure of the code and on typing the program statements
exactly as they are printed.

Write code for the Spin button

	 1.	 At the top of the Solution Explorer window, click the View Designer button in the
Solution Explorer window to display your form again.

Note  When the Code Editor is visible, you won’t be able to see the form you’re working
on. The View Designer button is one mechanism you can use to display it again. (If more
than one form is loaded in Solution Explorer, click the form that you want to display first.)
You can also click the Form1.vb [Design] tab at the top edge of the Code Editor. To display
the Code Editor again, click the View Code button in Solution Explorer.

	 2.	 Double-click the Spin button.

After a few moments, the Code Editor appears, and an event procedure associated with
the Button1 button appears near the Button2 event procedure.

Although you changed the text of this button to “Spin,” its name in the program is
still Button1. (The name and the text of an interface element can be different to suit
the needs of the programmer.) Each object can have several procedures associated
with it, one for each event it recognizes. The click event is the one you’re interested
in now because users will click the Spin and End buttons when they run the program.

	 3.	 Type the following program lines between the Private Sub and End Sub statements.
Press ENTER after each line, press TAB to indent, and take care to type the program
statements exactly as they appear here. (The Code Editor will scroll to the left as you
enter the longer lines.) If you make a mistake (usually identified by a jagged underline),
delete the incorrect statements and try again.

	 Chapter 2  Writing Your First Program	 55

Tip  As you enter the program code, Visual Basic formats the text and displays different
parts of the program in color to help you identify the various elements. When you begin
to type a property, Visual Basic also displays the available properties for the object you’re
using in a list box, so you can double-click the property or keep typing to enter it yourself.
If Visual Basic displays an error message, you might have misspelled a program statement.
Check the line against the text in this book, make the necessary correction, and continue
typing. (You can also delete a line and type it from scratch.) In addition, Visual Basic might
add necessary code automatically. For example, when you type the following code, Visual
Basic automatically adds the End If line. Readers of previous editions of this book have
found this first typing exercise to be the toughest part of this chapter—“But Mr. Halvorson,
I know I typed it just as you wrote it!”—so please give this program code your closest
attention. I promise you, it works!

PictureBox1.Visible = False ' hide picture

Label1.Text = CStr(Int(Rnd() * 10)) ' pick numbers

Label2.Text = CStr(Int(Rnd() * 10))

Label3.Text = CStr(Int(Rnd() * 10))

' if any number is 7 display picture and beep

If (Label1.Text = "7") Or (Label2.Text = "7") _

Or (Label3.Text = "7") Then

 PictureBox1.Visible = True

 Beep()

End If

When you’ve finished, the Code Editor looks as shown in the following screen shot:

56	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 Click the Save All command on the File menu to save your additions to the program.

The Save All command saves everything in your project—the project file, the form
file, any code modules, and other related components in your application. Since
this is the first time that you have saved your project, the Save Project dialog box
opens, prompting you for the name and location of the project. (If your copy of
Visual Studio is configured to prompt you for a location when you first create your
project, you won’t see the Save Project dialog box now—Visual Studio just saves
your changes.)

	 5.	 Browse and select a location for your files.

I recommend that you use the C:\Vb10sbs\Chap02 folder (the location of the book’s
sample files), but the location is up to you. Since you used the “My” prefix when you
originally opened your project, this version won’t overwrite the Lucky7 practice file that
I built for you on disk.

	 6.	 Clear the Create Directory For Solution check box.

When this check box is selected, it creates a second folder for your program’s solution
files, which is not necessary for solutions that contain only one project (the situation for
most programs in this book).

	 7.	 Click Save to save your files.

Note  If you want to save just the item you are currently working on (the form, the code
module, or something else), you can use the Save command on the File menu. If you want
to save the current item with a different name, you can use the Save As command.

A Look at the Button1_Click Procedure
The Button1_Click procedure is executed when the user clicks the Spin button on the form.
The procedure uses some pretty complicated statements, and because I haven’t formally
introduced them yet, it might look a little confusing. However, if you take a closer look,
you’ll probably see a few things that look familiar. Taking a peek at the contents of these
procedures will give you a feel for the type of program code you’ll be creating later in
this book. (If you’d rather not stop for this preview, feel free to skip to the next section,
“Running Visual Basic Applications.”)

The Button1_Click procedure performs three tasks:

n	 It hides the digital photo.

n	 It creates three random numbers for the number labels.

n	 It displays the photo when the number 7 appears.

	 Chapter 2  Writing Your First Program	 57

Let’s look at each of these steps individually.

Hiding the photo is accomplished with the following line:

PictureBox1.Visible = False ' hide picture

This line is made up of two parts: a program statement and a comment.

The PictureBox1.Visible = False program statement sets the Visible property of the picture
box object (PictureBox1) to False (one of two possible settings). You might remember that
you set this property to False once before by using the Properties window. You’re doing
it again now in the program code because the first task is a spin and you need to clear
away a photo that might have been displayed in a previous game. Because the property
will be changed at run time and not at design time, you must set the property by using
program code. This is a handy feature of Visual Basic, and I’ll talk about it more in Chapter 3,
“Working with Toolbox Controls.”

The second part of the first line (the part displayed in green type on your screen) is called
a comment. Comments are explanatory notes included in program code following a single
quotation mark (‘). Programmers use comments to describe how important statements work
in a program. These notes aren’t processed by Visual Basic when the program runs; they exist
only to document what the program does. You’ll want to use comments often when you
write Visual Basic programs to leave an easy-to-understand record of what you’re doing.

The next three lines handle the random number computations. Does this concept sound
strange? You can actually make Visual Basic generate unpredictable numbers within specific
guidelines—in other words, you can create random numbers for lottery contests, dice
games, or other statistical patterns. The Rnd function in each line creates a random number
between 0 and 1 (a number with a decimal point and several decimal places), and the Int
function returns the integer portion of the result of multiplying the random number by 10.
This computation creates random numbers between 0 and 9 in the program—just what you
need for this particular slot machine application.

Label1.Text = CStr(Int(Rnd() * 10)) ' pick numbers

You then need to jump through a little hoop in your code. You need to copy these random
numbers into the three label boxes on the form, but first the numbers need to be converted to
text with the CStr (convert to string) function. Notice how CStr, Int, and Rnd are all connected in
the program statement—they work collectively to produce a result like a mathematical formula.
After the computation and conversion, the values are assigned to the Text properties of the
first three labels on the form, and the assignment causes the numbers to be displayed in bold,
24-point, Times New Roman font in the three number labels.

The last group of statements in the program checks whether any of the random numbers is 7.
If one or more of them is, the program displays the graphical depiction of a payout, and a
beep announces the winnings.

58	 Part I  Getting Started with Microsoft Visual Basic 2010

' if any number is 7 display picture and beep

If (Label1.Text = "7") Or (Label2.Text = "7") _

Or (Label3.Text = "7") Then

 PictureBox1.Visible = True

 Beep()

End If

Each time the user clicks the Spin button, the Button1_Click procedure is executed, or called,
and the program statements in the procedure are run again.

Running Visual Basic Applications
Congratulations! You’re ready to run your first real program. To run a Visual Basic program
from the development environment, you can do any of the following:

n	 Click Start Debugging on the Debug menu.

n	 Click the Start Debugging button on the Standard toolbar.

n	 Press F5.

Try running your Lucky Seven program now. If Visual Basic displays an error message, you might
have a typing mistake or two in your program code. Try to fix it by comparing the printed version
in this book with the one you typed, or load Lucky7 from your hard disk and run it.

Run the Lucky Seven program

	 1.	 Click the Start Debugging button on the Standard toolbar.

The Lucky Seven program compiles and runs in the IDE. After a few seconds, the user
interface appears, just as you designed it.

	 2.	 Click the Spin button.

The program picks three random numbers and displays them in the labels on the form,
as follows:

	 Chapter 2  Writing Your First Program	 59

Because a 7 appears in the first label box, the digital photo depicting the payoff
appears, and the computer beeps. You win! (The sound you hear depends on your
Default Beep setting in the Sound Control Panel. To make this game sound really cool,
change the Default Beep sound to something more dynamic.)

	 3.	 Click the Spin button 15 or 16 more times, watching the results of the spins in the
number boxes.

About half the time you spin, you hit the jackpot—pretty easy odds. (The actual odds
are about 2.8 times out of 10; you’re just lucky at first.) Later on, you might want to
make the game tougher by displaying the photo only when two or three 7s appear,
or by creating a running total of winnings.

	 4.	 When you’ve finished experimenting with your new creation, click the End button.

The program stops, and the development environment reappears on your screen.

Tip  If you run this program again, you might notice that Lucky Seven displays exactly the
same sequence of random numbers. There is nothing wrong here—the Visual Basic Rnd
function was designed to display a repeating sequence of numbers at first so that you can
properly test your code using output that can be reproduced again and again. To create
truly “random” numbers, use the Randomize function in your code, as shown in the
exercise at the end of this chapter. The .NET Framework, which you’ll learn to use later, also
supplies random number functions.

Sample Projects on Disk
If you didn’t build the MyLucky7 project from scratch (or if you did build the project and want to
compare what you created to what I built for you as I wrote the chapter), take a moment to open
and run the completed Lucky7 project, which is located in the C:\Vb10sbs\Chap02\Lucky7 folder
on your hard disk (the default location for the practice files for this chapter). If you need a refresher
course on opening projects, see the detailed instructions in Chapter 1. If you are asked if you want
to save changes to the MyLucky7 project, be sure to click Save.

This book is a step-by-step tutorial, so you will benefit most from building the projects on your
own and experimenting with them. But after you have completed the projects, it is often a
good idea to compare what you have with the practice file “solution” that I provide, especially
if you run into trouble. To make this easy, I will give you the name of the solution files on disk
before you run the completed program in most of the step-by-step exercises.

After you have compared the MyLucky7 project to the Lucky7 solution files on disk, reopen
MyLucky7 and prepare to compile it as an executable file. If you didn’t create MyLucky7, use
my solution file to complete the exercise.

60	 Part I  Getting Started with Microsoft Visual Basic 2010

Building an Executable File
Your last task in this chapter is to complete the development process and create an
application for Windows, or an executable file. (Had you created a different project type,
of course, such as a Web application, the result of your development efforts would have
been a different type of file—but we’ll discuss this later.) Windows applications created with
Visual Studio have the file name extension .exe and can be run on any system that contains
Windows and the necessary support files. (Visual Basic installs these support files—including
the .NET Framework files—automatically.) If you plan to distribute your applications, see the
section entitled “Deploying Your Application” later in the chapter.

At this point, you need to know that Visual Studio can create two types of executable files
for your Windows application project: a debug build and a release build.

Debug builds are created automatically by Visual Studio when you create and test
your program. They are stored in a folder called Bin\Debug within your project folder.
The debug executable file contains debugging information that makes the program run
slightly slower.

Release builds are optimized executable files stored in the Bin\Release folder within your
project. To customize the settings for your release build, you click the [ProjectName]
Properties command on the Project menu, and then click the Compile tab, where you see
a list of compilation options that looks like this:

	 Chapter 2  Writing Your First Program	 61

Try creating a release build named MyLucky7.exe now.

Create an executable file

	 1.	 On the Build menu, click the Build MyLucky7 command.

The Build command creates a Bin\Release folder in which to store your project (if the
folder doesn’t already exist) and compiles the source code in your project. The result
is an executable file of the Application type named MyLucky7.exe. To save you
time, Visual Studio often creates temporary executable files while you develop your
application; however, it’s always a good idea to recompile your application manually
with the Build or Rebuild command when you reach an important milestone.

Try running this program outside the Visual Studio IDE now from the Windows
Start menu.

	 2.	 On the Windows taskbar, click Start.

The next command depends on the version of Windows you’re using.

	 3.	 If you have Windows 7 or Windows Vista, type run in the Search text box and press
ENTER to open the Run dialog box. If you have Windows XP or earlier, click the Run
command to open the Run dialog box.

	 4.	 Click Browse and then navigate to the C:\Vb10sbs\Chap02\Mylucky7\Bin\Release folder.

	 5.	 Click the MyLucky7.exe application icon, click Open, and then click OK.

The Lucky Seven program loads and runs in Windows. Because this is a simple test
application and it does not possess a formal publisher certificate that emphasizes its
reliability or authenticity, you may see the following message: “The publisher could not
be verified. Are you sure you want to run this software?” If this happens to you, click
Yes to run the program anyway. (Creating such certificates is beyond the scope of this
chapter, but this program is quite safe.)

	 6.	 Click Spin a few times to verify the operation of the game, and then click End.

Tip  You can also run Windows applications, including compiled Visual Basic programs, by
opening Windows Explorer and double-clicking the executable file. To create a shortcut
icon for MyLucky7.exe on the Windows desktop, right-click the Windows desktop, point to
New, and then click Shortcut. When you’re prompted for the location of your application
file, click Browse, and select the MyLucky7.exe executable file. Click the OK, Next, and
Finish buttons. Windows places an icon on the desktop that you can double-click to run
your program.

	 7.	 On the File menu, click Exit to close Visual Studio and the MyLucky7 project.

The Visual Studio development environment closes.

62	 Part I  Getting Started with Microsoft Visual Basic 2010

Deploying Your Application
Visual Studio helps you distribute your Visual Basic applications by providing several options
for deployment—that is, for installing the application on one or more computer systems.
Since the release of Visual Studio in 2002, Visual Basic applications have been compiled as
assemblies—deployment units consisting of one or more files necessary for the program
to run. Assemblies contain four elements: Microsoft intermediate language (MSIL) code,
metadata, a manifest, and supporting files and resources. Visual Studio 2010 continues to
offer this same basic deployment architecture, with some noteworthy improvements for
different platforms and application types.

How do assemblies actually work? First, assemblies are so comprehensive and self-describing
that Visual Studio applications don’t actually need to be formally registered with the
operating system to run. This means that theoretically a Visual Basic 2010 application can be
installed by simply copying the assembly for the program to a second computer that has the
correct version of the .NET Framework installed—a process called XCOPY installation, after
the MS-DOS XCOPY command that copies a complete directory (folder) structure from one
location to another. In practice, however, it isn’t practical to deploy Visual Basic applications
by using a copy procedure such as XCOPY (via the command prompt) or Windows Explorer.
For commercial applications, an installation program with a graphical user interface is usually
preferred, and it’s often desirable to register the program with the operating system so
that it can be uninstalled later by using Control Panel. In addition, it is often useful to take
advantage of the Web for an application’s initial deployment and to have an application
check the Web periodically for updates.

Although the advanced options related to deployment and security go beyond the scope of
this book, you should be familiar with your deployment options. To manage the deployment
process, Visual Studio 2010 supports two deployment technologies, ClickOnce and Windows
Installer.

Essentially, ClickOnce is a robust Web-based publishing technology that allows you to control
how applications are made available to users via the Internet, although ClickOnce installations
can also be distributed via CD-ROM. With ClickOnce, you can create an installation service
for Windows applications, Office solutions, or console applications that users can access on
their own with minimal interaction. With ClickOnce, you can specify prerequisites, such as
a particular version of the .NET Framework, and you can easily publish updates on a Web page
or a network file share to make improvements to your program. You can get started with
ClickOnce at any time by using the Publish command on the Build menu. And you can control
how ClickOnce works by setting properties using the Properties command on the Project
menu. (Click the Publish tab in the Project Designer for specific features.)

	 Chapter 2  Writing Your First Program	 63

Windows Installer is a more classic installation process. In Visual Studio, you add a setup or
a Windows Installer project to your solution, which automatically creates a setup program
for the application. The installer package is distributed to your users, and individual users
run the setup file and work through a wizard to install the application. The setup project
can be customized to allow for different methods of installation, such as from CD-ROMs
or Web servers. You can get started with Windows Installer by using the New Project
command on the File menu to create a custom setup project. (Select the Setup And
Deployment\Visual Studio Installer option under Other Project Types to see the list of
available setup projects.)

Whether you choose ClickOnce or Windows Installer, you’ll find that Visual Studio 2010
has brought many improvements to the installation process, and these technologies will
directly benefit you and your customers. For additional information, see the online Help
documentation related to the installation option that you want to use.

One Step Further: Adding to a Program
You can restart Visual Studio at any time and work on a programming project you’ve stored
on disk. You’ll restart Visual Studio now and add a Randomize statement to the Lucky Seven
program.

Reload Lucky Seven

	 1.	 On the Windows taskbar, click Start, click All Programs, click Microsoft Visual Studio
2010, and then click the Microsoft Visual Studio 2010 program icon (or the Microsoft
Visual Basic 2010 Express program icon, if you’re using Visual Basic 2010 Express).

A list of the projects that you’ve most recently worked on appears on the Visual Studio
Start Page in the Recent Project pane. Because you just finished working with Lucky
Seven, the MyLucky7 project should be first on the list.

	 2.	 Click the MyLucky7 link to open the Lucky Seven project.

The Lucky Seven program opens, and the MyLucky7 form appears. (If you don’t see
the form, click Form1.vb in Solution Explorer, and then click the View Designer button.)

Now you’ll add the Randomize statement to the Form_Load procedure, a special
procedure that is associated with the form and that is executed each time the
program is started.

	 3.	 Double-click the form (not one of the objects) to display the Form_Load procedure.

The Form_Load procedure appears in the Code Editor, as shown here:

64	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 Type Randomize, and then press ENTER.

The Randomize statement is added to the program and will be executed each time
the program starts. Randomize uses the system clock to create a truly random
starting point, or seed, for the Rnd statement used in the Button1_Click procedure.
As I mentioned earlier, without the Randomize statement, the Lucky Seven program
produces the same string of random spins every time you restart the program. With
Randomize in place, the program spins randomly every time it runs, and the numbers
don’t follow a recognizable pattern.

	 5.	 Run the new version of Lucky Seven, and then save the project. If you plan to use the
new version a lot, you might want to create a new .exe file, too.

	 6.	 When you’re finished, click Close Project on the File menu.

The files associated with the Lucky Seven program are closed.

Chapter 2 Quick Reference

To Do This

Create a user
interface

Use Toolbox controls to place objects on your form, and then set the
necessary properties. Resize the form and the objects as appropriate.

Move an object Point to the object, and when a four-headed arrow appears, drag the
object.

	 Chapter 2  Writing Your First Program	 65

To Do This

Resize an object Click the object to select it, and then drag the resize handle attached to the
part of the object you want to resize.

Delete an object Click the object, and then press DELETE.

Open the Code Editor Double-click an object on the form (or the form itself).
or
Select a form or a module in Solution Explorer, and then click the View
Code button.

Write program code Type Visual Basic program statements associated with objects in the Code
Editor.

Save a program On the File menu, click the Save All command.
or
Click the Save All button on the Standard toolbar.

Save a form file Make sure the form is open, and then, on the File menu, click the Save
command.
or
Click the Save button on the Standard toolbar.

Create an .exe file On the Build menu, click the Build or Rebuild command.

Deploy an
application by using
ClickOnce technology

Click the Publish command on the Build menu, and then use the Publish
wizard to specify the location and settings for the application.

Reload a project On the File menu, click the Open Project command.
or
On the File menu, point to Recent Projects and Solutions, and then click
the desired project.
or
Click the project in the recent projects list on the Visual Studio Start Page.

		 67

Chapter 3

Working with Toolbox Controls
After completing this chapter, you will be able to:

n	 Use TextBox and Button controls to create a Hello World program.

n	 Use the DateTimePicker control to display your birth date.

n	 Use CheckBox, RadioButton, and ListBox controls to process user input.

n	 Use the LinkLabel control and the Process.Start method to display a Web page by
using your system’s default browser.

As you learned in earlier chapters, Microsoft Visual Studio 2010 controls are the graphical
tools you use to build the user interface of a Microsoft Visual Basic program. Controls are
located in the development environment’s Toolbox, and you use them to create objects
on a form with a simple series of mouse clicks and dragging motions.

Windows Forms controls are specifically designed for building Windows applications, and
you’ll find them organized on the All Windows Forms tab of the Toolbox, although many of
the controls are also accessible on tabs such as Common Controls, Containers, and Printing.
(You used a few of these controls in the previous chapter.) Among the Common Controls,
there are few changes between Visual Basic 2008 and Visual Basic 2010, so if you’re really
experienced with the last version of Visual Basic, you may simply want to move on to the
database and Web application chapters of this book (Part IV), or the detailed material about
programming techniques in Parts II and III. However, for most casual Visual Basic users, there is
a lot still to learn about the language’s extensive collection of Windows Forms Toolbox controls,
and we’ll work with several of them here.

In this chapter, you’ll learn how to display information in a text box; work with date and time
information on your system; process user input with CheckBox, RadioButton, and ListBox
controls; and display a Web page within a Visual Basic program. The exercises in this chapter
will help you design your own Visual Basic applications and will teach you more about
objects, properties, and program code. If you are new to Visual Studio and Visual Basic, this
chapter will be especially useful.

The Basic Use of Controls: The Hello World Program
A great tradition in introductory programming books is the Hello World program, which
demonstrates how the simplest utility can be built and run in a given programming
language. In the days of character-based programming, Hello World was usually a two-line
or three-line program typed in a program editor and assembled with a stand-alone compiler.

Table of Contents

Working with Toolbox Controls . 67
The Basic Use of Controls: The Hello World Program . . 67

Using the DateTimePicker Control . 73

The Birthday Program . 73

Controls for Gathering Input . . 78

Using Group Boxes and Radio Buttons . 81

Processing Input with List Boxes . 84

A Word About Terminology . 89

One Step Further: Using the LinkLabel Control . 91

Chapter 3 Quick Reference . 95

68	 Part I  Getting Started with Microsoft Visual Basic 2010

With the advent of complex operating systems and graphical programming tools, however,
the typical Hello World has grown into a more sophisticated program containing dozens
of lines and requiring several programming tools for its construction. Fortunately, creating
a Hello World program is still quite simple with Visual Studio 2010 and Visual Basic. You can
construct a complete user interface by creating two objects, setting two properties, and
entering one line of code. Give it a try.

Create a Hello World program

	 1.	 Start Visual Studio 2010 if it isn’t already open.

	 2.	 On the File menu, click New Project.

Visual Studio displays the New Project dialog box, which prompts you for the name of
your project and for the template that you want to use.

Note  Use the following instructions each time you want to create a new project on your
hard disk.

	 3.	 Ensure that the Visual Basic Windows category is selected on the left side of the dialog
box, and that Windows Forms Application template is also selected in the middle of the
dialog box.

These selections indicate that you’ll be building a stand-alone Visual Basic application
that will run under Windows.

	 4.	 Remove the default project name (WindowsApplication1) from the Name text box, and
then type MyHello.

Note  Throughout this book, I ask you to create sample projects with the “My” prefix, to
distinguish your own work from the practice files I include on the companion CD-ROM.
However, I’ll usually show projects in the Solution Explorer without the “My” prefix
(because I’ve built the projects without it).

The New Project dialog box now looks like the screen shot at the top of page 69. If you
are using Visual Basic 2010 Express, you will just see a Visual Basic category on the left.

	 5.	 Click OK to create your new project.

The new project is created, and a blank form appears in the Designer, as shown in the
screen shot on the bottom of page 69. The two controls you’ll use in this exercise, Button
and TextBox, are visible in the Toolbox, which appears in the screen shot as a docked
window. If your programming tools are configured differently, take a few moments to
organize them, as shown in the screen shot. (Chapter 1, “Exploring the Visual Studio
Integrated Development Environment,” describes how to configure the IDE if you need
a refresher course.)

	 Chapter 3  Working with Toolbox Controls	 69

70	 Part I  Getting Started with Microsoft Visual Basic 2010

	 6.	 Click the TextBox control on the Common Controls tab of the Toolbox.

	 7.	 Draw a text box similar to this:

Text boxes are used to display text on a form or to get user input while a program
is running. How a text box works depends on how you set its properties and how you
reference the text box in the program code. In this program, a text box object will be used
to display the message “Hello, world!” when you click a button object on the form.

You’ll add a button to the form now.

	 8.	 Click the Button control in the Toolbox.

	 9.	 Draw a button below the text box on the form.

Your form looks something like this:

	 Chapter 3  Working with Toolbox Controls	 71

As you learned in Chapter 2, “Writing Your First Program,” buttons are used to get
the most basic input from a user. When a user clicks a button, he or she is requesting
that the program perform a specific action immediately. In Visual Basic terms, the
user is using the button to create an event that needs to be processed in the program.
Typical buttons in a program are the OK button, which a user clicks to accept a list of
options and to indicate that he or she is ready to proceed; the Cancel button, which
a user clicks to discard a list of options; and the Quit button, which a user clicks to exit
the program. In each case, you should use these buttons in the standard way so that
they work as expected when the user clicks them. A button’s characteristics (like those
of all objects) can be modified with property settings and references to the object
in program code.

	 10.	 Set the following property for the button object by using the Properties window:

Object Property Setting

Button1 Text ”OK”

For more information about setting properties and reading them in tables, see the
section entitled “The Properties Window” in Chapter 1.

	 11.	 Double-click the OK button, and type the following program statement
between the Private Sub Button1_Click and End Sub statements in the
Code Editor:

TextBox1.Text = "Hello, world!"

Note  As you type statements, Visual Studio displays a list box containing all valid items
that match your text. After you type the TextBox1 object name and a period, Visual Studio
displays a list box containing all the valid properties and methods for text box objects,
to jog your memory if you’ve forgotten the complete list. This list box is called Microsoft
IntelliSense and can be very helpful when you are writing code. If you click an item in the
list box, you will typically get a tooltip that provides a short description of the selected
item. You can add the property from the list to your code by double-clicking it or by using
the arrow keys to select it and then pressing TAB. You can also continue typing to enter
the property yourself. (I usually just keep typing, unless I’m exploring new features.)

The statement you’ve entered changes the Text property of the text box to “Hello,
world!” when the user clicks the button at run time. (The equal sign (=) assigns
everything between the quotation marks to the Text property of the TextBox1 object.)
This example changes a property at run time—one of the most common uses of
program code in a Visual Basic program.

Now you’re ready to run the Hello program.

72	 Part I  Getting Started with Microsoft Visual Basic 2010

Run the Hello program

Tip  The complete Hello program is located in the C:\Vb10sbs\Chap03\Hello folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

The Hello program compiles and, after a few seconds, runs in the Visual Studio IDE.

	 2.	 Click OK.

The program displays the greeting “Hello, world!” in the text box, as shown here:

When you clicked the OK button, the program code changed the Text property of the
empty TextBox1 text box to “Hello, world!” and displayed this text in the box. If you
didn’t get this result, repeat the steps in the previous section, and build the program
again. You might have set a property incorrectly or made a typing mistake in the
program code. (Syntax errors appear with a jagged underline in the Code Editor.)

	 3.	 Click the Close button in the upper-right corner of the Hello World program window to
stop the program.

Note  To stop a program running in Visual Studio, you can also click the Stop Debugging
button on the Standard toolbar to close the program.

	 4.	 Click the Save All button on the Standard toolbar to save your new project to disk.

Visual Studio now prompts you for a name and a location for the project.

	 5.	 Click the Browse button.

The Project Location dialog box opens. You use this dialog box to specify the location
of your project and to create new folders for your projects if necessary. Although you

	 Chapter 3  Working with Toolbox Controls	 73

can save your projects in any location (the Documents\Visual Studio 2010\Projects folder
is a common location), in this book I instruct you to save your projects in the
C:\Vb10sbs folder, the default location for your Step by Step practice files. If you ever want
to remove all the files associated with this programming course, you’ll know just where
the files are, and you’ll be able to remove them easily by deleting the entire folder.

	 6.	 Browse to the C:\Vb10sbs\Chap03 folder.

	 7.	 Click the Select Folder or Open button to open the folder you specified.

	 8.	 Clear the check mark from the Create Directory For Solution check box if it is selected.

Because this solution contains only one project (which is the case for most of the
solutions in this book), you don’t need to create a separate root folder to hold the
solution files for the project. (However, you can create an extra folder if you want.)

	 9.	 Click Save to save the project and its files.

Congratulations—you’ve joined the ranks of programmers who’ve written a Hello World
program. Now let’s try another control.

Using the DateTimePicker Control
Some Visual Basic controls display information, and others gather information from the
user or process data behind the scenes. In this exercise, you’ll work with the DateTimePicker
control, which prompts the user for a date or time by using a graphical calendar with scroll
arrows. Although your use of the control will be rudimentary at this point, experimenting
with DateTimePicker will give you an idea of how much Visual Basic controls can do for you
automatically and how you process the information that comes from them.

The Birthday Program
The Birthday program uses a DateTimePicker control and a Button control to prompt the user
for the date of his or her birthday. It then displays that information by using a message box.
Give it a try now.

Build the Birthday program

	 1.	 On the File menu, click Close Project to close the MyHello project.

The files associated with the Hello World program close.

	 2.	 On the File menu, click New Project.

The New Project dialog box opens.

	 3.	 Create a new Visual Basic Windows Forms Application project named MyBirthday.

The new project is created, and a blank form appears in the Designer.

74	 Part I  Getting Started with Microsoft Visual Basic 2010

	 4.	 Click the DateTimePicker control in the Toolbox.

	 5.	 Draw a date/time picker object near the top of the form, as shown in the following
screen shot:

The date/time picker object by default displays the current date, but you can adjust the
displayed date by changing the object’s Value property. Displaying the date is a handy
design guide—it lets you size the date/time picker object appropriately when you’re
creating it.

	 6.	 Click the Button control in the Toolbox, and then add a button object below the
date/time picker.

You’ll use this button to display your birth date and to verify that the date/time picker
works correctly.

	 7.	 In the Properties window, change the Text property of the button object to Show My
Birthday.

Now you’ll add a few lines of program code to a procedure associated with the button
object. This is an event procedure because it runs when an event, such as a mouse click,
occurs, or fires, in the object.

	 8.	 Double-click the button object on the form to display its default event procedure,
and then type the following program statements between the Private Sub and End Sub
statements in the Button1_Click event procedure:

MsgBox("Your birth date was " & DateTimePicker1.Text)

MsgBox("Day of the year: " & _

 DateTimePicker1.Value.DayOfYear.ToString())

	 Chapter 3  Working with Toolbox Controls	 75

These program statements display two message boxes (small dialog boxes) with
information from the date/time picker object. The first line uses the Text property of
the date/time picker to display the birth date information that you select when using
the object at run time. The MsgBox function displays the string value “Your birth date
was” in addition to the textual value held in the date/time picker’s Text property. These
two pieces of information are joined together by the string concatenation operator (&).
You’ll learn more about the MsgBox function and the string concatenation operator in
Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework.”

The second and third lines collectively form one program statement and have been
broken by the line continuation character (_) because the statement was a bit too long
to print in this book.

Program lines can be more than 65,000 characters long in the Visual Studio Code
Editor, but it’s usually easiest to work with lines of 80 or fewer characters. You can
divide long program statements among multiple lines by using a space and a line
continuation character (_) at the end of each line in the statement except for the last
line. (You cannot use a line continuation character to break a string that’s in quotation
marks, however.) I use the line continuation character in this exercise to break the
second line of code into two parts.

Note  Starting in Visual Basic 2010, the line continuation character (_) is optional. There
are a few instances where the line continuation character is needed, but they are rare. In
this book, I still use line continuation characters to make it clear where there are long lines,
but you don’t have to include them.

The statement DateTimePicker1.Value.DayOfYear.ToString() uses the date/time
picker object to calculate the day of the year in which you were born, counting from
January 1. This is accomplished by the DayOfYear property and the ToString method,
which converts the numeric result of the date calculation to a textual value that’s more
easily displayed by the MsgBox function.

Methods are special statements that perform an action or a service for a particular
object, such as converting a number to a string or adding items to a list box. Methods
differ from properties, which contain a value, and event procedures, which execute
when a user manipulates an object. Methods can also be shared among objects, so
when you learn how to use a particular method, you’ll often be able to apply it to
several circumstances. We’ll discuss several important methods as you work through
this book.

76	 Part I  Getting Started with Microsoft Visual Basic 2010

After you enter the code for the Button1_Click event procedure, the Code Editor looks
similar to this:

	 9.	 Click the Save All button to save your changes to disk, and specify C:\Vb10sbs\Chap03
as the folder location.

Now you’re ready to run the Birthday program.

Run the Birthday program

Tip  The complete Birthday program is located in the C:\Vb10sbs\Chap03\Birthday folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

The Birthday program starts to run in the IDE. The current date is displayed in the
date/time picker.

	 2.	 Click the arrow in the date/time picker to display the object in Calendar view.

Your form looks like the following screen shot, but with a different date.

	 3.	 Click the Left scroll arrow to look at previous months on the calendar.

	 Chapter 3  Working with Toolbox Controls	 77

Notice that the text box portion of the object also changes as you scroll the date.
The “today” value at the bottom of the calendar doesn’t change, however.

Although you can scroll all the way back to your exact birthday, you might not have
the patience to scroll month by month. To move to your birth year faster, select the
year value in the date/time picker text box and enter a new year.

	 4.	 Select the four-digit year in the date/time picker text box.

When you select the date, the date/time picker closes.

	 5.	 Type your birth year in place of the year that’s currently selected, and then click the
arrow again.

The calendar reappears in the year of your birth.

	 6.	 Click the scroll arrow again to locate the month in which you were born, and then click
the exact day on which you were born.

If you didn’t know the day of the week on which you were born, now you can find out!

When you select the final date, the date/time picker closes, and your birth date is
displayed in the text box. You can click the button object to see how this information
is made available to other objects on your form.

	 7.	 Click the Show My Birthday button.

Visual Basic executes your program code and displays a message box containing the
day and date of your birth. Notice how the two dates shown in the two boxes match:

	 8.	 Click OK in the message box.

A second message box appears, indicating the day of the year on which you were
born—everything seems to work! You’ll find this control to be quite capable—not only

78	 Part I  Getting Started with Microsoft Visual Basic 2010

does it remember the new date or time information that you enter, but it also keeps
track of the current date and time, and it can display this date and time information in
a variety of useful formats.

Note  To configure the date/time picker object to display times instead of dates, set the
object’s Format property to Time.

	 9.	 Click OK to close the message box, and then click the Close button on the form.

You’re finished using the DateTimePicker control for now.

Controls for Gathering Input
Visual Basic provides several mechanisms for gathering input in a program. Text boxes
accept typed input, menus present commands that can be clicked or chosen with the keyboard,
and dialog boxes offer a variety of elements that can be chosen individually or selected in
a group. In the next few exercises, you’ll learn how to use three important controls that help
you gather input in several different situations. You’ll learn about the CheckBox, RadioButton,
GroupBox, PictureBox, ListBox controls. You’ll explore each of these objects as you use a Visual
Basic program called Input Controls, which is the user interface for a simple, graphics-based
ordering system. As you run the program, you’ll get some hands-on experience with the input
objects. In the next chapter, I’ll discuss how these objects can be used along with menus in a
full-fledged program.

As a simple experiment, try using the CheckBox control now to see how user input is
processed on a form and in program code.

Experiment with the CheckBox control

	 1.	 On the File menu, click Close Project to close the Birthday project.

	 2.	 On the File menu, click New Project.

The New Project dialog box opens.

	 3.	 Create a new Visual Basic Windows Forms Application project named MyCheckBox.

The new project is created, and a blank form appears in the Designer.

	 4.	 Click the CheckBox control in the Toolbox.

	 5.	 Draw two check box objects on the form, one above the other.

Check boxes appear as objects on your form just as other objects do. You’ll have to click
the CheckBox control in the Toolbox a second time for the second check box.

	 6.	 Using the PictureBox control, draw two square picture box objects beneath the two
check boxes.

	 Chapter 3  Working with Toolbox Controls	 79

	 7.	 Select the first PictureBox control named PictureBox1.

	 8.	 Click the Image property in the Properties window, and then click the ellipsis button in
the second column.

The Select Resource dialog box appears.

	 9.	 Click the Local Resource radio button, and then click the Import button.

	 10.	 In the Open dialog box, navigate to the C:\Vb10sbs\Chap03 folder.

	 11.	 Select Calcultr.bmp, and then click Open.

	 12.	 Click OK in the Select Resource dialog box.

The calculator appears in the PictureBox.

	 13.	 Set the SizeMode property on the PictureBox to StretchImage.

	 14.	 Set the following properties for the check box and PictureBox2 objects:

Object Property Setting

CheckBox1 Checked

Text

True
“Calculator”

CheckBox2 Text “Copy machine”

PictureBox2 SizeMode StretchImage

In these steps, you’ll use the check boxes to display and hide images of a calculator
and a copy machine. The Text property of the check box object determines the
contents of the check box label in the user interface. With the Checked property, you
can set a default value for the check box. Setting Checked to True places a check mark
in the box, and setting Checked to False (the default setting) removes the check mark.
I use the SizeMode properties in the picture boxes to size the images so that they
stretch to fit in the picture box.

Your form looks something like this:

80	 Part I  Getting Started with Microsoft Visual Basic 2010

	 15.	 Double-click the first check box object to open the CheckBox1_CheckedChanged event
procedure in the Code Editor, and then enter the following program code:

If CheckBox1.CheckState = 1 Then

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap03\calcultr.bmp")

 PictureBox1.Visible = True

Else

 PictureBox1.Visible = False

End If

The CheckBox1_CheckedChanged event procedure runs only if the user clicks in the first
check box object. The event procedure uses an If . . . Then decision structure (described
in Chapter 6, “Using Decision Structures”) to confirm the current status, or state, of the
first check box, and it displays a calculator picture from the C:\Vb10sbs\Chap03 folder if
a check mark is in the box. The CheckState property holds a value of 1 if there’s a check
mark present and 0 if there’s no check mark present. (You can also use the CheckState.
Checked enumeration, which appears in IntelliSense when you type, as an alternative to
setting the value to 1.) I use the Visible property to display the picture if a check mark
is present or to hide the picture if a check mark isn’t present. Notice that I wrapped the
long line that loads the image into the picture box object by using the line continuation
character (_).

	 16.	 Click the View Designer button in Solution Explorer to display the form again,
double-click the second check box, and then add the following code to the
CheckBox2_CheckedChanged event procedure:

If CheckBox2.CheckState = 1 Then

 PictureBox2.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap03\copymach.bmp")

 PictureBox2.Visible = True

Else

 PictureBox2.Visible = False

End If

This event procedure is almost identical to the one that you just entered; only
the names of the image (Copymach.bmp), the check box object (CheckBox2), and the
picture box object (PictureBox2) are different.

	 17.	 Click the Save All button on the Standard toolbar to save your changes, specifying the
C:\Vb10sbs\Chap03 folder as the location.

Run the CheckBox program

Tip  The complete CheckBox program is located in the C:\Vb10sbs\Chap03\Checkbox folder.

	 Chapter 3  Working with Toolbox Controls	 81

	 1.	 Click the Start Debugging button on the Standard toolbar.

Visual Basic runs the program in the IDE. The calculator image appears in a picture box
on the form, and the first check box contains a check mark.

	 2.	 Select the Copy Machine check box.

Visual Basic displays the copy machine image, as shown here:

	 3.	 Experiment with different combinations of check boxes, selecting or clearing the boxes
several times to test the program. The program logic you added with a few short
lines of Visual Basic code manages the boxes perfectly. (You’ll learn much more about
program code in upcoming chapters.)

	 4.	 Click the Close button on the form to end the program.

Using Group Boxes and Radio Buttons
The RadioButton control is another tool that you can use to receive input in a program,
and it is also located on the Common Controls tab of the Toolbox. Radio buttons get their
name from the old push-button car radios of the 1950s and 1960s, when people pushed
or “selected” one button on the car radio and the rest of the buttons clunked back to the
unselected position. Only one button could be selected at a time, because (it was thought)
the driver should listen to only one thing at a time. In Visual Studio, you can also offer
mutually exclusive options for a user on a form, allowing them to pick one (and only one)
option from a group. The procedure is to use the GroupBox control to create a frame on the
form, and then to use the RadioButton control to place the desired number of radio buttons
in the frame. (Because the GroupBox control is not used that often, it is located on the
Containers tab of the Toolbox.) Note also that your form can have more than one group of

82	 Part I  Getting Started with Microsoft Visual Basic 2010

radio buttons, each operating independently of one another. For each group that you want
to construct, simply create a group box object first and then add radio buttons one by one to
the group box.

In the following exercise, you’ll create a simple program that uses GroupBox, RadioButton,
and PictureBox controls to present three graphical ordering options to a user. Like the
CheckBox control, the RadioButton control is programmed by using event procedures
and program code, with which you’ll also experiment. Give it a try now.

Gather input with the GroupBox and RadioButton controls

	 1.	 On the File menu, click Close Project to close the Check Box project.

	 2.	 On the File menu, click New Project.

The New Project dialog box opens.

	 3.	 Create a new Visual Basic Windows Forms Application project named MyRadioButton.

The new project is created, and a blank form appears in the Designer.

	 4.	 In the Toolbox, expand to the Containers tab and click the GroupBox control.

	 5.	 Create a medium-sized group box on the top half of the form.

	 6.	 Return to the Toolbox, scroll up to the Common Controls tab, and click the RadioButton
control.

	 7.	 Create three radio button objects in the group box.

It is handy to double-click the RadioButton control to create radio buttons. Notice that
each radio button gets its own number, which you can use to set properties. Your form
should look about like this:

	 Chapter 3  Working with Toolbox Controls	 83

	 8.	 Using the PictureBox control, create one square picture box object beneath the group
box on the form.

	 9.	 Set the following properties for the group box, radio button, and picture box objects:

Object Property Setting

GroupBox1 Text “Select a Computer Type”

RadioButton1 Checked

Text

True

“Desktop PC”

RadioButton2 Text “Desktop Mac”

RadioButton3 Text “Laptop”

PictureBox1 Image

SizeMode

C:\Vb10sbs\Chap03\Pcomputr.bmp

StretchImage

The initial radio button state is controlled by the Checked property. Notice that the
Desktop PC radio button now appears selected in the IDE. Now you’ll add some
program code to make the radio buttons operate while the program runs.

	 10.	 Double-click the RadioButton1 object on the form to open the Code Editor.

The CheckedChanged event procedure for the RadioButton1 object appears in the
Code Editor. This procedure is run each time the user clicks the first radio button.
Because you want to change the picture box image when this happens, you’ll add
a line of program code to accomplish that.

	 11.	 Type the following program code:

PictureBox1.Image = System.Drawing.Image.FromFile _

  (“c:\vb10sbs\chap03\pcomputr.bmp”)

This program statement uses the FromFile method to load the picture of the PC from
the hard disk into the picture box object. You’ll use a similar statement for the second
and third radio buttons.

	 12.	 Switch back to the Designer, double-click the RadioButton2 object on the form,
and type the following program code:

PictureBox1.Image = System.Drawing.Image.FromFile _

  (“c:\vb10sbs\chap03\computer.bmp”)

	 13.	 Switch back to the Designer, double-click the RadioButton3 object on the form,
and type the following program code:

PictureBox1.Image = System.Drawing.Image.FromFile _

  (“c:\vb10sbs\chap03\laptop1.bmp”)

	 14.	 Click the Save All button on the toolbar to save your changes, specifying the
C:\Vb10sbs\Chap03 folder as the location.

84	 Part I  Getting Started with Microsoft Visual Basic 2010

Run the Radio Button program

Tip  The complete Radio Button program is located in the C:\Vb10sbs\Chap03\Radio
Button folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

Visual Basic runs the program in the IDE. The desktop PC image appears in a picture
box on the form, and the first radio button is selected.

	 2.	 Click the second radio button (Desktop Mac).

Visual Basic displays the image, as shown here:

	 3.	 Click the third radio button (Laptop).

The laptop image appears.

	 4.	 Click the first radio button (Desktop PC).

The desktop PC image appears again. It appears that each of the three
CheckedChanged event procedures is loading the images just fine. Nice work.

	 5.	 Click the Close button on the form to end the program.

Perfect. You’re finished working with radio buttons and group boxes for now. But can
you imagine how you might use them on your own in a program?

Processing Input with List Boxes
As you well know from your own use of Windows, one of the key mechanisms for getting
input from the user—in addition to check boxes and radio buttons—are basic list boxes,

	 Chapter 3  Working with Toolbox Controls	 85

those rectangular containers used in dialog boxes or on forms that present a list of items
and encourage the user to select one of them. List boxes are created in Visual Studio
by using the ListBox control, and they are valuable because they can expand to include
many items while the program is running. In addition, scroll bars can appear in list
boxes if the number of items is larger than will fit in the box as you designed it on
the form.

Unlike radio buttons, a list box doesn’t require that the user be presented with a default
selection. Another difference, from a programmatic standpoint, is that items in a list box can
be rearranged while the program is running by adding items to a list, removing items, or
sorting items. (You can also add a collection of items to a list box at design time by setting
the Items property under the Data category with the Properties window.) However, if you
prefer to see a list with check marks next to some of or all the items, you should use the
CheckedListBox control in the Toolbox instead of ListBox. As a third option, you can use the
handy ComboBox control to create a list box on a form that collapses to the size of a text box
when not in use.

The key property of the ListBox control is SelectedIndex, which returns to the program the
number of the item selected in the list box. Also important is the Add method, which allows
you to add items to a list box in an event procedure. In the following exercise, you’ll try out
both of these features.

Create a list box to determine a user’s preferences

	 1.	 On the File menu, click Close Project to close the Radio Button project.

	 2.	 On the File menu, click New Project, and create a new Windows Forms Application
project named MyListBox.

The new project is created, and a blank form appears in the Designer.

	 3.	 In the Toolbox, click the ListBox control in the Toolbox, and create a medium-sized list
box object on the top half of the form.

The list box object offers a Text property, which (like the GroupBox control) allows you
to assign a title to your container.

	 4.	 Use the PictureBox control to create a square picture box object beneath the list box
object on the form.

	 5.	 Set the following property for the picture box object:

Object Property Setting

PictureBox1 SizeMode StretchImage

86	 Part I  Getting Started with Microsoft Visual Basic 2010

Your form now will look similar to this:

Now you’ll add the necessary program code to fill the list box object with valid
selections, and to pick from the selections while the program is running.

	 6.	 Double-click the ListBox1 object on the form to open the Code Editor.

The SelectedIndexChanged event procedure for the ListBox1 object appears in the
Code Editor. This procedure runs each time the user clicks an item in the list box object.
We need to update the image in the picture box object when this happens, so you’ll
add a line of program code to make it happen.

	 7.	 Type the following program code:

'The list box item selected (0-2) is held in the SelectedIndex property

Select Case ListBox1.SelectedIndex

 Case 0

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap03\harddisk.bmp")

 Case 1

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap03\printer.bmp")

 Case 2

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap03\satedish.bmp")

End Select

As you learned in Chapter 2, the first line of this event procedure is a comment.
Comments, which are displayed in green type, are simply notes written by
a programmer to describe what’s important or interesting about a particular piece
of program code. I wrote this comment to explain that the SelectedIndex property
returns a number to the program corresponding to the placement of the item that
the user selected in the list box. There will be three items in the list box in this program,

	 Chapter 3  Working with Toolbox Controls	 87

and they will be numbered 0, 1, and 2 (from top to bottom). One interesting point here
is that Visual Studio starts the count at 0, not 1, which is fairly typical among computer
programs and something you’ll see elsewhere in the book.

The entire block of code that you typed is actually called a Select Case decision
structure, which explains to the compiler how to process the user’s selection in the list
box. The important keyword that begins this decision structure is ListBox1
.SelectedIndex, which is read as “the SelectedIndex property of the list box object
named ListBox1.” If item 0 is selected, the Case 0 section of the structure, which uses
the FromFile method to load a picture of an external hard disk into the picture box
object, will be executed. If item 1 is selected, the Case 1 section will be executed, and
a printer will appear in the picture box object. If item 2 is selected, the Case 2 section
will be executed, and a satellite dish will appear. Don’t worry too much if this is a little
strange—you’ll get a more fulsome introduction to decision structures in Chapter 6.

Now you need to enter some program code to add text to the list box object. To do
this, we’ll do something new—we’ll put some program statements in the Form1_Load
event procedure, which is run when the program first starts.

	 8.	 Switch back to the Designer and double-click the form (Form1) to display the
Form1_Load event procedure in the Code Editor.

The Form1_Load event procedure appears. This program code is executed each time
the List Box program is loaded into memory. Programmers put program statements
in this special procedure when they want them executed every time a form loads.
(Your program can display more than one form, or none at all, but the default behavior
is that Visual Basic loads and runs the Form1_Load event procedure each time the user
runs the program.) Often, as in the List Box program, these statements define an aspect
of the user interface that couldn’t be created easily by using the controls in the Toolbox
or the Properties window.

	 9.	 Type the following program code:

'Add items to a list box like this:

ListBox1.Items.Add("Extra hard disk")

ListBox1.Items.Add("Printer")

ListBox1.Items.Add("Satellite dish")

The first line is simply a comment offering a reminder about what the code
accomplishes. The next three lines add items to the list box (ListBox1) in the program.
The words in quotes will appear in the list box when it appears on the form.
The important keyword in these statements is Add, a handy method that adds items
to list boxes or other items. Remember that in the ListBox1_SelectedIndexChanged event
procedure, these items will be identified as 0, 1, and 2.

	 10.	 Click the Save All button on the toolbar to save your changes, specifying the
C:\Vb10sbs\Chap03 folder as the location.

88	 Part I  Getting Started with Microsoft Visual Basic 2010

Run the List Box program

Tip  The complete List Box program is located in the C:\Vb10sbs\Chap03\List Box folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

Visual Basic runs the program in the IDE. The three items appear in the list box, but
because no item is currently selected, nothing appears yet in the picture box object.

	 2.	 Click the first item in the list box (Extra Hard Disk).

Visual Basic displays the hard disk image, as shown here:

	 3.	 Click the second item in the list box (Printer).

The printer image appears.

	 4.	 Click the third item in the list box (Satellite Dish).

The satellite dish appears. Perfect—all of the list box code seems to be working
correctly, although you should always continue to test these things (that is, check the
various user input options) to make sure that nothing unexpected happens. As you’ll
learn later in the book, you always want to test your programs thoroughly, especially
the UI elements that users have access to.

	 5.	 Click the Close button on the form to end the program.

You’re finished working with list boxes for now. If you like, you can continue to
experiment with the ComboBox and CheckedListBox controls on your own—they
operate similar to the tools you have been using in the last few exercises.

	 Chapter 3  Working with Toolbox Controls	 89

Tip  Speaking of building robust programs, you should know that most of the images in this
simple example were loaded by using an absolute path name in the program code. Absolute path
names (that is, exact file location designations that include all the folder names and drive letters)
work well enough so long as the item you are referencing actually exists at the specified path.
However, in a commercial application, you can’t always be sure that your user won’t move around
the application files, which could cause programs like this one to generate an error when the files
they need are no longer located in the expected place. To make your applications more seaworthy,
or robust, it is usually better to use relative paths when accessing images and other resources.
You can also embed images and other resources within your application. For information about
this handy technique, see the “How to: Create Embedded Resources” and “Accessing Application
Resources” topics in the Visual Studio 2010 Help documentation.

A Word About Terminology
OK—now that this chapter is complete, let’s do a quick terminology review. So far in this
book, I’ve used several different terms to describe items in a Visual Basic program. Do
you know what most these items are yet? It’s worth listing several of them now to clear
up any confusion. If they are still unclear to you, bookmark this section and review the
chapters that you have just completed for more information. (A few new terms are also
mentioned here for the sake of completeness, and I’ll describe them more fully later
in the book.)

n	 Program statement  A line of code in a Visual Basic program; a self-contained
instruction executed by the Visual Basic compiler that performs useful work within the
application. Program statements can vary in length (some contain only one Visual Basic
keyword!), but all program statements must follow syntax rules defined and enforced
by the Visual Basic compiler. In Visual Studio 2010, program statements can be
composed of keywords, properties, object names, variables, numbers, special symbols,
and other values. (See Chapters 2 and 5.)

n	 Keyword  A reserved word within the Visual Basic language that is recognized by
the Visual Basic compiler and performs useful work. (For example, the End keyword
stops program execution.) Keywords are one of the basic building blocks of program
statements; they work with objects, properties, variables, and other values to form
complete lines of code and (therefore) instructions for the compiler and operating
system. Most keywords are shown in blue type in the Code Editor. (See Chapter 2.)

n	 Variable  A special container used to hold data temporarily in a program.
The programmer creates variables by using the Dim statement and then uses these
variables to store the results of a calculation, file names, input, and other items.
Numbers, names, and property values can be stored in variables. (See Chapter 5.)

90	 Part I  Getting Started with Microsoft Visual Basic 2010

n	 Control  A tool that you use to create objects in a Visual Basic program (most
commonly, on a form). You select controls from the Toolbox and use them to draw
objects with the mouse on a form. You use most controls to create UI elements such
as buttons, picture boxes, and list boxes. (See especially Chapters 2 through 4.)

n	 Object  An element that you create in a Visual Basic program with a control in the
Toolbox. (In addition, objects are sometimes supplied by other system components,
and many of these objects contain data.) In Visual Basic, the form itself is also an object.
Technically speaking, objects are instances of a class that supports properties, methods,
and events. In addition, objects have what is known as inherent functionality—they
know how to operate and can respond to certain situations on their own. A list box
“knows” how to scroll, for example. (See Chapters 1 through 4.)

n	 Class  A blueprint or template for one or more objects that defines what the object
does. Accordingly, a class defines what an object can do, but it is not the object itself.
In Visual Basic, you can use existing .NET Framework classes (like System.Math and
System.Windows.Forms.Form), and you can build your own classes and inherit properties,
methods, and events from them. (Inheritance allows one class to acquire the pre-existing
interface and behavior characteristics of another class.) Although classes might sound
esoteric at this point, they are a key feature of Visual Studio 2010. In this book, you will
use them to build user interfaces rapidly and to extend the work that you do to other
programming projects. (See Chapters 5 and 16.)

n	 Namespace  A hierarchical library of classes organized under a unique name, such
as System.Windows or System.Diagnostics. To access the classes and underlying objects
within a namespace, you place an Imports statement at the top of your program code.
Every project in Visual Studio also has a root namespace, which is set using the project’s
Properties page. Namespaces are often referred to as class libraries in Visual Studio
books and documentation. (See Chapter 5.)

n	 Property  A value or characteristic held by an object. For example, a button object
has a Text property, to specify the text that appears on the button, and an Image
property, to specify the path to an image file that should appear on the button face.
In Visual Basic, properties can be set at design time by using the Properties window,
or at run time by using statements in the program code. In code, the format for
setting a property is

Object.Property = Value

where Object is the name of the object you’re customizing, Property is the characteristic
you want to change, and Value is the new property setting. For example,

Button1.Text = "Hello"

could be used in the program code to set the Text property of the Button1 object to
“Hello”. (See Chapters 1 through 3.)

	 Chapter 3  Working with Toolbox Controls	 91

n	 Event procedure  A block of code that’s executed when an object is manipulated in
a program. For example, when the Button1 object is clicked, the Button1_Click event
procedure is executed. Event procedures typically evaluate and set properties and
use other program statements to perform the work of the program. (See Chapters 1
through 3.)

n	 Method  A special statement that performs an action or a service for a particular
object in a program. In program code. The notation for using a method is

Object.Method(Value)

where Object is the name of the object you want to work with, Method is the action
you want to perform, and Value is zero or more arguments to be used by the method.
For example, the statement

ListBox1.Items.Add("Check")

uses the Add method to put the word Check in the ListBox1 list box. Methods and
properties are often identified by their position in a collection or class library, so don’t
be surprised if you see long references such as System.Drawing.Image.FromFile, which
would be read as “the FromFile method, which is a member of the Image class, which
is a member of the System.Drawing namespace.” (See Chapters 1 through 5.)

One Step Further: Using the LinkLabel Control
Providing access to the Web is now a standard feature of many Windows applications, and
with Visual Studio, adding this functionality is easier than ever. You can create a Visual Basic
program that runs from a Web server by creating a Web Forms project and using controls
in the Toolbox optimized for the Web. Alternatively, you can use Visual Basic to create
a Windows application that opens a Web browser within the application, providing access to
the Web while remaining a Windows program running on a client computer. We’ll postpone
writing Web Forms projects for a little while longer in this book, but in the following exercise,
you’ll learn how to use the LinkLabel Toolbox control to create a Web link in a Windows
program that provides access to the Internet through Windows Internet Explorer or the
default Web browser on your system.

Note  To learn more about writing Web-aware Visual Basic 2010 applications, read Chapter 20,
“Creating Web Sites and Web Pages Using Visual Web Developer and ASP.NET.”

Create the WebLink program

	 1.	 On the File menu, click Close Project to close the List Box project.

	 2.	 On the File menu, click New Project.

The New Project dialog box opens.

92	 Part I  Getting Started with Microsoft Visual Basic 2010

	 3.	 Create a new Visual Basic Windows Forms Application project named MyWebLink.

The new project is created, and a blank form appears in the Designer.

	 4.	 Click the LinkLabel control in the Toolbox, and draw a rectangular link label object on
your form.

Link label objects look like label objects except that all label text is displayed in blue
underlined type on the form.

	 5.	 Set the Text property of the link label object to the Uniform Resource Locator (URL) for
the Microsoft Press home page: http://www.microsoft.com/learning/books/.

Your form looks like this:

	 6.	 Click the form in the IDE to select it. (Click the form itself, not the link label object.)

This is the technique that you use to view the properties of the default form, Form1,
in the Properties window. Like other objects in your project, the form also has
properties that you can set.

	 7.	 Set the Text property of the form object to Web Link Test.

The Text property for a form specifies what appears on the form’s title bar at design
time and when the program runs. Although this customization isn’t related exclusively
to the Web, I thought you’d enjoy picking up that skill now, before we move on to
other projects. (We’ll customize the title bar in most of the programs we build.)

	 8.	 Double-click the link label object, and then type the following program code in the
LinkLabel1_LinkClicked event procedure:

' Change the color of the link by setting LinkVisited to True.

LinkLabel1.LinkVisited = True

' Use the Process.Start method to open the default browser

' using the Microsoft Press URL:

	 Chapter 3  Working with Toolbox Controls	 93

System.Diagnostics.Process.Start _

 ("http://www.microsoft.com/learning/books/")

I’ve included more comments in the program code to give you some practice entering
them. As soon as you enter the single quote character (‘), Visual Studio changes the
color of the line to green.

The two program statements that aren’t comments control how the link works. Setting
the LinkVisited property to True gives the link that dimmer color of purple, which
indicates in many browsers that the Hypertext Markup Language (HTML) document
associated with the link has already been viewed. Although setting this property isn’t
necessary to display a Web page, it’s a good programming practice to provide the
user with information in a way that’s consistent with other applications.

The second program statement (which I have broken into two lines) runs the default
Web browser (such as Internet Explorer) if the browser isn’t already running. (If the
browser is running, the URL just loads immediately.) The Start method in the Process
class performs the important work, by starting a process or executable program session
in memory for the browser. The Process class, which manages many other aspects of
program execution, is a member of the System.Diagnostics namespace. By including
an Internet address or a URL with the Start method, I’m letting Visual Basic know that
I want to view a Web site, and Visual Basic is clever enough to know that the default
system browser is the tool that would best display that URL, even though I didn’t
identify the browser by name.

An exciting feature of the Process.Start method is that it can be used to run other
Windows applications, too. If I did want to identify a particular browser by name to
open the URL, I could have specified one using the following syntax. (Here I’ll request
the Internet Explorer browser.)

System.Diagnostics.Process.Start("IExplore.exe", _

 "http://www.microsoft.com/learning/books/")

Here, two arguments are used with the Start method, separated by a comma. The exact
location for the program named IExplore.exe on my system isn’t specified, but Visual
Basic will search the current system path for it when the program runs.

If I wanted to run a different application with the Start method—for example, if I wanted
to run the Microsoft Office Word application and open the document C:\Myletter.doc—
I could use the following syntax:

System.Diagnostics.Process.Start("Winword.exe", _

 "c:\myletter.doc")

As you can see, the Start method in the Process class is very useful.

Now that you’ve entered your code, you should save your project. (If you experimented
with the Start syntax as I showed you, restore the original code shown at the beginning
of step 8 first.)

94	 Part I  Getting Started with Microsoft Visual Basic 2010

	 9.	 Click the Save All button on the Standard toolbar to save your changes, and specify
C:\Vb10sbs\Chap03 as the location.

You can now run the program.

Run the WebLink program

Tip  The complete WebLink program is located in the C:\Vb10sbs\Chap03\Weblink folder.

	 1.	 Click the Start Debugging button on the Standard toolbar to run the WebLink program.

The form opens and runs, showing its Web site link and handsome title bar text.

	 2.	 Click the link to open the Web site at http://www.microsoft.com/learning/books/.

Recall that it’s only a happy coincidence that the link label Text property contains the
same URL as the site you named in the program code. (It is not necessary that these
two items match.) You can enter any text you like in the link label. You can also use
the Image property for a link label to specify a picture to display in the background
of the link label. The following figure shows what the Microsoft Press Web page looks
like (in English) when the WebLink program displays it using Internet Explorer.

	 Chapter 3  Working with Toolbox Controls	 95

	 3.	 Display the form again. (Click the Web Link Test form icon on the Windows taskbar if
the form isn’t visible.)

Notice that the link now appears in a dimmed style. Like a standard Web link, your link
label communicates that it’s been used (but is still active) by the color and intensity that
it appears in.

	 4.	 Click the Close button on the form to quit the test utility.

You’re finished writing code in this chapter, and you’re gaining valuable experience with
some of the Toolbox controls available for creating Windows Forms applications. Let’s
keep going!

Chapter 3 Quick Reference

To Do This

Create a text box Click the TextBox control, and draw the box.

Create a button Click the Button control, and draw the button.

Change a property at
run time

Change the value of the property by using program code. For example:

Label1.Text = "Hello!"

Create a radio button Use the RadioButton control. To create multiple radio buttons, place more
than one radio button object inside a box that you create by using the
GroupBox control.

Create a check box Click the CheckBox control, and draw a check box.

Create a list box Click the ListBox control, and draw a list box.

Create a drop-down
list box

Click the ComboBox control, and draw a drop-down list box.

Add items to a list box Include statements with the Add method in the Form1_Load event
procedure of your program. For example:

ListBox1.Items.Add("Printer")

Use a comment in code Type a single quotation mark (‘) in the Code Editor, and then type
a descriptive comment that will be ignored by the compiler. For example:

' Use the Process.Start method to start IE

Display a Web page Create a link to the Web page by using the LinkLabel control, and then
open the link in a browser by using the Process.Start method in
program code.

		 97

Chapter 4

Working with Menus, Toolbars,
and Dialog Boxes

After completing this chapter, you will be able to:

n	 Add menus to your programs by using the MenuStrip control.

n	 Process menu and toolbar selections by using event procedures and the Code Editor.

n	 Add toolbars and buttons by using the ToolStrip control.

n	 Use the OpenFileDialog and ColorDialog controls to create standard dialog boxes.

n	 Add access keys and shortcut keys to menus.

In Chapter 3, “Working with Toolbox Controls,” you used several Microsoft Visual Studio
2010 controls to gather input from the user while he or she used a program. In this chapter,
you’ll learn how to present more choices to the user by creating professional-looking menus,
toolbars, and dialog boxes.

A menu is located on the menu bar and contains a list of related commands; a toolbar
contains buttons and other tools that perform useful work in a program. Most menu
and toolbar commands are executed immediately after they’re clicked; for example, when
the user clicks the Copy command on the Edit menu, information is copied to the Clipboard
immediately. If a menu command is followed by an ellipsis ( . . . ), however, clicking the
command displays a dialog box requesting more information before the command is carried
out, and many toolbar buttons also display dialog boxes.

In this chapter, you’ll learn how to use the MenuStrip and ToolStrip controls to add
a professional look to your application’s user interface. You’ll also learn how to process menu,
toolbar, and dialog box commands.

Adding Menus by Using the MenuStrip Control
The MenuStrip control is a tool that adds menus to your programs, which you can customize
with property settings in the Properties window. With MenuStrip, you can add new menus,
modify and reorder existing menus, and delete old menus. You can also create a standard
menu configuration automatically, and you can enhance your menus with special effects,
such as access keys, check marks, and keyboard shortcuts. The menus look perfect—just
like a professional Windows application—but MenuStrip creates only the visible part of your
menus and commands. You still need to write event procedures that process the menu

Table of Contents

Working with Menus, Toolbars, and Dialog Boxes 97
Adding Menus by Using the MenuStrip Control . 97

Adding Access Keys to Menu Commands . . 99

Processing Menu Choices . 102

Adding Toolbars with the ToolStrip Control . 107

Using Dialog Box Controls . . 110

Event Procedures That Manage Common
Dialog Boxes . 112

One Step Further: Assigning Shortcut Keys to Menus 117

Chapter 4 Quick Reference . 119

98	 Part I  Getting Started with Microsoft Visual Basic 2010

selections and make the commands perform useful work. In the following exercise, you’ll
take your first steps with this process by using the MenuStrip control to create a Clock menu
containing commands that display the current date and time.

Create a menu

	 1.	 Start Visual Studio.

	 2.	 On the File menu, click New Project.

The New Project dialog box opens.

	 3.	 Create a new Windows Forms Application project named MyMenu.

	 4.	 Click the MenuStrip control on the Menus & Toolbars tab of the Toolbox, and then
draw a menu control on your form.

Don’t worry about the location—Visual Studio will move the control and resize it
automatically. Your form looks like the one shown here:

The menu strip object doesn’t appear on your form, but below it. Non-visible objects,
such as menus and timers, are displayed in the Integrated Development Environment
(IDE) in a separate pane named the component tray, and you can select them, set their
properties, or delete them from this pane.

In addition to the menu strip object in the component tray, Visual Studio displays a visual
representation of the menu that you created at the top of the form. The Type Here tag
encourages you to click the tag and enter the title of your menu. After you enter the first
menu title, you can enter submenu titles and other menu names by pressing the ARROW
keys and typing additional names. Best of all, you can come back to this in-line Menu

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 99

Designer later and edit what you’ve done or add additional menu items—the menu
strip object is fully customizable and with it you can create an exciting menu-driven user
interface like the ones you’ve seen in the best Windows applications.

	 5.	 Click the Type Here tag, type Clock, and then press ENTER.

The word Clock is entered as the name of your first menu, and two additional Type
Here tags appear, with which you can create submenu items below the new Clock
menu or additional menu titles. The submenu item is currently selected.

	 6.	 Type Date to create a Date command for the Clock menu, and then press ENTER.

Visual Studio adds the Date command to the menu and selects the next submenu item.

	 7.	 Type Time to create a Time command for the menu, and then press ENTER.

You now have a Clock menu with two menu commands, Date and Time. You could
continue to create additional menus or commands, but what you’ve done is sufficient
for this example program. Your form looks like the one shown here:

	 8.	 Click the form to close the Menu Designer.

The Menu Designer closes, and your form opens in the IDE with a new Clock menu.
You’re ready to start customizing the menu now.

Adding Access Keys to Menu Commands
With most applications, you can access and execute menu commands by using the
keyboard. In Visual Studio, for example, you can open the File menu by pressing the ALT
key and then pressing the F key. Once the File menu is open, you can open a project by
pressing the P key. The key that you press in addition to the ALT key and the key that you

100	 Part I  Getting Started with Microsoft Visual Basic 2010

press to execute a command in an open menu are called access keys. You can identify
the access key of a menu item because it’s either underlined, or, in some Windows 7
applications, it appears in a small, handy box on the menu.

Visual Studio makes it easy to provide access key support. To add an access key to a menu
item, activate the Menu Designer, and then type an ampersand (&) before the appropriate
letter in the menu name. When you open the menu at run time (when the program is
running), your program automatically supports the access key.

Menu Conventions
By convention, each menu title and menu command in a Windows application has
an initial capital letter. File and Edit are often the first two menu names on the menu bar,
and Help is usually the last. Other common menu names are View, Format, and Window.
No matter what menus and commands you use in your applications, take care to be
clear and consistent with them. Menus and commands should be easy to use and should
have as much in common as possible with those in other Windows-based applications.
As you create menu items, use the following guidelines:

n	 Use short, specific captions consisting of one or two words at most.

n	 Assign each menu item an access key. Use the first letter of the item if
possible, or the access key that is commonly assigned (such as x for Exit).

n	 Menu items at the same level must have a unique access key.

n	 If a command is used as an on/off toggle, place a check mark to the left of
the item when it’s active. You can add a check mark by setting the Checked
property of the menu command to True in the Properties window.

n	 Place an ellipsis ( . . . ) after a menu command that requires the user to enter
more information before the command can be executed. The ellipsis indicates
that you’ll open a dialog box if the user selects this item.

Note  By default, most versions of Windows don’t display the underline or small box for access
keys in a program until you press the ALT key for the first time. In Windows XP, you can turn off
this option by using the Effects button on the Appearance tab of the Display Properties control
panel. In Windows Vista and Windows 7, you can turn off this option by clicking the Appearance
And Personalization option in Control Panel, clicking Ease Of Access Center, clicking Make The
Keyboard Easier To Use, and then selecting Underline Keyboard Shortcuts And Access Keys.
Note, however, that in some applications running under Windows 7 (such as Visual Studio 2010
and Microsoft Office Word 2007), the access keys will not appear until you press the ALT key to
activate them.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 101

Try adding access keys to the Clock menu now.

Add access keys

	 1.	 Click the Clock menu name on the form, pause a moment, and then click it again.

The menu name is highlighted, and a blinking I-beam (text-editing cursor) appears at the
end of the selection. With the I-beam, you can edit your menu name or add the ampersand
character (&) for an access key. (If you double-clicked the menu name, the Code Editor
might have opened. If that happened, close the Code Editor and repeat step 1.)

	 2.	 Press the LEFT ARROW key five times to move the I-beam to just before the Clock
menu name.

The I-beam blinks before the letter C in Clock.

	 3.	 Type & to define the letter C as the access key for the Clock menu.

An ampersand appears in the text box in front of the word Clock.

	 4.	 Click the Date command in the menu list, and then click Date a second time to display
the I-beam.

	 5.	 Type & before the letter D.

The letter D is now defined as the access key for the Date command.

	 6.	 Click the Time command in the menu list, and then click the command a second time
to display the I-beam.

	 7.	 Type & before the letter T.

The letter T is now defined as the access key for the Time command.

	 8.	 Press ENTER.

Pressing ENTER locks in your text-editing changes. Your form looks like this:

102	 Part I  Getting Started with Microsoft Visual Basic 2010

Now you’ll practice using the Menu Designer to switch the order of the Date and Time
commands on the Clock menu. Changing the order of menu items is an important skill
because at times you’ll think of a better way to define your menus.

Change the order of menu items

	 1.	 Click the Clock menu on the form to display its menu items.

To change the order of a menu item, simply drag the item to a new location on the
menu. Try it now.

	 2.	 Drag the Time menu on top of the Date menu, and then release the mouse button.

Dragging one menu item on top of another menu item means that you want to place
the first menu item ahead of the second menu item on the menu. As quickly as that,
Visual Studio moved the Time menu item ahead of the Date item.

You’ve finished creating the user interface for the Clock menu. Now you’ll use the menu
event procedures to process the user’s menu selections in the program.

Note  To delete a menu item from a menu, click the unwanted item in the menu list, and then press
the DELETE key. (If you try this now, remember that Visual Studio also has an Undo command, located
on both the Edit menu and the Standard toolbar, so you can reverse the effects of the deletion.)

Processing Menu Choices
After menus and commands are configured by using the menu strip object, they also
become new objects in your program. To make the menu objects do meaningful work, you
need to write event procedures for them. Menu event procedures typically contain program
statements that display or process information on the user interface (UI) form and modify
one or more menu properties. If more information is needed from the user to process
the selected command, you can write your event procedure so that it displays a dialog box
and one or more of the input controls you used in Chapter 3.

In the following exercise, you’ll add a label object to your form to display the output of the
Time and Date commands on the Clock menu.

Add a label object to the form

	 1.	 Click the Label control in the Toolbox.

	 2.	 Create a label in the middle of the form.

The label object appears on the form and displays the name Label1 in the program code.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 103

	 3.	 Set the following properties for the label:

Object Property Setting

Label1 AutoSize

BorderStyle

Font

Text

TextAlign

False

FixedSingle

Microsoft Sans Serif, Bold, 24-point

(empty)

MiddleCenter

	 4.	 Resize the label object so that it is much larger (it will be holding clock and date values),
and position it in the center of the form. Your form should look similar to the following:

Now you’ll add program statements to the Time and Date event procedures to process the
menu commands.

Note  In the following exercises, you’ll enter program code to process menu choices. It’s OK if
you’re still a bit hazy on what program code does and how you use it—you’ll learn much more
about program statements in Chapters 5 through 7.

Edit the menu event procedures

	 1.	 Click the Clock menu on the form to display its commands.

	 2.	 Double-click the Time command in the menu to open an event procedure for the
command in the Code Editor.

The TimeToolStripMenuItem_Click event procedure appears in the Code Editor. The
name TimeToolStripMenuItem_Click includes the name “Time” that you gave this menu
command. The words ToolStripMenuItem indicate that in its underlying technology, the

104	 Part I  Getting Started with Microsoft Visual Basic 2010

MenuStrip control is related to the ToolStrip control. (We’ll see further examples of that
later in this chapter.) The _Click syntax means that this is the event procedure that runs
when a user clicks the menu item.

We’ll keep this menu name for now, but if you wanted to create your own internal
names for menu objects, you could select the object, open the Properties window,
and change the Name property. Although I won’t bother with that extra step in this
chapter, later in the book you’ll practice renaming objects in your program to conform
more readily to professional programming practices.

	 3.	 Type the following program statement:

Label1.Text = TimeString

This program statement displays the current time (from the system clock) in the Text
property of the Label1 object, replacing the previous Label1 text (if any). TimeString
is a property that contains the current time formatted for display or printing. You can
use TimeString at any time in your programs to display the time accurately down to
the second. (TimeString is essentially a replacement for the older Microsoft Visual Basic
TIME$ statement.)

Note  The Visual Basic TimeString property returns the current system time. You can set
the system time by using the Clock, Language, and Region category in the Control Panel
in Windows Vista or Windows 7.

	 4.	 Press ENTER.

Visual Basic interprets the line and adjusts capitalization and spacing, if necessary.
(Visual Basic checks each line for syntax errors as you enter it.)

Tip  You can enter a line by pressing ENTER or ESC. You can also press the UP ARROW or
DOWN ARROW key to enter a line if you don’t want the extra blank space (carriage return)
in the Code Editor.

	 5.	 Click the View Designer button in Solution Explorer, and then double-click the Date
command on the Clock menu.

The DateToolStripMenuItem_Click event procedure appears in the Code Editor.
This event procedure is executed when the user clicks the Date command on the
Clock menu.

	 6.	 Type the following program statement:

Label1.Text = DateString

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 105

This program statement displays the current date (from the system clock) in the Text
property of the Label1 object, replacing the previous Label1 text. The DateString
property is also available for general use in your programs. Assign DateString to the
Text property of an object whenever you want to display the current date on a form.

Note  The Visual Basic DateString property returns the current system date. You can set
the system date by using the Clock, Language, and Region category in the Control Panel
of Windows Vista or Windows 7.

	 7.	 Press ENTER to enter the line.

Your screen looks similar to this:

You’ve finished entering the menu demonstration program. Now you’ll save your
changes to the project and prepare to run it.

	 8.	 Click the Save All button on the Standard toolbar, and then specify the
C:\Vb10sbs\Chap04 folder as the location.

Run the Menu program

Tip  The complete Menu program is located in the C:\Vb10sbs\Chap04\Menu folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

The Menu program runs in the IDE.

	 2.	 Click the Clock menu on the menu bar.

The contents of the Clock menu appear.

106	 Part I  Getting Started with Microsoft Visual Basic 2010

	 3.	 Click the Time command.

The current system time appears in the label box, as shown here:

Now you’ll try displaying the current date by using the access keys on the menu.

	 4.	 Press and release the ALT key, and then press the C key.

The Clock menu opens, and the first item on it is highlighted.

	 5.	 Press the D key to display the current date.

The current date appears in the label box. However, if the box is not big enough,
the date might be truncated. If this happens, stop the program, resize the label object,
and try it again.

	 6.	 When you’re finished experimenting, click the Close button on the program’s title bar
to stop the program.

Congratulations! You’ve created a working program that uses menus and access keys. In the
next exercise, you’ll learn how to use toolbars.

System Clock Properties and Methods
You can use various properties and methods to retrieve chronological values from the
system clock. You can use these values to create custom calendars, clocks, and alarms
in your programs. Table 4-1 lists the most useful system clock properties and methods.
For more information, check the topics “Dates and Times Summary” and “DateAndTime
Class” in the Visual Studio Help documentation.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 107

TABLE 4-1  System Clock Properties and Methods

Property or Method Description

TimeString This property sets or returns the current time from the
system clock.

DateString This property sets or returns the current date from the
system clock.

Now This property returns an encoded value representing the
current date and time. This property is most useful as
an argument for other system clock functions.

Hour (date) This method extracts the hour portion of the specified
date/time value (0 through 23).

Minute (date) This method extracts the minute portion of the specified
date/time value (0 through 59).

Second (date) This method extracts the second portion of the specified
date/time value (0 through 59).

Month (date) This method extracts a whole number representing the
month (1 through 12).

Year (date) This method extracts the year portion of the specified
date/time value.

Weekday (date) This method extracts a whole number representing the day
of the week (1 is Sunday, 2 is Monday, and so on).

Adding Toolbars with the ToolStrip Control
Parallel to the MenuStrip control, you can use the Visual Studio ToolStrip control to quickly
add toolbars to your program’s user interface. The ToolStrip control is placed on a Visual Basic
form but resides in the component tray in the IDE, just like the MenuStrip control. You can also
add a variety of features to your toolbars, including labels, combo boxes, text boxes, and split
buttons. Toolbars look especially exciting when you add them, but remember that as with menu
commands, you must write an event procedure for each button that you want to use in your
program. Still, compared with earlier versions of Visual Basic, it is amazing how much toolbar
programming and configuring the IDE does for you. Practice creating a toolbar now.

Create a toolbar

	 1.	 Click the ToolStrip control on the Menus & Toolbars tab of the Toolbox, and then draw
a toolbar control on your form.

Don’t worry about the location—Visual Studio will create a toolbar on your form
automatically and extend it across the window. The tool strip object itself appears
below the form in the component tray. On the form, the default toolbar contains one
button. Now you’ll use a special shortcut feature to populate the toolbar automatically.

108	 Part I  Getting Started with Microsoft Visual Basic 2010

	 2.	 Click the tiny smart tag in the upper-right corner of the new toolbar.

The smart tag points to the right and looks similar to the smart tag we saw in the
PictureBox control in Chapter 2, “Writing Your First Program.” When you click the
tag, a ToolStrip Tasks window opens that includes a few of the most common toolbar
tasks and properties, as shown here. You can configure the toolbar quickly with these
commands.

	 3.	 Click Insert Standard Items.

Visual Studio adds a collection of standard toolbar buttons to the toolbar, including
New, Open, Save, Print, Cut, Copy, Paste, and Help. Your form looks similar to the
following screen shot:

It is not necessary for you to start with a full toolbar of buttons as I have done here—
I’m merely demonstrating one of the useful “automatic” features of Visual Studio 2010.
You could also create the buttons on your toolbar one by one using the ToolStrip
editing commands, as I’ll demonstrate shortly. But for many applications, clicking
Insert Standard Items is a time-saving feature. Remember, however, that although
these toolbar buttons look professional, they are not functional yet. They need event
procedures to make them work.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 109

	 4.	 Click the Add ToolStripButton arrow on the right side of the new toolbar, and then click
the Button item.

Add ToolStripButton adds more items to your toolbar, such as buttons, labels, split
buttons, text boxes, combo boxes, and other useful UI elements. You’ve now created
a custom toolbar button; by default, it contains a picture of a mountain and a sun.

	 5.	 Widen the form window to ensure that you can see all the tool strip items.

	 6.	 Right-click the new button, point to DisplayStyle, and click ImageAndText.

Your new button displays both text and a graphical image on the toolbar. Visual Studio
names your new button ToolStripButton1 in the program, and this name appears by
default on the toolbar. If necessary, widen the form window to see the new button,
because it contains the default text value ToolStripButton1.

	 7.	 Select the ToolStripButton1 object.

	 8.	 In the Properties window, change the ToolStripButton1 object’s Text property to Color,
which is the name of your button on the form, and then press ENTER.

The Color button appears on the toolbar. You’ll use this button later in the program
to change the color of text on the form. Now insert a custom bitmap for your button.

	 9.	 Right-click the Color button, and then click the Set Image command.

The Select Resource dialog box appears.

	 10.	 Click Local Resource (if it is not already selected), and then click the Import button.

	 11.	 Browse to the C:\Vb10sbs\Chap04 folder, click the ColorButton.bmp bitmap file that
I created for you, click Open, and then click OK.

Visual Studio loads the pink, blue, and yellow paint icon into the Color button, as
shown in the following screen shot:

110	 Part I  Getting Started with Microsoft Visual Basic 2010

Your new button is complete, and you have learned how to add your own buttons to the
toolbar, in addition to the default items supplied by Visual Studio. Now you’ll learn how to
delete and rearrange toolbar buttons.

Move and delete toolbar buttons

	 1.	 Drag the new Color button to the left side of the toolbar.

Visual Studio lets you rearrange your toolbar buttons by using simple drag movements.

	 2.	 Right-click the second button in the toolbar (New), and then click the Delete command.

The New button is removed from the toolbar. With the Delete command, you can
delete unwanted buttons, which makes it easy to customize the standard toolbar
buttons provided by the ToolStrip control.

	 3.	 Delete the Save and Print buttons, but be sure to keep the Color and Open buttons.

You’ll learn how to save and print in Chapter 13, “Exploring Text Files and String
Processing,” and Chapter 17, “Working with Printers,” later in the book. Now, however,
you’ll learn to use dialog box controls and connect them to toolbar buttons.

Using Dialog Box Controls
Visual Studio contains eight standard dialog box controls on the Dialogs and Printing tabs
of the Toolbox. These dialog boxes are ready-made, so you don’t need to create your own
custom dialog boxes for the most common tasks in Windows applications, such as opening,
saving, and printing files. In many cases, you’ll still need to write the event procedure code
that connects these dialog boxes to your program, but the user interfaces are built for you
and conform to the standards for common use among Windows applications.

The eight standard dialog box controls available to you are listed in Table 4-2. Note that
the PrintPreviewControl control isn’t listed here, but you’ll find it useful if you use the
PrintPreviewDialog control. (When you’re ready to learn about adding printer support to your
programs, see Chapter 17.)

TABLE 4-2  Standard Dialog Box Controls

Control Purpose

OpenFileDialog Gets the drive, folder name, and file name for an existing file

SaveFileDialog Gets the drive, folder name, and file name for a new file

FontDialog Lets the user choose a new font type and style

ColorDialog Lets the user select a color from a palette

FolderBrowserDialog Lets the user navigate through a computer’s folder structure and select
a folder

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 111

Control Purpose

PrintDialog Lets the user set printing options

PrintPreviewDialog Displays a print preview dialog box as the Word program does

PageSetupDialog Lets the user control page setup options, such as margins, paper size,
and layout

In the following exercises, you’ll practice using the OpenFileDialog and ColorDialog controls.
The OpenFileDialog control lets your program open bitmap files, and the ColorDialog
control enables your program to change the color of the clock output. You’ll connect these
dialog boxes to the toolbar that you just created, although you could just as easily connect
them to menu commands.

Add OpenFileDialog and ColorDialog controls

	 1.	 Click the OpenFileDialog control on the Dialogs tab of the Toolbox, and then click
the form.

An open file dialog box object appears in the component tray.

	 2.	 Click the ColorDialog control on the Dialogs tab of the Toolbox, and then click the
form again.

The component tray now looks like this:

Just like the menu strip and tool strip objects, the open file dialog box and color dialog
box objects appear in the component tray, and they can be customized with property
settings.

Now you’ll create a picture box object by using the PictureBox control. As you’ve seen, the
picture box object displays artwork on a form. This time, you’ll display artwork in the picture
box by using the open file dialog box object.

Add a picture box object

	 1.	 Click the PictureBox control in the Toolbox.

	 2.	 Draw a large, square picture box object on the form, below the label.

	 3.	 Use the smart tag in the picture box object to set the SizeMode property of the picture
box to StretchImage.

Now you’ll create event procedures for the Color and Open buttons on the toolbar.

112	 Part I  Getting Started with Microsoft Visual Basic 2010

Event Procedures That Manage Common
Dialog Boxes

After you create a dialog box object, you can use the dialog box in a program by doing the
following:

n	 If necessary, set one or more dialog box properties by using program code before
opening the dialog box.

n	 To open the dialog box, type the dialog box name with the ShowDialog method in
an event procedure associated with a toolbar button or menu command.

n	 Use program code to respond to the user’s dialog box selections after the dialog box
has been manipulated and closed.

In the following exercise, you’ll enter the program code for the OpenToolStripButton_Click
event procedure, the routine that executes when the Open command is clicked. You’ll set
the Filter property in the OpenFileDialog1 object to define the file type in the Open common
dialog box. (You’ll specify Windows bitmaps.) Then you’ll use the ShowDialog method
to display the Open dialog box. After the user has selected a file and closed this dialog
box, you’ll display the file he or she selected in a picture box by setting the Image property
of the picture box object to the file name the user selected.

Edit the Open button event procedure

	 1.	 Double-click the Open button on your form’s toolbar.

The OpenToolStripButton_Click event procedure appears in the Code Editor.

	 2.	 Type the following program statements in the event procedure. Be sure to type each
line exactly as it’s printed here, and press the ENTER key after each line.

OpenFileDialog1.Filter = "Bitmaps (*.bmp)|*.bmp"

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

 PictureBox1.Image = System.Drawing.Image.FromFile _

 (OpenFileDialog1.FileName)

End If

The first three statements in the event procedure refer to three different properties of
the open file dialog box object. The first statement uses the Filter property to define
a list of valid files. (In this case, the list has only one item: *.bmp.) This is important for
the Open dialog box because a picture box object can display a number of file types,
including:

o	 Bitmaps (.bmp files)

o	 Windows metafiles (.wmf files)

o	 Icons (.ico files)

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 113

o	 Joint Photographic Experts Group (JPEG) format (.jpg and .jpeg files)

o	 Portable Network Graphics (PNG) format (.png files)

o	 Graphics Interchange Format (.gif files)

To add additional items to the Filter list, you can type a pipe symbol (|) between items.
For example, this program statement

OpenFileDialog1.Filter = "Bitmaps (*.bmp)|*.bmp|Metafiles (*.wmf)|*.wmf"

allows both bitmaps and Windows metafiles to be chosen in the Open dialog box.

The second statement in the event procedure displays the Open dialog box in
the program. The ShowDialog method returns a result named DialogResult, which
indicates the button on the dialog box that the user clicked. To determine whether
the user clicked the Open button, an If . . . Then decision structure is used to check
whether the returned result equals DialogResult.OK. If it does, a valid .bmp file path
should be stored in the FileName property of the open file dialog box object. (You’ll
learn more about the syntax of If . . . Then decision structures in Chapter 6, “Using
Decision Structures.”)

The third statement uses the file name selected in the dialog box by the user. When
the user selects a drive, folder, and file name and then clicks Open, the complete path
is passed to the program through the OpenFileDialog1.FileName property. The System.
Drawing.Image.FromFile method, which loads electronic artwork, is then used to copy
the specified Windows bitmap into the picture box object. (I wrapped this statement
with the line continuation character (_) because it was rather long.)

Now you’ll write an event procedure for the Color button that you added to the toolbar.

Write the Color button event procedure

	 1.	 Display the form again, and then double-click the Color button on the toolbar that
you added to the form.

An event procedure named ToolStripButton1_Click appears in the Code Editor. The
object name includes Button1 because it was the first nonstandard button that
you added to the toolbar. (You can change the name of this object to something
more intuitive, such as ColorToolStripButton, by clicking the button on the form
and changing the Name property in the Properties window.)

	 2.	 Type the following program statements in the event procedure:

ColorDialog1.ShowDialog()

Label1.ForeColor = ColorDialog1.Color

The first program statement uses the ShowDialog method to open the color dialog
box. As you learned earlier in this chapter, ShowDialog is the method you use to open

114	 Part I  Getting Started with Microsoft Visual Basic 2010

any form as a dialog box, including a form created by one of the standard dialog box
controls that Visual Studio provides. The second statement in the event procedure
assigns the color that the user selected in the dialog box to the ForeColor property of
the Label1 object. You might remember Label1 from earlier in this chapter—it’s the
label box you used to display the current time and date on the form. You’ll use the
color returned from the color dialog box to set the color of the text in the label.

Note that the color dialog box can be used to set the color of any UI element that
supports color. Other possibilities include the background color of the form, the colors
of shapes on the form, and the foreground and background colors of objects.

	 3.	 Click the Save All button on the Standard toolbar to save your changes.

Controlling Color Choices by Setting Color Dialog Box Properties
If you want to further customize the color dialog box, you can control what color
choices the dialog box presents to the user when the dialog box opens. You can adjust
these color settings by selecting the ColorDialog1 object and using the Properties
window, or by setting properties by using program code before you display the dialog
box with the ShowDialog method. Table 4-3 describes the most useful properties of
the ColorDialog control. Each property should be set with a value of True to enable the
option or False to disable the option.

TABLE 4-3  ColorDialog Control Properties

Property Meaning

AllowFullOpen Set to True to enable the Define Custom Colors button in the
dialog box.

AnyColor Set to True if the user can select any color shown in the dialog box.

FullOpen Set to True if you want to display the Custom Colors area when the
dialog box first opens.

ShowHelp Set to True if you want to enable the Help button in the dialog box.

SolidColorOnly Set to True if you want the user to select only solid colors (dithered
colors—those that are made up of pixels of different colors—are
disabled).

Now you’ll run the Menu program and experiment with the menus and dialog boxes you’ve
created.

Run the Menu program

Tip  The complete Menu program is located in the C:\Vb10sbs\Chap04\Menu folder.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 115

	 1.	 Click the Start Debugging button on the Standard toolbar.

The program runs, and the Clock menu and the toolbar appear at the top of the screen.

	 2.	 On the form’s toolbar, click Open.

The Open dialog box opens. It looks great, doesn’t it? (In other words, it looks just like
a regular Windows application.) Notice the Bitmaps (*.bmp) entry in the dialog box. You
defined this entry with the statement

OpenFileDialog1.Filter = "Bitmaps (*.bmp)|*.bmp"

in the OpenToolStripButton_Click event procedure. The first part of the text in quotes—
Bitmaps (*.bmp)—specifies which items are listed in the Files Of Type box. The second
part—*.bmp—specifies the file name extension of the files that are to be listed in the
dialog box.

	 3.	 Open a folder on your system that contains bitmap images. I’m using the color toolbar
button I’ve used in this chapter (located in C:\Vb10sbs\Chap04), but you can display any
.bmp file on your system.

	 4.	 Select the bitmap file in the Open dialog box, and then click the Open button.

A picture of the bitmap appears in the picture box. My form looks like this:

Now you’ll practice using the Clock menu.

	 5.	 On the Clock menu, click the Time command.

The current time appears in the label box.

116	 Part I  Getting Started with Microsoft Visual Basic 2010

	 6.	 Click the Color button on the toolbar.

The Color dialog box opens, as shown here:

The Color dialog box contains elements that you can use to change the color of the
clock text in your program. The current color setting, black, is selected.

	 7.	 Click one of the blue color boxes, and then click OK.

The Color dialog box closes, and the color of the text in the clock label changes to
blue. (That’s not visible in this book, alas, but you’ll see it on the screen.)

	 8.	 On the Clock menu, click the Date command.

The current date is displayed in blue type. Now that the text color has been set in the
label, it remains blue until the color is changed again or the program closes.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 117

	 9.	 Close the program.

The application terminates, and the Visual Studio IDE appears.

That’s it! You’ve learned several important commands and techniques for creating menus,
toolbars, and dialog boxes in your programs. After you learn more about program code,
you’ll be able to create very sophisticated user interfaces in your own programs.

Adding Nonstandard Dialog Boxes to Programs
OK, you’ve gotten this far—but what if you need to add a dialog box to your program
that isn’t provided by one of the eight dialog box controls in Visual Studio? Unique
dialog boxes pop up all the time in programs, right? No problem—but you’ll need to
spend a little time building the custom dialog box in the Visual Studio IDE. As you’ll
learn in future chapters, a Visual Basic program can use more than one form to receive
and display information. To create nonstandard dialog boxes, you need to add new forms
to your program, add input and output objects, and process the dialog box clicks in your
program code. (These techniques will be discussed in Chapter 14, “Managing Windows
Forms and Controls at Run Time.”) In Chapter 5, “Visual Basic Variables and Formulas, and
the .NET Framework,” you’ll learn how to use two handy dialog boxes that are specifically
designed for receiving text input (InputBox) and displaying text output (MsgBox). These
dialog boxes help bridge the gap between the dialog box controls and the dialog boxes
that you need to create on your own.

One Step Further: Assigning Shortcut Keys to Menus
The MenuStrip control lets you assign shortcut keys to your menus. Shortcut keys are key
combinations that a user can press to activate a command without using the menu bar.
For example, on a typical Edit menu in a Windows application, such as Word, you can copy
selected text to the Clipboard by pressing CTRL+C. With the MenuStrip control’s ShortcutKeys
property, you can customize this setting. Try assigning two shortcut keys to the Clock menu
in the Menu program now.

Assign shortcut keys to the Clock menu

	 1.	 Make sure that your program has stopped running and is in design mode.

You can modify a program only when it isn’t running. (For an exception to this rule,
see Chapter 8: “Debugging Visual Basic Programs.”)

	 2.	 Click the Clock menu, and then click the Time command to highlight it.

Before you set the shortcut key for a menu command, you must select it. You assign
a shortcut key by setting the ShortcutKeys property for the command by using the
Properties window. The menu strip object provides an easy way for you to do this.

118	 Part I  Getting Started with Microsoft Visual Basic 2010

	 3.	 Open the Properties window, click the ShortcutKeys property in the Misc category,
and then click the arrow in the second column.

A pop-up menu appears that helps you assign the shortcut key.

	 4.	 Select the Ctrl check box, click the Key list box, and select the letter T in the
alphabetical list.

The Properties window looks like this:

Tip  Visual Basic normally displays the shortcut key combination in the menu when you
run the program, to give users a hint about which keys to press. To hide shortcut key
combinations from the user (if you’re running out of space), set the ShowShortcutKeys
property to False. The shortcut key still works, but users won’t see a visual reminder for it.
You can also set what will be displayed within the program as a shortcut key by setting the
ShortcutKeyDisplayString property.

	 5.	 Click the Date command, and then change its ShortcutKeys property setting to Ctrl+D.

Now you’ll run the program and try the shortcut keys.

	 6.	 Click the form to close the Clock menu.

	 7.	 Click the Start Debugging button on the Standard toolbar.

	 8.	 Press CTRL+D to run the Date command.

The current date appears in the program.

	 9.	 Press CTRL+T to run the Time command.

The current time appears in the program.

	 Chapter 4  Working with Menus, Toolbars, and Dialog Boxes	 119

	 10.	 Click the Clock menu.

The shortcut keys are listed beside the Time and Date commands, as shown in the
following screen shot. Visual Basic adds these key combinations when you define the
shortcuts by using the ShortcutKeys property.

	 11.	 Close the program.

The Menu program closes, and the development environment appears.

Nice work! You’re ready to move deeper into writing programs now, in the part of the book I
call “Programming Fundamentals.”

Chapter 4 Quick Reference

To Do This

Create a menu item Click the MenuStrip control, and draw a menu on your form. Click the
Type Here tag on your form, and type the name of the menus and
commands that you want to create.

Add an access key to
a menu item

Click the menu item twice to display the I-beam, and then type an
ampersand (&) followed by the letter you want to use as an access key.

Assign a shortcut key
to a menu item

Set the ShortcutKeys property of the menu item by using the
Properties window. A list of common shortcut keys is provided.

Change the order of
menu items

Drag the menu item you want to move to a new location.

Add a toolbar to your
program

Click the ToolStrip control, and then draw a toolbar on your form.
Right-click buttons to customize them. Double-click buttons and write
event procedures to configure them.

120	 Part I  Getting Started with Microsoft Visual Basic 2010

To Do This

Use a standard dialog
box in your program

Add one of the eight standard dialog box controls to your form, and
then customize it with property settings and program code. Dialog
box controls are located on the Dialogs and Printing Toolbox tabs.

Display an Open
dialog box

Add the OpenFileDialog control to your form. Display the dialog box
with the ShowDialog method. The FileName property contains the
name of the file selected.

Display a Color
dialog box

Add the ColorDialog control to your form. Display the dialog box with
the ShowDialog method. The Color property contains the color the
user selected.

		 121

Part II

Programming Fundamentals

In this part:

Chapter 5: Visual Basic Variables and Formulas, and the .NET Framework 123

Chapter 6: Using Decision Structures . 159

Chapter 7: Using Loops and Timers . 181

Chapter 8: Debugging Visual Basic Programs . 209

Chapter 9: Trapping Errors by Using Structured Error Handling 227

Chapter 10: Creating Modules and Procedures . 247

Chapter 11: Using Arrays to Manage Numeric and String Data 273

Chapter 12: Working with Collections . 297

Chapter 13: Exploring Text Files and String Processing . . 313

In Part I, “Getting Started with Visual Basic 2010,” you learned how to create the user
interface of a Microsoft Visual Basic 2010 program and how to build and run a program
in the Microsoft Visual Studio 2010 development environment. In the nine chapters in Part II,
“Programming Fundamentals,” you’ll learn more about Visual Basic program code—the
statements and keywords that form the core of a Visual Basic program. You’ll learn how to
manage information within programs and control how your code is executed, and you’ll
learn how to use decision structures, loops, timers, arrays, collections, and text files. You’ll
also learn how to debug your programs and handle run-time errors if they occur. After you
complete Part II, you’ll be ready for more advanced topics, such as customizing the user
interface, database programming, and Web programming.

Table of Contents

Programming Fundamentals

Visual Basic Variables and Formulas, and the .NET Framework . . . 123
The Anatomy of a Visual Basic Program Statement . 123

Using Variables to Store Information . . 124

Setting Aside Space for Variables: The Dim Statement 124

Implicit Variable Declaration . . 126

Using Variables in a Program . 127

Using a Variable to Store Input . . 130

Using a Variable for Output . 133

Working with Specific Data Types . 135

Constants: Variables That Don’t Change . . 142

Working with Visual Basic Operators . . 143

Basic Math: The +, –, *, and / Operators . 144

Using Advanced Operators: \, Mod, ^, and & . 147

Working with Math Methods in the .NET Framework 152

One Step Further: Establishing Order of Precedence . 155

Using Parentheses in a Formula . 156

Chapter 5 Quick Reference . 156

		 123

Chapter 5

Visual Basic Variables and Formulas,
and the .NET Framework

After completing this chapter, you will be able to:

n	 Use variables to store data in your programs.

n	 Get input by using the InputBox function.

n	 Display messages by using the MsgBox function.

n	 Work with different data types.

n	 Use variables and operators to manipulate data.

n	 Use methods in the .NET Framework.

n	 Use arithmetic operators and functions in formulas.

In this chapter, you’ll learn how to use variables and constants to store data temporarily in
your program, and how to use the InputBox and MsgBox functions to gather and present
information by using dialog boxes. You’ll also learn how to use functions and formulas
to perform calculations, and how to use arithmetic operators to perform tasks such as
multiplication and string concatenation. Finally, you’ll learn how to tap into the powerful
classes and methods of Microsoft .NET Framework 4 to perform mathematical calculations
and other useful work.

The Anatomy of a Visual Basic Program Statement
As you learned in Chapter 2, “Writing Your First Program,” a line of code in a Microsoft
Visual Basic program is called a program statement. A program statement is any
combination of Visual Basic keywords, properties, object names, variables, numbers, special
symbols, and other values that collectively create a valid instruction recognized by the
Visual Basic compiler. A complete program statement can be a simple keyword, such as

End

which halts the execution of a Visual Basic program, or it can be a combination of elements,
such as the following statement, which uses the TimeString property to assign the current
system time to the Text property of the Label1 object:

Label1.Text = TimeString

124	 Part II  Programming Fundamentals

The rules of construction that must be used when you build a programming statement
are called statement syntax. Visual Basic shares many of its syntax rules with the other
development products in Visual Studio, as well as earlier versions of the BASIC programming
language. The trick to writing good program statements is learning the syntax of the most
useful elements in a programming language and then using those elements correctly to
process the data in your program. Fortunately, Visual Basic does a lot of the toughest work
for you, so the time you spend writing program code is relatively short, and you can reuse
the results in future programs. The Visual Studio IDE also points out potential syntax errors
and suggests corrections, much as the AutoCorrect feature of Microsoft Office Word does.

In this chapter and the following chapters, you’ll learn the most important Visual Basic
keywords and program statements, as well as many of the objects, properties, and methods
provided by Visual Studio controls and the .NET Framework. You’ll find that these keywords
and objects complement nicely the programming skills you’ve already learned and will help
you write powerful programs in the future. The first topics—variables and data types—are
critical features of nearly every program.

Using Variables to Store Information
A variable is a temporary storage location for data in your program. You can use one
or many variables in your code, and they can contain words, numbers, dates, properties, or
other values. By using variables, you can assign a short and easy-to-remember name to each
piece of data you plan to work with. Variables can hold information entered by the user at
run time, the result of a specific calculation, or a piece of data you want to display on your
form. In short, variables are handy containers that you can use to store and track almost any
type of information.

Using variables in a Visual Basic program requires some planning. Before you can use
a variable, you must set aside memory in the computer for the variable’s use. This process is
a little like reserving a seat at a theater or a baseball game. I’ll cover the process of making
reservations for, or declaring, a variable in the next section.

Setting Aside Space for Variables: The Dim Statement
Since the release of Visual Basic in 2002, it has been necessary for Visual Basic programmers
to explicitly declare variables before using them. This was a change from Visual Basic 6
and earlier versions of Visual Basic, where (under certain circumstances) you could declare
variables implicitly—in other words, simply by using them and without having to include a
Dim statement. The earlier practice was flexible but rather risky—it created the potential for
variable confusion and misspelled variable names, which introduced potential bugs into the
code that might or might not be discovered later.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 125

In Visual Basic 2008, a bit of the past returned in the area of variable declaration: It became
possible once again to declare a variable implicitly. I don’t recommend this for most uses,
however, so I won’t discuss this feature until you learn the recommended programming
practice, which experienced programmers far and wide will praise you for adopting.

To declare a variable in Visual Basic 2010, type the variable name after the Dim statement.
(Dim stands for dimension.) This declaration reserves room in memory for the variable when
the program runs and lets Visual Basic know what type of data it should expect to see later.
Although this declaration can be done at any place in the program code (as long as the
declaration happens before the variable is used), most programmers declare variables in
one place at the top of their event procedures or code modules.

For example, the following statement creates space for a variable named LastName that will
hold a textual, or string, value:

Dim LastName As String

Note that in addition to identifying the variable by name, I’ve used the As keyword to give
the variable a particular type, and I’ve identified the type by using the keyword String. (You’ll learn
about other data types later in this chapter.) A string variable contains textual information: words,
letters, symbols—even numbers. I find myself using string variables a lot; they hold names, places,
lines from a poem, the contents of a file, and many other “wordy” data.

Why do you need to declare variables? Visual Basic wants you to identify the name and the
type of your variables in advance so that the compiler can set aside the memory the program
will need to store and process the information held in the variables. Memory management
might not seem like a big deal to you (after all, modern personal computers have lots
of RAM and gigabytes of free hard disk space), but in some programs, memory can be
consumed quickly, and it’s a good practice to take memory allocation seriously even as you
take your first steps as a programmer. As you’ll soon see, different types of variables have
different space requirements and size limitations.

Note  In some earlier versions of Visual Basic, specific variable types (such as String or Integer)
aren’t required—information is simply held by using a generic (and memory hungry) data type
called Variant, which can hold data of any size or format. Variants are not supported in Visual
Basic 2010, however. Although they are handy for beginning programmers, their design makes
them slow and inefficient, and they allow variables to be converted from one type to another too
easily—sometimes causing unexpected results. As you’ll learn later, however, you can still store
information in generic containers called Object, which are likewise general-purpose in function
but rather inefficient in size.

After you declare a variable, you’re free to assign information to it in your code by using
the assignment operator (=). For example, the following program statement assigns the last
name “Jefferson” to the LastName variable:

LastName = "Jefferson"

126	 Part II  Programming Fundamentals

Note that I was careful to assign a textual value to the LastName variable because its
data type is String. I can also assign values with spaces, symbols, or numbers to the variable,
such as

LastName = "1313 Mockingbird Lane"

but the variable is still considered a string value. The number portion could be used in
a mathematical formula only if it were first converted to an integer or a floating-point value
by using one of a handful of conversion functions that I’ll discuss in Chapter 13, “Exploring
Text Files and String Processsing.”

After the LastName variable is assigned a value, it can be used in place of the name
“Jefferson” in your code. For example, the assignment statement

Label1.Text = LastName

displays “Jefferson” in the label named Label1 on a form.

Implicit Variable Declaration
If you really want to declare variables “the old way” in Visual Basic 2010—that is, without
explicitly declaring them by using the Dim statement—you can place the Option Explicit
Off statement at the very top of your form’s or module’s program code (before any event
procedures), and it will turn off the Visual Basic default requirement that variables be declared
before they’re used. As I mentioned earlier, I don’t recommend this statement as a permanent
addition to your code, but you might find it useful temporarily as you convert older Visual Basic
programs to Visual Basic 2010.

Another possibility is to use the Option Infer statement, which was added to Visual
Basic 2008. If Option Infer is set to On, Visual Basic will deduce or infer the type of a variable
by examining the initial assignment you make. This allows you to declare variables without
specifically identifying the type used, and allowing Visual Basic to make the determination.
For example, the expression

Dim attendance = 100

will declare the variable named attendance as an Integer, because 100 is an integer
expression. In other words, with Option Infer set to On, it is the same as typing

Dim attendance As Integer = 100

Likewise, the expression

Dim address = "1012 Daisy Lane"

will declare the variable address as type String, because its initial assignment was of type
String. If you set Option Infer to Off, however, Visual Basic will declare the variable as type
Object—a general (though somewhat bulky and inefficient) container for any type of data.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 127

If you plan to use Option Infer to allow this type of inferred variable declaration (a flexible
approach, but one that could potentially lead to unexpected results), place the following
two statements at the top of your code module (above the Class Form statement):

Option Explicit Off

Option Infer On

Option Explicit Off allows variables to be declared as they are used, and Option Infer On
allows Visual Basic to determine the type automatically. You can also set these options
using the Options command on the Tools menu, as discussed in Chapter 1, “Exploring the
Visual Studio Integrated Development Environment.”

Using Variables in a Program
Variables can maintain the same value throughout a program, or they can change values
several times, depending on your needs. The following exercise demonstrates how a variable
named LastName can contain different text values and how the variable can be assigned to
object properties.

Change the value of a variable

	 1.	 Start Visual Studio.

	 2.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 3.	 Open the Variable Test project in the C:\Vb10sbs\Chap05\Variable Test folder.

	 4.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the
View Designer button.

The Variable Test form opens in the Designer. Variable Test is a skeleton program—it
contains a form with labels and buttons for displaying output, but little program code.
(I create these skeleton programs now and then to save you time, although you can
also create the project from scratch.) You’ll add code in this exercise.

The Variable Test form looks like this:

128	 Part II  Programming Fundamentals

The form contains two labels and two buttons. You’ll use variables to display
information in each of the labels.

Note  The label objects look like boxes because I set their BorderStyle properties to Fixed3D.

	 5.	 Double-click the Show button.

The Button1_Click event procedure appears in the Code Editor.

	 6.	 Type the following program statements to declare and use the LastName variable:

Dim LastName As String

LastName = "Luther"

Label1.Text = LastName

LastName = "Bodenstein von Karlstadt"

Label2.Text = LastName

The program statements are arranged in three groups. The first statement declares
the LastName variable by using the Dim statement and the String type. After you
type this line, Visual Studio places a green jagged line under the LastName variable,
because it has been declared but not used in the program. There is nothing wrong
here—Visual Studio is just reminding you that a new variable has been created and is
waiting to be used.

Tip  If the variable name still has a jagged underline when you finish writing your program, it
could be a sign that you misspelled a variable name somewhere within your code.

The second and third lines assign the name “Luther” to the LastName variable and
then display this name in the first label on the form. This example demonstrates
one of the most common uses of variables in a program—transferring information
to a property. As you have seen before, all string values assigned to variables are
displayed in red type.

The fourth line assigns the name “Bodenstein von Karlstadt” to the LastName variable
(in other words, it changes the contents of the variable). Notice that the second string
is longer than the first and contains a few blank spaces. When you assign text strings
to variables, or use them in other places, you need to enclose the text within quotation
marks. (You don’t need to do this with numbers.)

Finally, keep in mind another important characteristic of the variables being declared
in this event procedure—they maintain their scope, or hold their value, only within the
event procedure you’re using them in. Later in this chapter, you’ll learn how to declare
variables so that they can be used in any of your form’s event procedures.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 129

	 7.	 Click the Form1.vb [Design] tab to display the form again.

	 8.	 Double-click the Quit button.

The Button2_Click event procedure appears in the Code Editor.

	 9.	 Type the following program statement to stop the program:

End

Your screen looks like this:

	 10.	 Click the Save All button on the Standard toolbar to save your changes.

	 11.	 Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

	 12.	 Click the Show button.

The program declares the variable, assigns two values to it, and copies each value to
the appropriate label on the form. The program produces the output shown in the
following screen shot.

130	 Part II  Programming Fundamentals

	 13.	 Click the Quit button to stop the program.

The program stops, and the development environment returns.

Variable Naming Conventions
Naming variables can be a little tricky because you need to use names that are short
but intuitive and easy to remember. To avoid confusion, use the following conventions
when naming variables:

n	 Begin each variable name with a letter or underscore. This is a Visual Basic
requirement. Variable names can contain only letters, underscores, and
numbers.

n	 Although variable names can be virtually any length, try to keep them under
33 characters to make them easier to read. (Variable names were limited to
255 characters in Visual Basic 6, but that’s no longer a constraint.)

n	 Make your variable names descriptive by combining one or more words when
it makes sense to do so. For example, the variable name SalesTaxRate is much
clearer than Tax or Rate.

n	 Use a combination of uppercase and lowercase characters and numbers.
An accepted convention is to capitalize the first letter of each word in
a variable; for example, DateOfBirth. However, some programmers prefer to use
so-called camel casing (making the first letter of a variable name lowercase) to
distinguish variable names from functions and module names, which usually
begin with uppercase letters. Examples of camel casing include dateOfBirth,
employeeName, and counter.

n	 Don’t use Visual Basic keywords, objects, or properties as variable names. If
you do, you’ll get an error when you try to run your program.

n	 Optionally, you can begin each variable name with a two-character or
three-character abbreviation corresponding to the type of data that’s stored
in the variable. For example, use strName to show that the Name variable
contains string data. Although you don’t need to worry too much about this
detail now, you should make a note of this convention for later—you’ll see it
in parts of the Visual Studio Help documentation and in some of the advanced
books about Visual Basic programming. (This convention and abbreviation
scheme was originally created by Microsoft Distinguished Engineer Charles
Simonyi and is sometimes called the Hungarian Naming Convention.)

Using a Variable to Store Input
One practical use for a variable is to temporarily hold information that was entered by the
user. Although you can often use an object such as a list box or a text box to gather this
information, at times you might want to deal directly with the user and save the input in

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 131

a variable rather than in a property. One way to gather input is to use the InputBox function
to display a dialog box on the screen and then use a variable to store the text the user types.
You’ll try this approach in the following example.

Get input by using the InputBox function

	 1.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 2.	 Open the Input Box project in the C:\Vb10sbs\Chap05\Input Box folder.

The Input Box project opens in the IDE. Input Box is a skeleton program.

	 3.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click
the View Designer button.

The form contains one label and two buttons. You’ll use the InputBox function to get
input from the user, and then you’ll display the input in the label on the form.

	 4.	 Double-click the Input Box button.

The Button1_Click event procedure appears in the Code Editor.

	 5.	 Type the following program statements to declare two variables and call the InputBox
function:

Dim Prompt, FullName As String

Prompt = "Please enter your name."

FullName = InputBox(Prompt)

Label1.Text = FullName

This time, you’re declaring two variables by using the Dim statement: Prompt
and FullName. Both variables are declared using the String type. (You can declare as
many variables as you want on the same line, so long as they are of the same type.)
Note that in Visual Basic 6, this same syntax would have produced different results.
Dim would create the Prompt variable using the Variant type (because no type was
specified) and the FullName variable using the String type. But this logical inconsistency
has been fixed in Visual Basic versions 2002 and later.

The second line in the event procedure assigns a text string to the Prompt variable.
This message is used as a text argument for the InputBox function. (An argument is
a value or an expression passed to a procedure or a function.) The next line calls the
InputBox function and assigns the result of the call (the text string the user enters) to
the FullName variable. InputBox is a special Visual Basic function that displays a dialog
box on the screen and prompts the user for input. In addition to a prompt string,
the InputBox function supports other arguments you might want to use occasionally.
Consult the Visual Studio Help documentation for details.

132	 Part II  Programming Fundamentals

After InputBox has returned a text string to the program, the fourth statement in the
procedure places the user’s name in the Text property of the Label1 object, which
displays it on the form.

	 6.	 Save your changes.

	 7.	 Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the IDE.

	 8.	 Click the Input Box button.

Visual Basic executes the Button1_Click event procedure, and the Input Box dialog box
opens on your screen, as shown here:

	 9.	 Type your full name, and then click OK.

The InputBox function returns your name to the program and places it in the FullName
variable. The program then uses the variable to display your name on the form, as
shown here:

Use the InputBox function in your programs anytime you want to prompt the user for
information. You can use this function in combination with the other input controls to
regulate the flow of data into and out of a program. In the next exercise, you’ll learn
how to use a similar function to display text in a dialog box.

	 10.	 Click the Quit button on the form to stop the program.

The program stops, and the development environment reappears.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 133

What Is a Function?
InputBox is a special Visual Basic keyword known as a function. A function is a
statement that performs meaningful work (such as prompting the user for information
or calculating an equation) and then returns a result to the program. The value
returned by a function can be assigned to a variable, as it was in the Input Box
program, or it can be assigned to a property or another statement or function. Visual
Basic functions often use one or more arguments to define their activities. For example,
the InputBox function you just executed used the Prompt variable to display dialog
box instructions for the user. When a function uses more than one argument, commas
separate the arguments, and the whole group of arguments is enclosed in parentheses.
The following statement shows a function call that has two arguments:

FullName = InputBox(Prompt, Title)

Notice that I’m using italic in this syntax description to indicate that certain items are
placeholders for information you specify. This is a style you’ll find throughout the book
and in the Visual Studio Help documentation.

Using a Variable for Output
You can display the contents of a variable by assigning the variable to a property (such as
the Text property of a label object) or by passing the variable as an argument to a dialog box
function. One useful dialog box function for displaying output is the MsgBox function. When
you call the MsgBox function, it displays a dialog box, sometimes called a message box, with
various options that you can specify. Like InputBox, it takes one or more arguments as input,
and the results of the function call can be assigned to a variable. The syntax for the MsgBox
function is

ButtonClicked = MsgBox(Prompt, Buttons, Title)

where Prompt is the text to be displayed in the message box; Buttons is a number that
specifies the buttons, icons, and other options to display for the message box; and Title is the
text displayed in the message box title bar. The variable ButtonClicked is assigned the result
returned by the function, which indicates which button the user clicked in the dialog box.

If you’re just displaying a message using the MsgBox function, the ButtonClicked variable,
the assignment operator (=), the Buttons argument, and the Title argument are optional.
You’ll be using the Title argument, but you won’t be using the others in the following
exercise; for more information about them (including the different buttons you can include in
MsgBox and a few more options), search for the topic “MsgBox Method” in the Visual Studio
Help documentation. As the article notes, the MsgBox function is sometimes also referred to
as a method, reflecting the internal organization of the Microsoft.VisualBasic namespace.

134	 Part II  Programming Fundamentals

Note  Visual Studio provides both the MsgBox function and the MessageBox class for displaying
text in a message box. The MessageBox class is part of the System.Windows.Forms namespace; it
takes arguments much like MsgBox, and it is displayed by using the Show method. I’ll use both
MsgBox and MessageBox in this book.

Now you’ll add a MsgBox function to the Input Box program to display the name that the
user enters in the Input Box dialog box.

Display a message by using the MsgBox function

	 1.	 If the Code Editor isn’t visible, double-click the Input Box button on the Input Box form.

The Button1_Click event procedure appears in the Code Editor. (This is the code you
entered in the last exercise.)

	 2.	 Select the following statement in the event procedure (the last line):

Label1.Text = FullName

This is the statement that displays the contents of the FullName variable in the label.

	 3.	 Press the DELETE key to delete the line.

The statement is removed from the Code Editor.

	 4.	 Type the following line into the event procedure as a replacement:

MsgBox(FullName, , "Input Results")

This new statement will call the MsgBox function, display the contents of the FullName
variable in the dialog box, and place the words Input Results in the title bar. (The
optional Buttons argument and the ButtonClicked variable are irrelevant here and have
been omitted.) Your event procedure looks like this in the Code Editor:

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 135

	 5.	 Click the Start Debugging button on the Standard toolbar.

	 6.	 Click the Input Box button, type your name in the input box, and
then click OK.

Visual Basic stores the input in the program in the FullName variable and then displays
it in a message box. After typing the name Walter Harp in the input box, I received this
message box:

	 7.	 Click OK to close the message box. Then click Quit to close the program.

The program closes, and the development environment returns.

Working with Specific Data Types
The String data type is useful for managing text in your programs, but what about
numbers, dates, and other types of information? To allow for the efficient memory
management of all types of data, Visual Basic provides several additional data types
that you can use for your variables. Many of these are familiar data types from
earlier versions of BASIC or Visual Basic, and some of the data types were introduced
in Visual Studio 2005 to allow for the efficient processing of data in newer
64-bit computers.

Table 5-1 lists the fundamental (or elementary) data types in Visual Basic. Types preceded
by an S are designed for signed numbers, meaning that they can hold both positive and
negative values. Types preceded by a U are unsigned data types, meaning that they cannot
hold negative values. If your program needs to perform a lot of calculations, you might
gain a performance advantage in your programs if you choose the right data type for your
variables—a size that’s neither too big nor too small. In the next exercise, you’ll see how
several of these data types work.

Note  Variable storage size is measured in bits. The amount of space required to store
one standard (ASCII) keyboard character in memory is 8 bits, which equals 1 byte.

136	 Part II  Programming Fundamentals

TABLE 5-1  Fundamental Data Types in Visual Basic

Data Type Size Range Sample Usage

Short 16-bit –32,768 through 32,767 Dim Birds As Short

Birds = 12500

UShort 16-bit 0 through 65,535 Dim Days As UShort

Days = 55000

Integer 32-bit –2,147,483,648 through
2,147,483,647

Dim Insects As Integer

Insects = 37500000

UInteger 32-bit 0 through 4,294,967,295 Dim Joys As UInteger

Joys = 3000000000

Long 64-bit –9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Dim WorldPop As Long

WorldPop = 4800000004

ULong 64-bit 0 through
18,446,744,073,709,551,615

Dim Stars As ULong

Stars = _

 1800000000000000000

Single 32-bit
floating point

–3.4028235E38 through
3.4028235E38

Dim Price As Single

Price = 899.99

Double 64-bit
floating point

–1.79769313486231E308 through
1.79769313486231E308

Dim Pi As Double

Pi = 3.1415926535

Decimal 128-bit 0 through +/–79,228,162,514,264,
337,593,543,950,335
(+/–7.9 . . . E+28) with no
decimal point; 0 through +/–
7.9228162514264337593543950335
with 28 places to the right of the
decimal. Append “D” if you want
to force Visual Basic to initialize a
Decimal.

Dim Debt As Decimal

Debt = 7600300.5D

Byte 8-bit 0 through 255 (no negative
numbers)

Dim RetKey As Byte

RetKey = 13

SByte 8-bit –128 through 127 Dim NegVal As SByte

NegVal = –20

Char 16-bit Any Unicode symbol in the range
0–65,535. Append “c” when
initializing a Char.

Dim UnicodeChar As Char

UnicodeChar = "Ä"c

String Usually 16-bits
per character

0 to approximately 2 billion
16-bit Unicode characters

Dim Dog As String

Dog = "pointer"

Boolean 16-bit True or False. (During conversions,
0 is converted to False, other values
to True.)

Dim Flag as Boolean

Flag = True

Date 64-bit January 1, 0001, through
December 31, 9999

Dim Birthday as Date

Birthday = #3/1/1963#

Object 32-bit Any type can be stored in a variable
of type Object.

Dim MyApp As Object

MyApp = CreateObject _

 ("Word.Application")

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 137

Use fundamental data types in code

	 1.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 2.	 Open the Data Types project from the C:\Vb10sbs\Chap05\Data Types folder.

	 3.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the
View Designer button.

Data Types is a complete Visual Basic program that I created to demonstrate how the
fundamental data types work. You’ll run the program to see what the data types look
like, and then you’ll look at how the variables are declared and used in the program
code. You’ll also learn where to place variable declarations so that they’re available
to all the event procedures in your program.

	 4.	 Click the Start Debugging button on the Standard toolbar.

The following application window opens:

The Data Types program lets you experiment with 11 data types, including integer,
single-precision floating point, and date. The program displays an example of each
type when you click its name in the list box.

	 5.	 Click the Integer type in the list box.

The number 37500000 appears in the Sample Data box.

Note  With the Short, Integer, and Long data types, you can’t insert or display commas. To
display commas, you’ll need to use the Format function.

138	 Part II  Programming Fundamentals

	 6.	 Click the Date type in the list box.

The date 3/1/1963 appears in the Sample Data box.

	 7.	 Click each data type in the list box to see how Visual Basic displays it in the Sample
Data box.

	 8.	 Click the Quit button to stop the program.

Now you’ll examine how the fundamental data types are declared at the top of the
form and how they’re used in the ListBox1_SelectedIndexChanged event procedure.

	 9.	 Double-click the form itself (not any objects on the form), and enlarge the Code Editor
to see more of the program code.

The Code Editor looks like this:

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 139

Scroll to the top of the Code Editor to see the dozen or so program statements I added
to declare 11 variables in your program—one for each of the fundamental data types
in Visual Basic. (I didn’t create an example for the SByte, UShort, UInteger, and ULong
types, because they closely resemble their signed or unsigned counterparts.) By placing
each Dim statement here, at the top of the form’s code initialization area, I’m ensuring
that the variables will be valid, or will have scope, for all of the form’s event procedures.
That way, I can set the value of a variable in one event procedure and read it in another.
Normally, variables are valid only in the event procedure in which they’re declared.
To make them valid across the form, you need to declare variables at the top of your
form’s code.

Note  I’ve given each variable the same name as I did in the data types table
earlier in the chapter so that you can see the examples I showed you in actual
program code.

	 10.	 Scroll down in the Code Editor, and examine the Form1_Load event procedure.

You’ll see the following statements, which add items to the list box object in the
program. (You might remember this syntax from Chapter 3, “Working with Toolbox
Controls”—I used some similar statements there.)

	 11.	 Scroll up and examine the ListBox1_SelectedIndexChanged
event procedure.

140	 Part II  Programming Fundamentals

The ListBox1_SelectedIndexChanged event procedure processes the selections you make
in the list box and looks like this:

The heart of the event procedure is a Select Case decision structure. In the next chapter,
we’ll discuss how this group of program statements selects one choice from many.
For now, notice how each section of the Select Case block assigns a sample value to
one of the fundamental data type variables and then assigns the variable to the Text
property of the Label3 object on the form. I used code like this in Chapter 3 to process
list box choices, and you can use these techniques to work with list boxes and data
types in your own programs.

Note  If you have more than one form in your project, you need to declare variables in
a slightly different way (and place) to give them scope throughout your program (that is, in
each form that your project contains). The type of variable that you’ll declare is a public, or
global, variable, and it’s declared in a module, a special file that contains declarations and
procedures not associated with a particular form. For information about creating public
variables in modules, see Chapter 10, “Creating Modules and Procedures.”

	 12.	 Scroll through the ListBox1_SelectedIndexChanged event procedure, and examine each
of the variable assignments closely.

Try changing the data in a few of the variable assignment statements and running the
program again to see what the data looks like. In particular, you might try assigning

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 141

values to variables that are outside their accepted range, as shown in the data types
table presented earlier. If you make such an error, Visual Basic adds a jagged line below
the incorrect value in the Code Editor, and the program won’t run until you change
it. To learn more about your mistake, you can point to the jagged underlined value
and read a short tooltip error message about the problem.

Tip  By default, a green jagged line indicates a warning, a red jagged line indicates
a syntax error, a blue jagged line indicates a compiler error, and a purple jagged line
indicates some other error.

	 13.	 If you made any changes you want to save to disk, click the Save All button on the
Standard toolbar.

User-Defined Data Types
Visual Basic also lets you create your own data types. This feature is most useful
when you’re dealing with a group of data items that naturally fit together but fall into
different data categories. You create a user-defined type (UDT) by using the Structure
statement, and you declare variables associated with the new type by using the Dim
statement. Be aware that the Structure statement cannot be located in an event
procedure—it must be located at the top of the form along with other variable
declarations, or in a code module.

For example, the following declaration creates a user-defined data type named
Employee that can store the name, date of birth, and hire date associated with a worker:

Structure Employee

 Dim Name As String

 Dim DateOfBirth As Date

 Dim HireDate As Date

End Structure

After you create a data type, you can use it in the program code for the form’s or
module’s event procedures. The following statements use the new Employee type.
The first statement creates a variable named ProductManager, of the Employee type,
and the second statement assigns the name “Erin M. Hagens” to the Name component
of the variable:

Dim ProductManager As Employee

ProductManager.Name = "Erin M. Hagens"

This looks a little similar to setting a property, doesn’t it? Visual Basic uses the same
notation for the relationship between objects and properties as it uses for the
relationship between user-defined data types and component variables.

142	 Part II  Programming Fundamentals

Constants: Variables That Don’t Change
If a variable in your program contains a value that never changes (such as π, a fixed
mathematical entity), you might consider storing the value as a constant instead of as a
variable. A constant is a meaningful name that takes the place of a number or a text string
that doesn’t change. Constants are useful because they increase the readability of program
code, they can reduce programming mistakes, and they make global changes easier to
accomplish later. Constants operate a lot like variables, but you can’t modify their values
at run time. They are declared with the Const keyword, as shown in the following example:

Const Pi As Double = 3.14159265

This statement creates a constant named Pi that can be used in place of the value of π in the
program code. To make a constant available to all the objects and event procedures in your
form, place the statement at the top of your form along with other variable and structure
declarations that will have scope in all of the form’s event procedures. To make the constant
available to all the forms and modules in a program (not just Form1), create the constant in
a code module, with the Public keyword in front of it. For example:

Public Const Pi As Double = 3.14159265

The following exercise demonstrates how you can use a constant in an event procedure.

Use a constant in an event procedure

	 1.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 2.	 Open the Constant Tester project in the C:\Vb10sbs\Chap05\Constant Tester folder.

	 3.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the
View Designer button.

The Constant Tester form opens in the Designer. Constant Tester is a skeleton program.
The user interface is finished, but you need to type in the program code.

	 4.	 Double-click the Show Constant button on the form.

The Button1_Click event procedure appears in the Code Editor.

	 5.	 Type the following statements in the Button1_Click event procedure:

Const Pi As Double = 3.14159265

Label1.Text = Pi

Tip  The location you choose for your declarations should be based on how you plan to use
the constants or the variables. Programmers typically keep the scope for declarations as small
as possible, while still making them available for code that needs to use them. For example, if
a constant is needed only in a single event procedure, you should put the constant declaration
within that event procedure. However, you could also place the declaration at the top of the
form’s code, which would give all the event procedures in your form access to it.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 143

	 6.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 7.	 Click the Show Constant button.

The Pi constant appears in the label box, as shown here:

	 8.	 Click the Quit button to stop the program.

Constants are useful in program code, especially in involved mathematical formulas,
such as Area = πr2. The next section describes how you can use operators and variables
to write similar formulas.

Working with Visual Basic Operators
A formula is a statement that combines numbers, variables, operators, and keywords to create
a new value. Visual Basic contains several language elements designed for use in formulas. In
this section, you’ll practice working with arithmetic (or mathematical) operators, the symbols
used to tie together the parts of a formula. With a few exceptions, the arithmetic symbols
you’ll use are the ones you use in everyday life, and their operations are fairly intuitive. You’ll
see each operator demonstrated in the following exercises.

Visual Basic includes the arithmetic operators listed in Table 5-2.

TABLE 5-2  Arithmetic Operators

Operator Description

+ Addition

– Subtraction

* Multiplication

/ Division

\ Integer (whole number) division

Mod Remainder division

^ Exponentiation (raising to a power)

& String concatenation (combination)

144	 Part II  Programming Fundamentals

Basic Math: The +, –, *, and / Operators
The operators for addition, subtraction, multiplication, and division are pretty straightforward
and can be used in any formula where numbers or numeric variables are used. The following
exercise demonstrates how you can use them in a program.

Work with basic operators

	 1.	 On the File menu, click Open Project.

	 2.	 Open the Basic Math project in the C:\Vb10sbs\Chap05\Basic Math folder.

	 3.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click
the View Designer button.

The Basic Math form opens in the Designer. The Basic Math program demonstrates
how the addition, subtraction, multiplication, and division operators work with numbers
you type. It also demonstrates how you can use text box, radio button, and button
objects to process user input in a program.

	 4.	 Click the Start Debugging button on the Standard toolbar.

The Basic Math program runs in the IDE. The program displays two text boxes in which
you enter numeric values, a group of operator radio buttons, a box that displays results,
and two button objects (Calculate and Quit).

	 5.	 Type 100 in the Variable 1 text box, and then press TAB.

The insertion point, or focus, moves to the second text box.

	 6.	 Type 17 in the Variable 2 text box.

You can now apply any of the mathematical operators to the values in the text boxes.

	 7.	 Click the Addition radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 117 appears in the Result
box, as shown in the following screen shot.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 145

	 8.	 Practice using the subtraction, multiplication, and division operators with the two
numbers in the variable boxes. (Click Calculate to calculate each formula.)

The results appear in the Result box. Feel free to experiment with different numbers
in the variable text boxes. (Try a few numbers with decimal points if you like.) I used the
Double data type to declare the variables, so you can use very large numbers.

Now try the following test to see what happens:

	 9.	 Type 100 in the Variable 1 text box, type 0 in the Variable 2 text box, click the Division
radio button, and then click Calculate.

Dividing by zero is not allowed in mathematical calculations, because it produces
an infinite result. Visual Basic is able to handle this calculation and displays a value of
Infinity in the Result text box. Being able to handle some divide-by-zero conditions is
a feature that Visual Basic 2010 automatically provides.

	 10.	 When you’ve finished contemplating this and other tests, click the Quit button.

The program stops, and the development environment returns.

Now take a look at the program code to see how the results were calculated. Basic Math
uses a few of the standard input controls you experimented with in Chapter 3 and an event
procedure that uses variables and operators to process the simple mathematical formulas.
The program declares its variables at the top of the form so that they can be used in all the
Form1 event procedures.

Examine the Basic Math program code

	 1.	 Double-click the Calculate button on the form.

The Code Editor displays the Button1_Click event procedure. At the top of the form’s
code, you’ll see the following statement, which declares two variables of type Double:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

I used the Double type because I wanted a large, general-purpose variable type that
could handle many different numbers—integers, numbers with decimal points, very
big numbers, small numbers, and so on. The variables are declared on the same line by
using the shortcut notation. Both FirstNum and SecondNum are of type Double, and are
used to hold the values input in the first and second text boxes, respectively.

	 2.	 Scroll down in the Code Editor to see the contents of the Button1_Click event
procedure.

146	 Part II  Programming Fundamentals

Your screen looks similar to this:

The first two statements in the event procedure transfer data entered in the text box
objects into the FirstNum and SecondNum variables.

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

The TextBox control handles the transfer with the Text property—a property that accepts
text entered by the user and makes it available for use in the program. I’ll make frequent
use of the TextBox control in this book. When it’s set to multiline and resized, it can
display many lines of text—even a whole file!

After the text box values are assigned to the variables, the event procedure determines
which radio button has been selected, calculates the mathematical formula, and
displays the result in a third text box. The first radio button test looks like this:

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum + SecondNum

End If

Remember from Chapter 3 that only one radio button object in a group box object can
be selected at any given time. You can tell whether a radio button has been selected by
evaluating the Checked property. If it’s True, the button has been selected. If the Checked

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 147

property is False, the button has not been selected. After this simple test, you’re ready
to compute the result and display it in the third text box object. That’s all there is to
using basic arithmetic operators. (You’ll learn more about the syntax of If . . . Then tests
in Chapter 6, “Using Decision Structures.”)

You’re done using the Basic Math program.

Shortcut Operators
An interesting feature of Visual Basic is that you can use shortcut operators for
mathematical and string operations that involve changing the value of an existing
variable. For example, if you combine the + symbol with the = symbol, you can add
to a variable without repeating the variable name twice in the formula. Thus, you can
write the formula X = X + 6 by using the syntax X += 6. Table 5-3 shows examples of
these shortcut operators.

TABLE 5-3  Shortcut Operators

Operation Long-Form Syntax Shortcut Syntax

Addition (+) X = X + 6 X += 6

Subtraction (–) X = X – 6 X -= 6

Multiplication (*) X = X * 6 X *= 6

Division (/) X = X / 6 X /= 6

Integer division (\) X = X \ 6 X \= 6

Exponentiation (^) X = X ^ 6 X ^= 6

String concatenation (&) X = X & “ABC” X &= “ABC”

Using Advanced Operators: \, Mod, ^, and &
In addition to the four basic arithmetic operators, Visual Basic includes four advanced
operators, which perform integer division (\), remainder division (Mod), exponentiation (̂),
and string concatenation (&). These operators are useful in special-purpose mathematical
formulas and text processing applications. The following utility (a slight modification of the
Basic Math program) shows how you can use each of these operators in a program.

Work with advanced operators

	 1.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 2.	 Open the Advanced Math project in the C:\Vb10sbs\Chap05\Advanced Math folder.

	 3.	 If the project’s form isn’t visible, click Form1.vb in Solution Explorer, and then click the
View Designer button.

148	 Part II  Programming Fundamentals

The Advanced Math form opens in the Designer. The Advanced Math program is
identical to the Basic Math program, with the exception of the operators shown in the
radio buttons and in the program.

	 4.	 Click the Start Debugging button on the Standard toolbar.

The program displays two text boxes in which you enter numeric values, a group of
operator radio buttons, a text box that displays results, and two buttons.

	 5.	 Type 9 in the Variable 1 text box, and then press TAB.

	 6.	 Type 2 in the Variable 2 text box.

You can now apply any of the advanced operators to the values in the text boxes.

	 7.	 Click the Integer Division radio button, and then click the Calculate button.

The operator is applied to the two values, and the number 4 appears in the Result box,
as shown here:

Integer division produces only the whole number result of the division operation.
Although 9 divided by 2 equals 4.5, the integer division operation returns only the
first part, an integer (the whole number 4). You might find this result useful if you’re
working with quantities that can’t easily be divided into fractional components, such
as the number of adults who can fit in a car.

	 8.	 Click the Remainder radio button, and then click the Calculate button.

The number 1 appears in the Result box. Remainder division (modulus arithmetic)
returns the remainder (the part left over) after two numbers are divided. Because
9 divided by 2 equals 4 with a remainder of 1 (2 * 4 + 1 = 9), the result produced by
the Mod operator is 1. In addition to adding an early-1970s vibe to your code, the
Mod operator can help you track “leftovers” in your calculations, such as the amount
of money left over after a financial transaction.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 149

	 9.	 Click the Exponentiation radio button, and then click the Calculate button.

The number 81 appears in the Result box. The exponentiation operator (̂) raises
a number to a specified power. For example, 9 ^ 2 equals 92, or 81. In a Visual Basic
formula, 92 is written 9 ^ 2.

	 10.	 Click the Concatenation radio button, and then click the Calculate button.

The number 92 appears in the Result box. The string concatenation operator (&)
combines two strings in a formula, but not through addition. The result is
a combination of the “9” character and the “2” character. String concatenation can be
performed on numeric variables—for example, if you’re displaying the inning-by-inning
score of a baseball game as they do in old-time score boxes—but concatenation is
more commonly performed on string values or variables.

Because I declared the FirstNum and SecondNum variables as type Double, you can’t
combine words or letters by using the program code as written. As an example, try the
following test, which causes an error and ends the program.

	 11.	 Type birth in the Variable 1 text box, type day in the Variable 2 text box, verify that
Concatenation is selected, and then click Calculate.

Visual Basic is unable to process the text values you entered, so the program stops
running, and an error message appears on the screen.

150	 Part II  Programming Fundamentals

This type of error is called a run-time error—an error that surfaces not during the design
and compilation of the program but later, when the program is running and encounters
a condition that it doesn’t know how to process. If this seems odd, you might imagine
that Visual Basic is simply offering you a modern rendition of the robot plea “Does not
compute!” from the best science-fiction films of the 1950s. The computer-speak message
“Conversion from string ‘birth’ to type ‘Double’ is not valid” means that the words you
entered in the text boxes (“birth” and “day”) could not be converted, or cast, by Visual
Basic to variables of the type Double. Double types can contain only numbers—period.

As we shall explore in more detail later, Visual Studio doesn’t leave you hanging with
such a problem, but provides a dialog box with different types of information to help
you resolve the run-time error. For now, you have learned another important lesson
about data types and when not to mix them.

	 12.	 Click the Stop Debugging button on the Standard toolbar to end the program.

Your program ends and returns you to the development environment.

Note  In Chapter 8, “Debugging Visual Basic Programs,” you’ll learn about debugging
mode, which allows you to track down the defects, or bugs, in your program code.

Now take a look at the program code to see how variables were declared and how the
advanced operators were used.

	 13.	 Scroll to the code at the top of the Code Editor, if it is not currently visible.

You see the following comment and program statement:

'Declare FirstNum and SecondNum variables

Dim FirstNum, SecondNum As Double

As you might recall from the previous exercise, FirstNum and SecondNum are the
variables that hold numbers coming in from the TextBox1 and TextBox2 objects.

	 14.	 Change the data type from Double to String so that you can properly test how the
string concatenation (&) operator works.

	 15.	 Scroll down in the Code Editor to see how the advanced operators are used in the
program code.

You see the following code:

'Assign text box values to variables

FirstNum = TextBox1.Text

SecondNum = TextBox2.Text

'Determine checked button and calculate

If RadioButton1.Checked = True Then

 TextBox3.Text = FirstNum \ SecondNum

End If

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 151

If RadioButton2.Checked = True Then

 TextBox3.Text = FirstNum Mod SecondNum

End If

If RadioButton3.Checked = True Then

 TextBox3.Text = FirstNum ^ SecondNum

End If

If RadioButton4.Checked = True Then

 TextBox3.Text = FirstNum & SecondNum

End If

Like the Basic Math program, this program loads data from the text boxes and places
it in the FirstNum and SecondNum variables. The program then checks to see which
radio button the user checked and computes the requested formula. In this event
procedure, the integer division (\), remainder (Mod), exponentiation (̂), and string
concatenation (&) operators are used. Now that you’ve changed the data type of the
variables to String, run the program again to see how the & operator works on text.

	 16.	 Click the Start Debugging button.

	 17.	 Type birth in the Variable 1 text box, type day in the Variable 2 text box, click
Concatenation, and then click Calculate.

The program now concatenates the string values and doesn’t produce a run-time error,
as shown here:

	 18.	 Click the Quit button to close the program.

As you can see, the String data type has fixed the concatenation problem. However, it is
not a total solution because variables of type String will not function correctly if you
try the Integer Division, Remainder, or Exponentiation operations with them. So, if you
really wanted to have your program process numbers and text strings interchangeably,
you’d need to add some additional program logic to your code. For now, however,
you’re finished working with the Advanced Math program.

152	 Part II  Programming Fundamentals

Tip  Run-time errors are difficult to avoid completely—even the most sophisticated application
programs, such as Word or Microsoft Office Excel, sometimes run into error conditions that they
can’t handle, producing run-time errors, or crashes. Designing your programs to handle many
different data types and operating conditions helps you produce solid, or robust, applications.
In Chapter 9, “Trapping Errors by Using Structured Error Handling,” you’ll learn about another
helpful tool for preventing run-time error crashes—the structured error handler.

Working with Math Methods in the .NET Framework
Now and then you’ll want to do a little extra number crunching in your programs. You
might need to round a number, calculate a complex mathematical expression, or introduce
randomness into your programs. The math methods shown in Table 5-4 can help you work
with numbers in your formulas. These methods are provided by the System.Math class of the
.NET Framework, a class library that lets you tap into the power of the Windows operating
system and accomplish many of the common programming tasks that you need to create your
projects. The argument n in the table represents the number, variable, or expression that you
want the method to evaluate.

TABLE 5-4  Useful Math Methods

Method Purpose

Abs(n) Returns the absolute value of n.

Atan(n) Returns the arctangent, in radians, of n.

Cos(n) Returns the cosine of the angle n. The angle n is expressed in radians.

Exp(n) Returns the constant e raised to the power n.

Sign(n) Returns –1 if n is less than 0, 0 if n equals 0, and +1 if n is greater than 0.

Sin(n) Returns the sine of the angle n. The angle n is expressed in radians.

Sqrt(n) Returns the square root of n.

Tan(n) Returns the tangent of the angle n. The angle n is expressed in radians.

Note  This is only a partial listing of the methods in the System.Math class; there are many more
classes in the .NET Framework that Windows applications can use.

To use one or more of these methods, put the statement

Imports System.Math

at the top of your form’s code in the Code Editor. This statement references the System.Math
class so that you can use its methods in your program.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 153

What is the purpose of the .NET Framework, anyway? The .NET Framework is a major feature
of Visual Studio that is shared by Visual Basic, Microsoft Visual C++, Microsoft Visual C#,
Microsoft F#, and other tools in Visual Studio. It’s an underlying interface that becomes part
of the Windows operating system itself, and it is installed on each computer that runs Visual
Studio programs. The key components in the .NET Framework are the common language
runtime (CLR) and the .NET Framework class library, which includes ADO.NET, ASP.NET,
Windows Forms, and Windows Presentation Foundation (WPF). With each version of Visual
Studio, the .NET Framework is extended to provide additional functionality. In Visual Studio
2010, the .NET Framework 4 library is being introduced, which offers an update to the .NET
Framework 3.5 library and offers more deployment options, support for parallel computing
(multithreaded and asynchronous code), improved security, networking enhancements,
and new Web services supplied through ASP.NET.

Many of the improvements in the .NET Framework will come to you automatically as you
use Visual Basic 2010, and some will become useful as you explore advanced programming
techniques. Starting now and continuing throughout this book, I’ll teach you how to use
several methods in the .NET Framework to enhance your Visual Basic programs. After you
finish with this book, you may want to seek out additional books and resources about the
.NET Framework because it offers an important extension to what you can do with Visual
Basic and the other languages in Visual Studio.

Give the math methods in the .NET Framework a try now by completing the following
exercise.

Use the System.Math class to compute square roots

	 1.	 On the File menu, click New Project.

The New Project dialog box opens.

	 2.	 Create a new Visual Basic Windows Forms Application project named
My Framework Math.

The new project is created, and a blank form opens in the Designer.

	 3.	 Click the Button control on the Windows Forms tab of the Toolbox, and then create
a button object at the top of your form.

	 4.	 Click the TextBox control in the Toolbox, and then draw a text box below the button
object.

	 5.	 Set the Text property of the button object to Square Root.

	 6.	 Double-click the button object to display the Code Editor.

	 7.	 At the very top of the Code Editor, above the Public Class Form1 statement, type the
following program statement:

Imports System.Math

154	 Part II  Programming Fundamentals

The System.Math class is a collection of methods provided by the .NET Framework for
arithmetic operations. The .NET Framework is organized in a hierarchical fashion and can
be very deep. The Imports statement makes it easier to reference classes, properties,
and methods in your project. For example, if you didn’t include the previous Imports
statement, to call the Sqrt method you would have to type System.Math.Sqrt instead of
just Sqrt. The Imports statement must be the first statement in your program—it must
come even before the variables that you declare for the form and the Public Class Form1
statement that Visual Basic automatically provides.

	 8.	 Move down in the Code Editor, and then add the following code to the Button1_Click
event procedure between the Private Sub and End Sub statements:

Dim Result As Double

Result = Sqrt(625)

TextBox1.Text = Result

These three statements declare a variable of the double type named Result, use the
Sqrt method to compute the square root of 625, and assign the Result variable to the
Text property of the text box object so that the answer is displayed.

	 9.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap05 folder as the location.

	 10.	 Click the Start Debugging button on the Standard toolbar.

The Framework Math program runs in the IDE.

	 11.	 Click the Square Root button.

Visual Basic calculates the square root of 625 and displays the result (25) in the text box.
As you can see here, the Sqrt method works!

	 12.	 Click the Close button on the form to end the program.

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 155

To make it easier to reference classes, properties, and methods in the .NET Framework,
include the Imports statement and specify the appropriate namespace or class. You can use
this technique to use any class in the .NET Framework, and you’ll see many more examples
of this technique as you work through this book.

One Step Further: Establishing Order of Precedence
In the previous few exercises, you experimented with several arithmetic operators and one
string operator. Visual Basic lets you mix as many arithmetic operators as you like in a
formula, so long as each numeric variable and expression is separated from another by one
operator. For example, this is an acceptable Visual Basic formula:

Total = 10 + 15 * 2 / 4 ^ 2

The formula processes several values and assigns the result to a variable named Total. But
how is such an expression evaluated by Visual Basic? In other words, what sequence does
Visual Basic follow when solving the formula? You might not have noticed, but the order of
evaluation matters a great deal in this example.

Visual Basic solves this dilemma by establishing a specific order of precedence for
mathematical operations. This list of rules tells Visual Basic which operator to use first,
second, and so on when evaluating an expression that contains more than one operator.

Table 5-5 lists the operators from first to last in the order in which they are evaluated.
(Operators on the same level in this table are evaluated from left to right as they appear in
an expression.)

TABLE 5-5  Order of Precedence of Operators

Operator Order of Precedence

() Values within parentheses are always evaluated first.

^ Exponentiation (raising a number to a power) is second.

– Negation (creating a negative number) is third.

* / Multiplication and division are fourth.

\ Integer division is fifth.

Mod Remainder division is sixth.

+ – Addition and subtraction are last.

Given the order of precedence in this table, the expression

Total = 10 + 15 * 2 / 4 ^ 2

is evaluated by Visual Basic in the following steps. (Shading is used to show each step in the
order of evaluation.)

156	 Part II  Programming Fundamentals

Total = 10 + 15 * 2 / 4 ^ 2

Total = 10 + 15 * 2 / 16

Total = 10 + 30 / 16

Total = 10 + 1.875

Total = 11.875

Using Parentheses in a Formula
You can use one or more pairs of parentheses in a formula to clarify the order of precedence
or impose your own order of precedence over the standard one. For example, Visual Basic
calculates the formula

Number = (8 – 5 * 3) ^ 2

by determining the value within the parentheses (–7) before doing the exponentiation—even
though exponentiation is higher in order of precedence than subtraction and multiplication,
according to the preceding table. You can further refine the calculation by placing nested
parentheses in the formula. For example,

Number = ((8 – 5) * 3) ^ 2

directs Visual Basic to calculate the difference in the inner set of parentheses first, perform
the operation in the outer parentheses next, and then determine the exponentiation.
The result produced by the two formulas is different: the first formula evaluates to 49
and the second to 81. Parentheses can change the result of a mathematical operation,
as well as make it easier to read.

Chapter 5 Quick Reference

To Do This

Declare a variable Type Dim followed by the variable name, the As keyword, and the
variable data type in the program code. To make the variable valid in all
a form’s event procedures, place this statement at the top of the code for
the form, before any event procedures. For example:

Dim Country As String

Change the value of
a variable

Assign a new value with the assignment operator (=). For example:

Country = "Japan"

Get input by using
a dialog box

Use the InputBox function and assign the result to a variable.
For example:

UserName = InputBox("What is your name?")

	 Chapter 5  Visual Basic Variables and Formulas, and the .NET Framework	 157

To Do This

Display output in
a dialog box

Use the MsgBox function. (The string to be displayed in the dialog box
can be stored in a variable.) For example:

Forecast = "Rain, mainly on the plain."

MsgBox(Forecast, , "Spain Weather Report")

Create a constant Type the Const keyword followed by the constant name, the
assignment operator (=), the constant data type, and the fixed value.
For example:

Const JackBennysAge As Short = 39

Create a formula Link together numeric variables or values with one of the seven
arithmetic operators, and then assign the result to a variable or a
property. For example:

Result = 1 ^ 2 * 3 \ 4 'this equals 0

Combine text strings Use the string concatenation operator (&). For example:

Msg = "Hello" & "," & " world!"

Make it easier to
reference a class
library from the
.NET Framework

Place an Imports statement at the very top of the form’s code that
identifies the class library. For example:

Imports System.Math

Make a call to a
method from an
included class
library

Use the method name, and include any necessary arguments so that it
can be used in a formula or a program statement. For example, to make
a call to the Sqrt method in the System.Math class:

Hypotenuse = Sqrt(x ^ 2 + y ^ 2)

Control the evaluation
order in a formula

Use parentheses in the formula. For example:

Result = 1 + 2 ^ 3 \ 4 'this equals 3

Result = (1 + 2) ^ (3 \ 4) 'this equals 1

		 159

Chapter 6

Using Decision Structures
After completing this chapter, you will be able to:

n	 Write conditional expressions.

n	 Use an If . . . Then statement to branch to a set of program statements based on
a varying condition.

n	 Use the MaskedTextBox control to receive user input in a specific format.

n	 Short-circuit an If . . . Then statement.

n	 Use a Select Case statement to select one choice from many options in program code.

n	 Use the Name property to rename objects within a program.

n	 Manage mouse events and write a MouseHover event handler.

In the past few chapters, you used several features of Microsoft Visual Basic 2010 to process
user input. You used menus, toolbars, dialog boxes, and other Toolbox controls to display
choices for the user, and you processed input by using property settings, variables, operators,
formulas, and the Microsoft .NET Framework.

In this chapter, you’ll learn how to branch conditionally to a specific area in your program
based on input you receive from the user. You’ll also learn how to evaluate one or more
properties or variables by using conditional expressions, and then execute one or more
program statements based on the results. In short, you’ll increase your programming
vocabulary by creating code blocks called decision structures that control how your program
executes, or flows, internally.

Event-Driven Programming
The programs you’ve written so far in this book have displayed Toolbox controls, menus,
toolbars, and dialog boxes on the screen, and with these programs, users could manipulate
the screen elements in whatever order they saw fit. The programs put the user in charge,
waited patiently for a response, and then processed the input predictably. In programming
circles, this methodology is known as event-driven programming. You build a program by
creating a group of “intelligent” objects that know how to respond to input, and then the
program processes the input by using event procedures associated with the objects.

Where does this input come from? Fundamentally, of course, most input comes from the user
of your program, who is opening menus, clicking the mouse, typing in text boxes, and so on.
However, program input can also come from the computer system itself. For example, your
program might be notified when a piece of e-mail arrives or when a specified period of time

Table of Contents

Using Decision Structures . 159
Event-Driven Programming . . 159

Using Conditional Expressions . 161

If . . . Then Decision Structures . 161

Testing Several Conditions in an If . . . Then
Decision Structure . . 162

Using Logical Operators in Conditional Expressions 167

Short-Circuiting by Using AndAlso and OrElse 169

Select Case Decision Structures . 171

Using Comparison Operators with a Select
Case Structure . 173

One Step Further: Detecting Mouse Events . 177

Chapter 6 Quick Reference . 179

160	 Part II  Programming Fundamentals

has elapsed on the system clock. In these situations, the computer, not the user, triggers the
important events. But regardless of how an event is triggered, Visual Basic reacts by calling
the event procedure associated with the object that recognized the event and executes
the program code in the event procedure. So far, you’ve dealt primarily with the Click,
CheckedChanged, and SelectedIndexChanged events. However, Visual Basic objects also can
respond to many other types of events.

The event-driven nature of Visual Basic means that most of the computing done in your
programs is accomplished by event procedures. These event-specific blocks of code process
input, calculate new values, display output, and handle other tasks.

In this chapter, you’ll learn how to use decision structures to compare variables, properties,
and values, and how to execute one or more statements based on the results. In Chapter 7,
“Using Loops and Timers,” you’ll use loops to execute a group of statements over and
over until a condition is met or while a specific condition is true. Together, these powerful
flow-control structures will help you build your event procedures so that they can respond
to almost any situation.

Events Supported by Visual Basic Objects
Each object in Visual Basic has a predefined set of events to which it can respond. These
events are listed when you select an object name in the Class Name list box at the top
of the Code Editor and then click the Method Name arrow. (Events are visually identified
in Microsoft Visual Studio by a lightning bolt icon.) You can write an event procedure for
any of these events, and if that event occurs in the program, Visual Basic will execute the
event procedure that’s associated with it. For example, a list box object supports more than
60 events, including Click, DoubleClick, DragDrop, DragOver, GotFocus, KeyDown, KeyPress,
KeyUp, LostFocus, MouseDown, MouseMove, MouseUp, MouseHover, SelectedIndexChanged,
TextChanged, and Validated. You probably won’t need to write code for more than three or
four of these events in your applications, but it’s nice to know that you have so many choices
when you create elements in your interface. The following screen shot shows a partial listing
of the events for a list box object in the Code Editor:

	 Chapter 6  Using Decision Structures	 161

Using Conditional Expressions
One of the most useful tools for processing information in an event procedure is a conditional
expression. A conditional expression is a part of a complete program statement that asks
a True-or-False question about a property, a variable, or another piece of data in the program
code. For example, the conditional expression

Price < 100

evaluates to True if the Price variable contains a value that is less than 100, and it evaluates
to False if Price contains a value that is greater than or equal to 100.

You can use the following comparison operators shown in Table 6-1 within a conditional
expression.

TABLE 6-1  Visual Basic Comparison Operators

Comparison Operator Meaning

= Equal to

< > Not equal to

> Greater than

< Less than

>= Greater than or equal to

<= Less than or equal to

Table 6-2 shows some conditional expressions and their results. You’ll work with conditional
expressions several times in this chapter.

TABLE 6-2  Using Conditional Expressions

Conditional Expression Result

10 <> 20 True (10 is not equal to 20)

Score < 20 True if Score is less than 20; otherwise False

Score = Label1.Text True if the Text property of the Label1 object
contains the same value as the Score variable;
otherwise False

TextBox1.Text = "Bill" True if the word “Bill” is in the TextBox1 object;
otherwise False

If . . . Then Decision Structures
When a conditional expression is used in a special block of statements called a decision
structure, it controls whether other statements in your program are executed and in what
order they’re executed. You can use an If . . . Then decision structure to evaluate a condition

162	 Part II  Programming Fundamentals

in the program and take a course of action based on the result. In its simplest form,
an If . . . Then decision structure is written on a single line:

If condition Then statement

where condition is a conditional expression, and statement is a valid Visual Basic program
statement. For example:

If Score >= 20 Then Label1.Text = "You win!"

is an If . . . Then decision structure that uses the conditional expression:

Score >= 20

to determine whether the program should set the Text property of the Label1 object to “You
win!” If the Score variable contains a value that’s greater than or equal to 20, Visual Basic
sets the Text property; otherwise, it skips the assignment statement and executes the next
line in the event procedure. This sort of comparison always results in a True or False value.
A conditional expression never results in a value of maybe.

Testing Several Conditions in an If . . . Then
Decision Structure
Visual Basic also supports an If . . . Then decision structure that you can use to include several
conditional expressions. This block of statements can be several lines long and contains the
important keywords ElseIf, Else, and End If:

If condition1 Then

 statements executed if condition1 is True

ElseIf condition2 Then

 statements executed if condition2 is True

[Additional ElseIf conditions and statements can be placed here]

Else

 statements executed if none of the conditions is True

End If

In this structure, condition1 is evaluated first. If this conditional expression is True, the block
of statements below it is executed, one statement at a time. (You can include one or more
program statements.) If the first condition isn’t True, the second conditional expression
(condition2) is evaluated. If the second condition is True, the second block of statements
is executed. (You can add additional ElseIf conditions and statements if you have more
conditions to evaluate.) If none of the conditional expressions is True, the statements below
the Else keyword are executed. Finally, the whole structure is closed by the End If keywords.

The following code shows how a multiple-line If . . . Then structure could be used to
determine the amount of tax due in a hypothetical progressive tax return. (The income
and percentage numbers are from the projected U.S. Internal Revenue Service 2010 Tax Rate
Schedule for single filing status.)

	 Chapter 6  Using Decision Structures	 163

Dim AdjustedIncome, TaxDue As Double

AdjustedIncome = 50000

If AdjustedIncome <= 8375 Then '10% tax bracket

 TaxDue = AdjustedIncome * 0.1

ElseIf AdjustedIncome <= 34000 Then '15% tax bracket

 TaxDue = 837.5 + ((AdjustedIncome - 8375) * 0.15)

ElseIf AdjustedIncome <= 82400 Then '25% tax bracket

 TaxDue = 4681.25 + ((AdjustedIncome - 34000) * 0.25)

ElseIf AdjustedIncome <= 171850 Then '28% tax bracket

 TaxDue = 16781.25 + ((AdjustedIncome - 82400) * 0.28)

ElseIf AdjustedIncome <= 373650 Then '33% tax bracket

 TaxDue = 41827.25 + ((AdjustedIncome - 171850) * 0.33)

Else '35% tax bracket

 TaxDue = 108421.25 + ((AdjustedIncome - 373650) * 0.35)

End If

Important  The order of the conditional expressions in your If . . . Then and ElseIf statements
is critical. What happens if you reverse the order of the conditional expressions in the tax
computation example and list the rates in the structure from highest to lowest? Taxpayers in the
10 percent, 15 percent, 25 percent, 28 percent, and 33 percent tax brackets are all placed in the
35 percent tax bracket because they all have an income that’s less than or equal to $373,650.
(This occurs because Visual Basic stops at the first conditional expression that is True, even if
others are also True.) All the conditional expressions in this example test the same variable, so
they need to be listed in ascending order to get the taxpayers to be placed in the right groups.
Moral: When you use more than one conditional expression, consider the order carefully.

This useful decision structure tests the double-precision variable AdjustedIncome at the first
income level and subsequent income levels until one of the conditional expressions evaluates
to True, and then determines the taxpayer’s income tax accordingly. With some simple
modifications, it could be used to compute the tax owed by any taxpayer in a progressive tax
system, such as the one in the United States. Provided that the tax rates are complete and up
to date and that the value in the AdjustedIncome variable is correct, the program as written
will give the correct tax owed for single U.S. taxpayers for 2010. If the tax rates change, it’s
a simple matter to update the conditional expressions. With an additional decision structure
to determine taxpayers’ filing status, the program readily extends itself to include all
U.S. taxpayers.

Tip  Expressions that can be evaluated as True or False are also known as Boolean expressions,
and the True or False result can be assigned to a Boolean variable or property. You can assign
Boolean values to certain object properties or Boolean variables that have been created by using
the Dim statement and the As Boolean keywords.

In the next exercise, you’ll use an If . . . Then decision structure that recognizes users as they
enter a program—a simple way to get started with writing your own decision structures.
You’ll also learn how to use the MaskedTextBox control to receive input from the user in
a specific format.

164	 Part II  Programming Fundamentals

Validate users by using If . . . Then

	 1.	 Start Visual Studio, and create a new Windows Forms Application project named
My User Validation.

The new project is created, and a blank form opens in the Designer.

	 2.	 Click the form, and then set the form’s Text property to “User Validation.”

	 3.	 Use the Label control to create a label on your form, and use the Properties window
to set the Text property to “Enter Your Social Security Number.”

	 4.	 Use the Button control to create a button on your form, and set the button’s Text
property to “Sign In.”

	 5.	 Click the MaskedTextBox control on the Common Controls tab in the Toolbox,
and then create a masked text box object on your form below the label.

The MaskedTextBox control is similar to the TextBox control that you have been using,
but by using MaskedTextBox, you can control the format of the information entered
by the user into your program. You control the format by setting the Mask property;
you can use a predefined format supplied by the control or choose your own format.
You’ll use the MaskedTextBox control in this program to require that users enter a Social
Security number in the standard nine-digit format used by the U.S. Internal Revenue
Service.

	 6.	 With the MaskedTextBox1 object selected, click the Mask property in the Properties
window, and then click the ellipses button in the second column.

The Input Mask dialog box opens, showing a list of your predefined formatting
patterns, or masks.

	 7.	 Click Social Security Number in the list.

The Input Mask dialog box looks like this:

	 Chapter 6  Using Decision Structures	 165

Although you won’t use it now, take a moment to note the <Custom> option, which
you can use later to create your own input masks using numbers and placeholder
characters such as a hyphen (-).

	 8.	 Click OK to accept Social Security Number as your input mask.

Visual Studio displays your input mask in the MaskedTextBox1 object, as shown in the
following screen shot:

	 9.	 Double-click the Sign In button.

The Button1_Click event procedure appears in the Code Editor.

	 10.	 Type the following program statements in the event procedure:

If MaskedTextBox1.Text = "555-55-1212" Then

 MsgBox("Welcome to the system!")

Else

 MsgBox("I don't recognize this number")

End If

This simple If . . . Then decision structure checks the value of the MaskedTextBox1
object’s Text property, and if it equals “555-55-1212,” the structure displays the
message “Welcome to the system!” If the number entered by the user is some other
value, the structure displays the message “I don’t recognize this number.” The beauty
in this program, however, is how the MaskedTextBox1 object automatically filters input
to ensure that it is in the correct format.

	 11.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap06 folder as the location for your project.

	 12.	 Click the Start Debugging button on the Standard toolbar.

The program runs in the IDE. The form prompts the user to enter a Social Security
number (SSN) in the appropriate format, and displays underlines and hyphens to offer
the user a hint of the format required.

166	 Part II  Programming Fundamentals

	 13.	 Type abcd to test the input mask.

Visual Basic prevents the letters from being displayed because letters do not fit the
requested format. A nine-digit SSN is required.

	 14.	 Type 1234567890 to test the input mask.

Visual Basic displays the number 123-45-6789 in the masked text box, ignoring the
10th digit that you typed. Again, Visual Basic has forced the user’s input into the
proper format. Your form looks like this:

	 15.	 Click the Sign In button.

Visual Basic displays the message “I don’t recognize this number” because the SSN does
not match the number the If . . . Then decision structure is looking for.

	 16.	 Click OK, delete the SSN from the masked text box, enter 555-55-1212 as the number,
and then click Sign In again.

This time the decision structure recognizes the number and displays a welcome message.
You see the following message box:

	 Chapter 6  Using Decision Structures	 167

Your code has prevented an unauthorized user from using the program, and you’ve
learned a useful skill related to controlling input from the user.

	 17.	 Exit the program.

Using Logical Operators in Conditional Expressions
You can test more than one conditional expression in If . . . Then and ElseIf clauses if you want
to include more than one selection criterion in your decision structure. The extra conditions are
linked by using one or more of the logical operators listed in Table 6-3.

TABLE 6-3  Visual Basic Logical Operators

Logical Operator Meaning

And If both conditional expressions are True, then the result is True.

Or If either conditional expression is True, then the result is True.

Not If the conditional expression is False, then the result is True. If the
conditional expression is True, then the result is False.

Xor If one and only one of the conditional expressions is True, then the result
is True. If both are True or both are False, then the result is False. (Xor
stands for exclusive Or.)

Tip  When your program evaluates a complex expression that mixes different operator types, it
evaluates mathematical operators first, comparison operators second, and logical operators third.

Table 6-4 lists some examples of the logical operators at work. In the expressions, it is
assumed that the Vehicle string variable contains the value “Bike,” and the integer variable
Price contains the value 200.

TABLE 6-4  Using Logical Expressions

Logical Expression Result

Vehicle = "Bike" And Price < 300 True (both conditions are True)

Vehicle = "Car" Or Price < 500 True (one condition is True)

Not Price < 100 True (condition is False)

Vehicle = "Bike" Xor Price < 300 False (both conditions are True)

In the following exercise, you’ll modify the My User Validation program to prompt the user
for a personal identification number (PIN) during the validation process. To do this, you will
add a second text box to get the PIN from the user, and then modify the If . . . Then clause
in the decision structure so that it uses the And operator to verify the PIN.

168	 Part II  Programming Fundamentals

Add password protection by using the And operator

	 1.	 Display the User Validation form, and then add a second Label control to the form
below the first masked text box.

	 2.	 Set the new label’s Text property to “PIN.”

	 3.	 Add a second MaskedTextBox control to the form below the first masked text box
and the new label.

	 4.	 Click the smart tag on the MaskedTextBox2 object to open the MaskedTextBox
Tasks list, and then click the Set Mask command to display the Input Mask
dialog box.

	 5.	 Click the Numeric (5-digits) input mask, and then click OK.

Like many PINs found online, this PIN will be five digits long. Again, if the user types
a password of a different length or format, it will be rejected.

	 6.	 Double-click the Sign In button to display the Button1_Click event procedure in the
Code Editor.

	 7.	 Modify the event procedure so that it contains the following code:

If MaskedTextBox1.Text = "555-55-1212" _

And MaskedTextBox2.Text = "54321" Then

 MsgBox("Welcome to the system!")

Else

 MsgBox("I don't recognize this number")

End If

The statement now includes the And logical operator, which requires that the user’s
PIN correspond with his or her SSN before the user is admitted to the system. (In this
case, the valid PIN is 54321; in a real-world program, this value would be extracted
along with the SSN from a secure database.) I modified the earlier program by adding
a line continuation character (_) to the end of the first line, and by adding the second
line beginning with And.

	 8.	 Click the Start Debugging button on the Standard toolbar.

The program runs in the IDE.

	 9.	 Type 555-55-1212 in the Social Security Number masked text box.

	 10.	 Type 54321 in the PIN masked text box.

	 11.	 Click the Sign In button.

The user is welcomed to the program, as shown in the screen shot
on the following page.

	 Chapter 6  Using Decision Structures	 169

	 12.	 Click OK to close the message box.

	 13.	 Experiment with other values for the SSN and PIN.

Test the program carefully to be sure that the welcome message is not displayed when
other PINs or SSNs are entered.

	 14.	 Click the Close button on the form when you’re finished.

The program ends, and the development environment returns.

Tip  You can further customize this program by using the PasswordChar property in
masked text box objects. The PasswordChar property can be used to display a placeholder
character, such as an asterisk (*), when the user types. (You specify the character by using
the Properties window.) Using a password character gives users additional secrecy as they
enter their protected password—a standard feature of such operations.

Short-Circuiting by Using AndAlso and OrElse
Visual Basic offers two logical operators that you can use in your conditional statements,
AndAlso and OrElse. These operators work the same as And and Or respectively, but
offer an important subtlety in the way they’re evaluated that is worth a few moments of
thoughtful consideration. However, they are also somewhat advanced, so if you would like
to skip this section (offered here for completeness sake) feel free to do so.

Consider an If statement that has two conditions that are connected by an AndAlso operator.
For the statements of the If structure to be executed, both conditions must evaluate to True.
If the first condition evaluates to False, Visual Basic skips to the next line or the Else statement
immediately, without testing the second condition. This partial, or short-circuiting, evaluation

170	 Part II  Programming Fundamentals

of an If statement makes logical sense—why should Visual Basic continue to evaluate the If
statement if both conditions cannot be True?

The OrElse operator works in a similar fashion. Consider an If statement that has two
conditions that are connected by an OrElse operator. For the statements of the If structure
to be executed, at least one condition must evaluate to True. If the first condition evaluates
to True, Visual Basic begins to execute the statements in the If structure immediately, without
testing the second condition.

Here’s an example of the short-circuit situation in Visual Basic, a simple routine that uses
an If statement and an AndAlso operator to test two conditions and display the message
“Inside If” if both conditions are True:

Dim Number As Integer = 0

If Number = 1 AndAlso MsgBox("Second condition test") Then

 MsgBox("Inside If")

Else

 MsgBox("Inside Else")

End If

The MsgBox function itself is used as the second conditional test, which is somewhat unusual,
but the strange syntax is completely valid and gives us a perfect opportunity to see how
short-circuiting works up close. The text “Second condition test” appears in a message
box only if the Number variable is set to 1; otherwise, the AndAlso operator short-circuits
the If statement, and the second condition isn’t evaluated. If you actually try this code,
remember that it’s for demonstration purposes only—you wouldn’t want to use MsgBox
with this syntax as a test because it doesn’t really test anything. But by changing the Number
variable from 0 to 1 and back, you can get a good idea of how the AndAlso statement and
short-circuiting work.

Here’s a second example of how short-circuiting functions in Visual Basic when two
conditions are evaluated using the AndAlso operator. This time, a more complex conditional
test (7 / HumanAge <= 1) is used after the AndAlso operator to determine what some
people call the “dog age” of a person:

Dim HumanAge As Integer

HumanAge = 7

'One year for a dog is seven years for a human

If HumanAge <> 0 AndAlso 7 / HumanAge <= 1 Then

 MsgBox("You are at least one dog year old")

Else

 MsgBox("You are less than one dog year old")

End If

As part of a larger program that determines the so-called dog age of a person by dividing
his or her current age by 7, this bare-bones routine tries to determine whether the value
in the HumanAge integer variable is at least 7. (If you haven’t heard the concept of “dog
age” before, bear with me—following this logic, a 28-year-old person would be four dog

	 Chapter 6  Using Decision Structures	 171

years old. This has been suggested as an interesting way of relating to dogs, since dogs
have a lifespan of roughly one-seventh that of humans.) The code uses two If statement
conditions and can be used in a variety of different contexts—I used it in the Click event
procedure for a button object. The first condition checks to see whether a non-zero number
has been placed in the HumanAge variable—I’ve assumed momentarily that the user has
enough sense to place a positive age into HumanAge because a negative number would
produce incorrect results. The second condition tests whether the person is at least seven
years old. If both conditions evaluate to True, the message “You are at least one dog year
old” is displayed in a message box. If the person is less than seven, the message “You are
less than one dog year old” is displayed.

Now imagine that I’ve changed the value of the HumanAge variable from 7 to 0. What
happens? The first If statement condition is evaluated as False by the Visual Basic compiler,
and that evaluation prevents the second condition from being evaluated, thus halting, or
short-circuiting, the If statement and saving us from a nasty “divide by zero” error that could
result if we divided 7 by 0 (the new value of the HumanAge variable). And recall that if you
divide by zero in a Visual Basic program and don’t catch the problem somehow, the result
will be an error because division by zero isn’t permitted.

In summary, the AndAlso and OrElse operators in Visual Basic open up a few new possibilities
for Visual Basic programmers, including the potential to prevent run-time errors and other
unexpected results. It’s also possible to improve performance by placing conditions that
are time-consuming to calculate at the end of the condition statement because Visual
Basic doesn’t perform these expensive condition calculations unless it’s necessary. However,
you need to think carefully about all the possible conditions that your If statements might
encounter as variable states change during program execution.

Select Case Decision Structures
With Visual Basic, you can also control the execution of statements in your programs by
using Select Case decision structures. You used Select Case structures in Chapters 3 and 5
of this book when you wrote event procedures to process list box and combo box choices.
A Select Case structure is similar to an If . . . Then . . . ElseIf structure, but it’s more efficient
when the branching depends on one key variable, or test case. You can also use Select Case
structures to make your program code more readable.

The syntax for a Select Case structure looks like this:

Select Case variable

 Case value1

 statements executed if value1 matches variable

 Case value2

 statements executed if value2 matches variable

 Case value3

172	 Part II  Programming Fundamentals

 statements executed if value3 matches variable

 ...

 Case Else

 statements executed if no match is found

End Select

A Select Case structure begins with the Select Case keywords and ends with the End Select
keywords. You replace variable with the variable, property, or other expression that is to
be the key value, or test case, for the structure. You replace value1, value2, and value3 with
numbers, strings, or other values related to the test case being considered. If one of the
values matches the variable, the statements below the Case clause are executed, and then
Visual Basic jumps to the line after the End Select statement and picks up execution there.
You can include any number of Case clauses in a Select Case structure, and you can include
more than one value in a Case clause. If you list multiple values after a case, separate them
with commas.

The following example shows how a Select Case structure could be used to print an
appropriate message about a person’s age and cultural milestones in a program. Since the
Age variable contains a value of 18, the string “You can vote now!” is assigned to the Text
property of the label object. (You’ll notice that the “milestones” have a U.S. slant to them;
please customize freely to match your cultural setting.)

Dim Age As Integer

Age = 18

Select Case Age

 Case 16

 Label1.Text = "You can drive now!"

 Case 18

 Label1.Text = "You can vote now!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

 Case 65

 Label1.Text = "Time to retire and have fun!"

End Select

A Select Case structure also supports a Case Else clause that you can use to display a
message if none of the preceding cases matches the Age variable. Here’s how Case Else
would work in the following example—note that I’ve changed the value of Age to 25 to
trigger the Case Else clause:

Dim Age As Integer

Age = 25

Select Case Age

 Case 16

 Label1.Text = "You can drive now!"

 Case 18

 Label1.Text = "You can vote now!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

	 Chapter 6  Using Decision Structures	 173

 Case 65

 Label1.Text = "Time to retire and have fun!"

 Case Else

 Label1.Text = "You're a great age! Enjoy it!"

End Select

Using Comparison Operators with a Select
Case Structure
You can use comparison operators to include a range of test values in a Select Case structure.
The Visual Basic comparison operators that can be used are =, <>, >, <, >=, and <=. To use
the comparison operators, you need to include the Is keyword or the To keyword in the
expression to identify the comparison you’re making. The Is keyword instructs the compiler
to compare the test variable to the expression listed after the Is keyword. The To keyword
identifies a range of values. The following structure uses Is, To, and several comparison
operators to test the Age variable and to display one of five messages:

Select Case Age

 Case Is < 13

 Label1.Text = "Enjoy your youth!"

 Case 13 To 19

 Label1.Text = "Enjoy your teens!"

 Case 21

 Label1.Text = "You can drink wine with your meals."

 Case Is > 100

 Label1.Text = "Looking good!"

 Case Else

 Label1.Text = "That's a nice age to be."

End Select

If the value of the Age variable is less than 13, the message “Enjoy your youth!” is displayed.
For the ages 13 through 19, the message “Enjoy your teens!” is displayed, and so on.

A Select Case decision structure is usually much clearer than an If . . . Then structure and is more
efficient when you’re making three or more branching decisions based on one variable or
property. However, when you’re making two or fewer comparisons, or when you’re working with
several different values, you’ll probably want to use an If . . . Then decision structure.

In the following exercise, you’ll see how you can use a Select Case structure to process input
from a list box. You’ll use the ListBox.Text and ListBox.SelectedIndex properties to collect
the input, and then you’ll use a Select Case structure to display a greeting in one of four
languages.

Use a Select Case structure to process input from a list box

	 1.	 On the File menu, click New Project.

The New Project dialog box opens.

	 2.	 Create a new Windows Forms Application project named My Select Case.

A blank form opens in the Designer.

174	 Part II  Programming Fundamentals

	 3.	 Click the Label control in the Toolbox, and then draw a label near the top of the form to
display a title for the program.

	 4.	 Use the Label control to create a second label object below the first.

You’ll use this label as a title for the list box.

	 5.	 Click the ListBox control in the Toolbox, and then create a list box below the second
label.

	 6.	 Use the Label control to draw two more labels below the list box to display program
output.

	 7.	 Use the Button control to create a small button on the bottom of the form.

	 8.	 Open the Properties window, and then set the properties as shown in the following
table, for the objects that you have just created.

Object Property Setting

Form1 Text “Case Greeting”

Label1 Font

Name

Text

Times New Roman, Bold, 12 point

lblTitle

“International Welcome Program”

Label2 Name

Text

lblTextBoxLabel

“Choose a country”

Label3 Font

Name

Text

Microsoft Sans Serif 10 point

lblCountry

(empty)

Label4 AutoSize

BorderStyle

ForeColor

Name

Text

False

Fixed3D

Red

lblGreeting

(empty)

ListBox1 Name lstCountryBox

Button1 Name

Text

btnQuit

“Quit”

Since there are so many objects, you’ll also assign Name properties to help you easily
identify the control on the form and within your program code. (When the properties in
the Properties window are sorted alphabetically, you’ll find Name listed in parentheses
near the top of the Properties window. When the properties in the Properties window
are sorted by category, you’ll find Name listed in parentheses in the Design category.)
I recommend that you use the Name property whenever you have more than four or
five objects in a program. In this example, I’ve given the objects names that feature
a three-character prefix to identify the object type, such as btn (for button), lbl (for
label), and lst (for list box).

	 Chapter 6  Using Decision Structures	 175

When you’ve finished setting properties, your form looks similar to this:

Now you’ll enter the program code to initialize the list box.

	 9.	 Double-click the form.

The Form1_Load event procedure appears in the Code Editor.

	 10.	 Type the following program code to initialize the list box:

lstCountryBox.Items.Add("England")

lstCountryBox.Items.Add("Germany")

lstCountryBox.Items.Add("Mexico")

lstCountryBox.Items.Add("Italy")

These lines use the Add method of the list box object to add entries to the list box on
your form.

	 11.	 Click the Form1.vb [Design] tab at the top of the Code Editor to switch back to the
Designer, and then double-click the list box object on your form to edit its event
procedure.

The lstCountryBox_SelectedIndexChanged event procedure appears in the Code Editor.

	 12.	 Type the following lines to process the list box selection made by the user:

lblCountry.Text = lstCountryBox.Text

Select Case lstCountryBox.SelectedIndex

 Case 0

 lblGreeting.Text = "Hello, programmer"

 Case 1

 lblGreeting.Text = "Hallo, programmierer"

 Case 2

 lblGreeting.Text = "Hola, programador"

 Case 3

 lblGreeting.Text = "Ciao, programmatore"

End Select

176	 Part II  Programming Fundamentals

The first line copies the name of the selected list box item to the Text property of the
third label on the form (which you renamed lblCountry). The most important property
used in the statement is lstCountryBox.Text, which contains the exact text of the item
selected in the list box. The remaining statements are part of the Select Case decision
structure. The structure uses the lstCountryBox.SelectedIndex property as a test case
variable and compares it to several values. The SelectedIndex property always contains
the number of the item selected in the list box; the item at the top is 0 (zero), the second
item is 1, the next item is 2, and so on. By using SelectedIndex, the Select Case structure
can quickly identify the user’s choice and display the correct greeting on the form.

	 13.	 Display the form again, and then double-click the Quit button (btnQuit).

The btnQuit_Click event procedure appears in the Code Editor.

	 14.	 Type End in the event procedure.

	 15.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap06 folder as the location.

Now run the program, and see how the Select Case statement works.

Tip  The complete Select Case project is located in the C:\Vb10sbs\Chap06\Select Case
folder.

	 16.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 17.	 Click each of the country names in the Choose A Country list box.

The program displays a greeting for each of the countries listed. The following
screen shot shows the greeting for Italy:

	 Chapter 6  Using Decision Structures	 177

	 18.	 Click the Quit button to stop the program.

The program stops, and the development environment returns.

You’ve finished working with If . . . Then and Select Case decision structures in this chapter.
You’ll have several additional opportunities to work with them in this book, however.
If . . . Then and Select Case are two of the crucial decision-making mechanisms in the Visual
Basic programming language, and you’ll find that you use them in almost every program that
you write.

One Step Further: Detecting Mouse Events
I began this chapter by discussing a few of the events that Visual Basic programs can respond
to, and as the chapter progressed, you learned how to manage different types of events by
using the If . . . Then and Select Case decision structures. In this section, you’ll add an event
handler to the Select Case program that detects when the pointer “hovers” over the Country
list box for a moment or two. You’ll write the special routine, or event handler, by building
a list box event procedure for the MouseHover event, one of several mouse-related activities
that Visual Basic can monitor and process. This event procedure will display the message
“Please click the country name” if the user points to the country list box for a moment or
two but doesn’t make a selection, perhaps because he or she doesn’t know how to make
a selection or has become engrossed in another task.

Add a mouse event handler

	 1.	 Open the Code Editor if it isn’t already open.

	 2.	 At the top of the Code Editor just below the Form1.vb tab, click the Class Name arrow,
and then click the lstCountryBox object.

	 3.	 Click the Method Name arrow, and then click the MouseHover event.

Visual Basic adds the lstCountryBox_MouseHover event procedure in the Code Editor,
as shown here:

Each object on the form has one event procedure that is added automatically
when you double-click the object on the form. When you need to add other event
procedures for an object, you can use the Method Name list box.

178	 Part II  Programming Fundamentals

	 4.	 Type the following program statements in the lstCountryBox_MouseHover event
procedure:

If lstCountryBox.SelectedIndex < 0 Then

 lblGreeting.Text = "Please click the country name"

End If

This If statement evaluates the SelectedIndex property of the list box object by using
a conditional statement. The event handler assumes that if the SelectedIndex property
is zero or greater, the user doesn’t need help picking the country name (because he or
she has already selected a country). But if the SelectedIndex property is less than zero,
the event handler displays the message “Please click the country name” in the greeting
label at the bottom of the form. This Help message appears when the user holds the
pointer over the list box and disappears when a country name is selected.

	 5.	 Click the Start Debugging button to run the program.

	 6.	 Hold the pointer over the country list box, and wait a few moments.

The message “Please click the country name” appears in red text in the label, as
shown here:

	 7.	 Click a country name in the list box.

The translated greeting appears in the label, and the Help message disappears.

	 8.	 Click the Quit button to stop the program.

You’ve learned how to process mouse events in a program, and you’ve also learned
that writing event handlers is quite simple. Try writing additional event handlers on
your own as you continue reading this book—it will help you learn more about the
events available to Visual Studio objects, and it will give you more practice with
If . . . Then and Select Case decision structures.

	 Chapter 6  Using Decision Structures	 179

Chapter 6 Quick Reference

To Do This

Write a conditional
expression

Use one of the following comparison operators
between two values: =, <>, >, <, >=, or <=.

Use an If . . . Then
decision structure

Use the following syntax:

If condition1 Then

 statements executed if condition1 True

ElseIf condition2 Then

 statements executed if condition2 True

Else

 statements executed if none are True

End If

Receive input from the
user in a specific format

Add a MaskedTextBox control to your form, and specify the input
format by configuring the Mask property.

Use a Select Case
decision structure

Use the following syntax:

Select Case variable

Case value1

 statements executed if value1 matches

Case value2

 statements executed if value2 matches

Case Else

 statements executed if none match

End Select

Rename an object in
a program

Select the object that you want to rename, and then modify the
object’s (Name) property by using the Properties window. If you
give the object a three-character prefix that identifies its object
type (btn, lbl, lst, etc.), the object is easier to spot in program code.

Make two comparisons in
a conditional expression

Use a logical operator between comparisons (And, Or, Not, or Xor).

Short-circuit an If . . . Then
statement

If . . . Then statements can be short-circuited when the AndAlso and
OrElse operators are used and two or more conditional expressions
are given. Depending on the result of the first condition, Visual Basic
might not evaluate the additional conditions, and the statement is
short-circuited.

Write an event handler In the Code Editor, click an object name in the Class Name list box,
and then click an event name in the Method Name list box. Add
program statements to the event procedure (called an event handler)
that respond to the event you are customizing.

		 181

Chapter 7

Using Loops and Timers
After completing this chapter, you will be able to:

n	 Use a For . . . Next loop to execute statements a set number of times.

n	 Display output in a multiline text box by using string concatenation.

n	 Use a Do loop to execute statements until a specific condition is met.

n	 Use the Timer control to execute code at specific times.

n	 Create your own digital clock and timed password utility.

n	 Use the Insert Snippet command to insert ready-made code templates or snippets
into the Code Editor.

In Chapter 6, “Using Decision Structures,” you learned how to use the If . . . Then and Select
Case decision structures to choose which statements to execute in a program. You also
learned how to process user input and evaluate different conditions in a program and how
to determine which block of program statements to execute based on changing conditions.
Now you’ll continue learning about program execution and flow control by using loops to
execute a block of statements over and over again. You’ll also create a digital clock and
other interesting utilities that perform actions at set times or in relation to intervals on your
computer’s system clock.

In this chapter, you’ll use a For . . . Next loop to execute statements a set number of times,
and you’ll use a Do loop to execute statements until a conditional expression is met. You’ll
also learn how to display more than one line of text in a text box object by using the string
concatenation (&) operator, and you’ll learn how to use the Microsoft Visual Studio Timer
control to execute code at specific intervals in your program. Finally, you’ll learn how to use
the Insert Snippet command to insert code templates into your programs—a time-saving
feature within the Visual Studio Integrated Design Environment (IDE).

Writing For . . . Next Loops
With a For . . . Next loop, you can execute a specific group of program statements a set
number of times in an event procedure or a code module. This approach can be useful if
you’re performing several related calculations, working with elements on the screen, or
processing several pieces of user input. A For . . . Next loop is really just a shorthand way
of writing out a long list of program statements. Because each group of statements in
such a list does essentially the same thing, you can define just one group of statements
and request that it be executed as many times as you want.

Table of Contents

Using Loops and Timers . 181
Writing For . . . Next Loops . 181

Using a Counter Variable in a Multiline
TextBox Control . 183

Creating Complex For . . . Next Loops . 185

Using a Counter That Has Greater Scope . 189

Writing Do Loops . 192

Avoiding an Endless Loop . 193

The Timer Control . 196

Creating a Digital Clock by Using a Timer Control . . 197

Using a Timer Object to Set a Time Limit . 200

One Step Further: Inserting Code Snippets . 203

Chapter 7 Quick Reference . 207

182	 Part II  Programming Fundamentals

The syntax for a For . . . Next loop looks like this:

For variable = start To end

 statements to be repeated

Next [variable]

In this syntax statement, For, To, and Next are required keywords, as is the equal to
operator (=). You replace variable with the name of a numeric variable that keeps track
of the current loop count (the variable after Next is optional), and you replace start and
end with numeric values representing the starting and stopping points for the loop. (Note
that you must declare variable before it’s used in the For . . . Next statement and that you
don’t type in the brackets, which I include to indicate an optional item.) The line or lines
between the For and Next statements are the instructions that are repeated each time
the loop is executed.

For example, the following For . . . Next loop sounds four beeps in rapid succession from
the computer’s speaker (although the result might be difficult to hear):

Dim i As Integer

For i = 1 To 4

 Beep()

Next i

This loop is the functional equivalent of writing the Beep statement four times in a procedure.
The compiler treats it the same as:

Beep()

Beep()

Beep()

Beep()

The variable used in the loop is i, a single letter that, by convention, stands for the first
integer counter in a For . . . Next loop and is declared as an Integer type. Each time the
loop is executed, the counter variable is incremented by 1. (The first time through the
loop, the variable contains a value of 1, the value of start; the last time through, it contains
a value of 4, the value of end.) As you’ll see in the following examples, you can use this
counter variable to great advantage in your loops.

Tip  In loops that use counter variables, the usual practice is to use the Integer type for the
variable declaration, as I did previously. However, you will get similar performance in Visual Basic
2010 if you declare the counter variable as type Long or Decimal.

	 Chapter 7  Using Loops and Timers	 183

Using a Counter Variable in a Multiline
TextBox Control

A counter variable is just like any other variable in an event procedure. It can be assigned
to properties, used in calculations, or displayed in a program. One of the practical uses for
a counter variable is to display output in a TextBox control. You used the TextBox control
earlier in this book to display a single line of output, but in this chapter, you’ll display many
lines of text by using a TextBox control. The trick to displaying more than one line is simply
to set the Multiline property of the TextBox control to True and to set the ScrollBars property
to Vertical. Using these simple settings, the one-line text box object becomes a multiline text
box object with scroll bars for easy access.

Display information by using a For . . . Next loop

	 1.	 Start Visual Studio, and create a new Microsoft Visual Basic Windows Forms Application
project named My For Loop.

A blank form opens in the Designer. Your first programming step is to add a Button
control to the form, but this time you’ll do it in a new way.

	 2.	 Double-click the Button control in the Toolbox.

Visual Studio places a button object in the upper-left corner of the form. With
the Button control and many others, double-clicking is a quick way to create a
standard-sized object on the form. Now you can drag the button object where you
want it and customize it with property settings.

	 3.	 Drag the button object to the right, and center it near the top of the form.

	 4.	 Open the Properties window, and then set the Text property of the button to “Loop.”

	 5.	 Double-click the TextBox control in the Toolbox.

Visual Studio creates a small text box object on the form.

	 6.	 Set the Multiline property of the text box object to True, and then set the ScrollBars
property of the text box object to Vertical.

Note  The TextBox1 object contains a smart tag, which you can use to set the Multiline
property to True. Collectively, the Multiline and ScrollBars properties prepare the text box
for displaying more than one line of text.

	 7.	 Move the text box below the button, and enlarge it so that it takes up two-thirds of
the form.

	 8.	 Double-click the Loop button on the form.

The Button1_Click event procedure appears in the Code Editor.

184	 Part II  Programming Fundamentals

	 9.	 Type the following program statements in the procedure:

Dim i As Integer

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 1 To 10

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

This event procedure declares two variables, one of type Integer (i) and one of type
String (Wrap). It then assigns a string value representing the carriage return character
to the second variable.

Tip  In programmer terms, a carriage return character is the equivalent of pressing the
ENTER key on the keyboard. I created a special variable for this character in the program
code, which is made up of return and linefeed elements, to make coding a carriage return
less cumbersome. The return element, Chr(13) moves the I-beam to the beginning of the
line. The linefeed element, Chr(10), reminiscent of an older style typewriter, moves the
I-beam to the next line.

After the variable declaration and assignment, I use a For . . . Next loop to display
Line X 10 times in the text box object, where X is the current value of the counter
variable (in other words, Line 1 through Line 10). The string concatenation
characters (&) join together the component parts of each line in the text box. First, the
entire value of the text box, which is stored in the Text property, is added to the object
so that previous lines aren’t discarded when new ones are added. Next, the Line string,
the current line number, and the carriage return character (Wrap) are combined to
display a new line and move the I-beam to the left margin and down one line. The Next
statement completes the loop.

Note that Visual Studio automatically adds the Next statement to the bottom of the
loop when you type For to begin the loop. In this case, I edited the Next statement to
include the i variable name—this is an optional syntax clarification that I like to use.
(The variable name makes it clear which variable is being updated, especially in nested
For . . . Next loops.)

	 10.	 Click the Save All button on the Standard toolbar to save your changes, and specify
the C:\Vb10sbs\Chap07 folder as the location.

Now you’re ready to run the program.

Tip  The complete For Loop program is available in the C:\Vb10sbs\Chap07\For Loop
folder.

	 11.	 Click the Start Debugging button on the Standard toolbar.

	 Chapter 7  Using Loops and Timers	 185

	 12.	 Click the Loop button.

The For . . . Next loop displays 10 lines in the text box, as shown here:

	 13.	 Click the Loop button again.

The For . . . Next loop displays another 10 lines on the form. (You can see any
nonvisible lines by using the vertical scroll bar to scroll down.) Each time the loop is
repeated, it adds 10 more lines to the text box object.

Tip  Worried about running out of room in the text box object? It will take a while if you’re
displaying only simple text lines. The maximum number of characters is specified in the
MaxLength property for a text box. By default, MaxLength is set to 32,767 characters.
If you need more characters, you can increase this value. If you want more formatting
options, you can use the RichTextBox control in the Toolbox—a similar but even more
capable control for displaying and manipulating text.

	 14.	 Click the Close button on the form to stop the program.

As you can see, a For . . . Next loop can considerably simplify your code and reduce the
total number of statements that you need to type. In the previous example, a loop
three lines long processed the equivalent of 10 program statements each time you
clicked the Loop button.

Creating Complex For . . . Next Loops
The counter variable in a For . . . Next loop can be a powerful tool in your programs. With
a little imagination, you can use it to create several useful sequences of numbers in your
loops. To create a loop with a counter pattern other than 1, 2, 3, 4, and so on, you can

186	 Part II  Programming Fundamentals

specify a different value for start in the loop and then use the Step keyword to increment
the counter at different intervals. For example, the code:

Dim i As Integer

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 5 To 25 Step 5

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

displays the following sequence of line numbers in a text box:

Line 5

Line 10

Line 15

Line 20

Line 25

You can also specify decimal values in a loop if you declare i as a single-precision or
double-precision type. For example, the For . . . Next loop:

Dim i As Single

Dim Wrap As String

Wrap = Chr(13) & Chr(10)

For i = 1 To 2.5 Step 0.5

 TextBox1.Text = TextBox1.Text & "Line " & i & Wrap

Next i

displays the following line numbers in a text box:

Line 1

Line 1.5

Line 2

Line 2.5

In addition to displaying the counter variable, you can use the counter to set properties,
calculate values, or process files. The following exercise shows how you can use the
counter to open Visual Basic icons that are stored on your hard disk in files that have
numbers in their names. You’ll find many icons, bitmaps, and animation files in the
C:\Program Files\Microsoft Visual Studio 10.0\Common7\Vs2010imagelibrary folder.
These files are contained in a compressed .zip file, so you will need to extract the files.
These files are not included in Visual Basic 2010 Express. Also note that Microsoft changes
the location for these types of files on occasion.

Open files by using a For . . . Next loop

	 1.	 On the File menu, click the New Project command.

The New Project dialog box opens.

	 Chapter 7  Using Loops and Timers	 187

	 2.	 Create a new Windows Forms Application project named My For Loop Icons.

Your new project starts, and a blank form opens in the Designer.

Note  If you’re opening the project from the practice files I provided, you’ll see slightly
different code than what is shown in Step 7 of this exercise because we modify the For
Loop Icons project in the next exercise.

	 3.	 Click the PictureBox control in the Toolbox, and then draw a medium-sized square
picture box object centered on the top half of the form.

	 4.	 Click the Button control, and then draw a very wide button below the picture box.
(You’ll put a longer-than-usual label on the button.)

	 5.	 Set the following properties for the two objects:

Object Property Setting

PictureBox1 BorderStyle

SizeMode

Fixed3D

StretchImage

Button1 Text “Display Four Faces”

	 6.	 Double-click the Display Four Faces button on the form to display the event procedure
for the button object.

The Button1_Click event procedure appears in the Code Editor.

	 7.	 Type the following For . . . Next loop:

Dim i As Integer

For i = 1 To 4

 PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap07\face0" & i & ".ico")

 MsgBox("Click here for next face.")

Next

Tip  The FromFile method in this event procedure is too long to fit on one line in this
book, so I broke it into two lines by using a space and the line continuation character (_).
You can use this character anywhere in your program code except within a string
expression. Starting in Visual Basic 2010, including the line continuation character (_) is
optional in most cases.

The loop uses the FromFile method to load four icon files from the C:\Vb10sbs\Chap07
folder on your hard disk. The file name is created by using the counter variable and the
concatenation operator you used earlier in this chapter. The code:

PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap07\face0" & i & ".ico")

188	 Part II  Programming Fundamentals

combines a path, a file name, and the .ico extension to create four valid file names of
icons on your hard disk. In this example, you’re loading Face01.ico, Face02.ico, Face03.
ico, and Face04.ico into the picture box. This statement works because several files in
the C:\Vb10sbs\Chap07 folder have the file name pattern Facexx.ico. By recognizing the
pattern, you can build a For . . . Next loop around the file names.

Note  The message box function (MsgBox) is used primarily to slow the action down so
that you can see what’s happening in the For . . . Next loop. In a normal application, you
probably wouldn’t use such a function (but you’re welcome to).

	 8.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap07 folder as the location.

	 9.	 Click the Start Debugging button to run the program, and then click the Display Four
Faces button.

The For . . . Next loop loads the first face into the picture box and then displays this
message box:

Note  If Visual Basic displays an error message, ensure that your program code has no
typos and then verify that the icon files are in the path you specified in the program. If
you installed the Step by Step practice files in a folder other than the default folder, or if
you moved your icon files after installation, the path in the event procedure might not
be correct.

	 Chapter 7  Using Loops and Timers	 189

	 10.	 Click OK to display the next face.

Your screen looks something like this:

	 11.	 Click OK three more times to see the entire face collection.

You can repeat the sequence if you want.

	 12.	 When you’re finished, click the Close button on the form.

The program stops, and the development environment returns.

Using a Counter That Has Greater Scope
Are there times when using a For . . . Next loop isn’t that efficient or elegant? Sure. In fact,
the preceding example, although useful as a demonstration, was a little hampered by the
intrusive behavior of the message box, which opened four times in the For . . . Next loop and
distracted the user from the form, where we want his or her attention to be. Is there a way
we can do away with that intrusive message box?

One solution is to remove both the MsgBox function and the For . . . Next loop, and substitute
in their place a counter variable that has greater scope throughout the form. As you learned
in Chapter 5, “Visual Basic Variables and Formulas, and the .NET Framework,” you can declare
a variable that has scope (or maintains its value) throughout the entire form by placing a Dim
statement for the variable at the top of the form in the Code Editor—a special location above
the event procedures. In the following exercise, you’ll use an Integer variable named Counter
that maintains its value between calls to the Button1_Click event procedure, and you’ll use
that variable to open the same icon files without using the MsgBox function to pause the
action.

190	 Part II  Programming Fundamentals

Use a global counter

	 1.	 Open the Code Editor for the My For Loop Icons project.

	 2.	 Move the insertion point above the Button1_Click event procedure, and directly below
the Public Class Form1 statement, declare an Integer variable named Counter by using
this syntax:

Dim Counter As Integer = 1

Notice that Visual Studio separates the declaration that you’ve just entered from the
event procedure with a solid line and displays the word “(Declarations)” in the Method
Name list box. You’ve also done something unusual here—in addition to declaring
the Counter variable, you’ve also assigned the variable a value of 1. Declaring and
assigning at the same time has been a handy feature of Visual Basic since version 2002.
In Chapter 5, I used this syntax to declare a constant, but this is the first time that I’ve
used it for variable declarations.

	 3.	 Within the Button1_Click event procedure, change the code so that it precisely matches
the following group of program statements. (Delete any statements that aren’t here.)

PictureBox1.Image = System.Drawing.Image.FromFile _

 ("c:\vb10sbs\chap07\face0" & Counter & ".ico")

Counter += 1

If Counter = 5 Then Counter = 1

As you can see, I’ve deleted the declaration for the i integer, the For and Next
statements, and the MsgBox function, and I’ve changed the way the FromFile method
works. (I’ve replaced the i variable with the Counter variable.) I’ve also added two
new statements that use the Counter variable. The first statement adds 1 to Counter
(Counter += 1), and the second statement resets the Counter variable if the value has
been incremented to 5. (Resetting the variable in this way allows the list of icon files to
cycle indefinitely.) The Counter += 1 syntax is a shortcut feature in Visual Basic 2010—
the functional equivalent of the following statement:

Counter = Counter + 1

Now you’ll run the program.

Tip  The modified For Loop Icons program is available in the C:\Vb10sbs\Chap07\For Loop
Icons folder.

	 4.	 Click the Start Debugging button on the Standard toolbar to run the program.

The program runs in the development environment.

	 5.	 Click the Display Four Faces button several times. (Notice how the mood of the faces
develops from glum to cheery, as shown here.)

	 Chapter 7  Using Loops and Timers	 191

	 6.	 When you’re finished, click the Close button on the form to stop the program.

As you can see, this solution is a little more elegant than the previous example because
the user can click just one button, not a form button and a message box button. The
shortcoming of the interface in the first program wasn’t the fault of the For . . . Next loop,
however, but rather the limitation I imposed that the Button1_Click event procedure use
only local variables (in other words, variables that were declared within the event procedure
itself). Between button clicks, these local variables lost their value, and the only way I could
increment the counter was to build a loop. By using an Integer variable with a greater
scope, I can preserve the value of the Counter variable between clicks and use that numeric
information to display files within the Button1_Click event procedure.

The Exit For Statement
Most For . . . Next loops run to completion without incident, but now and then you’ll
find it useful to end the computation of a For . . . Next loop if a particular “exit condition”
occurs. Visual Basic allows for this possibility by providing the Exit For statement, which
you can use to terminate the execution of a For . . . Next loop early and move execution
to the first statement after the loop.

For example, the following For . . . Next loop prompts the user for 10 names and
displays them one by one in a text box unless the user enters the word “Done”:

Dim i As Integer

Dim InpName As String

For i = 1 To 10

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName = "Done" Then Exit For

 TextBox1.Text = InpName

Next i

If the user does enter “Done,” the Exit For statement terminates the loop, and execution
picks up with the statement after Next.

192	 Part II  Programming Fundamentals

Writing Do Loops
As an alternative to a For . . . Next loop, you can write a Do loop that executes a group of
statements until a certain condition is True. Do loops are valuable because often you can’t
know in advance how many times a loop should repeat. For example, you might want to let
the user enter names in a database until the user types the word Done in an input box. In
that case, you can use a Do loop to cycle indefinitely until the Done text string is entered.

A Do loop has several formats, depending on where and how the loop condition is evaluated.
The most common syntax is:

Do While condition

 block of statements to be executed

Loop

For example, the following Do loop prompts the user for input and displays that input in
a text box until the word Done is typed in the input box:

Dim InpName As String

Do While InpName <> "Done"

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop

The conditional statement in this loop is InpName <> "Done", which the Visual Basic
compiler translates to mean “loop so long as the InpName variable doesn’t contain the
exact word ‘Done’.” This brings up an interesting fact about Do loops: If the condition at
the top of the loop isn’t True when the Do statement is first evaluated, the Do loop is never
executed. Here, if the InpName string variable did contain the “Done” value before the loop
started (perhaps from an earlier assignment in the event procedure), Visual Basic would skip
the loop altogether and continue with the line below the Loop keyword.

If you always want the loop to run at least once in a program, put the conditional test at the
bottom of the loop. For example, the loop:

Dim InpName As String

Do

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop While InpName <> "Done"

is essentially the same as the previous Do loop, but here the loop condition is tested after
a name is received from the InputBox function. This has the advantage of updating the
InpName variable before the conditional test in the loop so that a preexisting Done value
won’t cause the loop to be skipped. Testing the loop condition at the bottom ensures that
your loop is executed at least once, but often it forces you to add a few extra statements to
process the data.

	 Chapter 7  Using Loops and Timers	 193

Note  The previous code samples asked the user to type Done to quit. Note that the test of the
entered text is case-sensitive, which means that typing done or DONE doesn’t end the program.
You can make the test case-insensitive by using the StrComp function, which I’ll discuss in
Chapter 13, “Exploring Text Files and String Processing.”

Avoiding an Endless Loop
Because of the relentless nature of Do loops, it’s very important to design your test
conditions so that each loop has a true exit point. If a loop test never evaluates to False,
the loop executes endlessly, and your program might not respond to input. Consider the
following example:

Dim Number as Double

Do

 Number = InputBox("Enter a number to square. Type –1 to quit.")

 Number = Number * Number

 TextBox1.Text = Number

Loop While Number >= 0

In this loop, the user enters number after number, and the program squares each number
and displays it in the text box. Unfortunately, when the user has had enough, he or she
can’t quit because the advertised exit condition doesn’t work. When the user enters –1, the
program squares it, and the Number variable is assigned the value 1. (The problem can be
fixed by setting a different exit condition. The next example demonstrates how to check
if the user clicked the Cancel button and exited the loop.) Watching for endless loops is
essential when you’re writing Do loops. Fortunately, they’re pretty easy to spot if you test
your programs thoroughly.

Important  Be sure that each loop has a legitimate exit condition.

The following exercise shows how you can use a Do loop to convert Fahrenheit temperatures
to Celsius temperatures. The simple program prompts the user for input by using the
InputBox function, converts the temperature, and displays the output in a message box.

Convert temperatures by using a Do loop

	 1.	 On the File menu, click New Project.

The New Project dialog box opens.

	 2.	 Create a new Visual Basic Windows Forms Application project named My Celsius
Conversion.

194	 Part II  Programming Fundamentals

The new project is created, and a blank form opens in the Designer. This time, you’ll
place all the code for your program in the Form1_Load event procedure so that Visual
Basic immediately prompts you for the Fahrenheit temperature when you start the
application. You’ll use an InputBox function to request the Fahrenheit data, and you’ll
use a MsgBox function to display the converted value.

	 3.	 Double-click the form.

The Form1_Load event procedure appears in the Code Editor.

	 4.	 Type the following program statements in the Form1_Load event procedure:

Dim FTemp, Celsius As Single

Dim strFTemp As String

Dim Prompt As String = "Enter a Fahrenheit temperature."

Do

 strFTemp = InputBox(Prompt, "Fahrenheit to Celsius")

 If strFTemp <> "" Then

 FTemp = CSng(strFTemp)

 Celsius = Int((FTemp + 40) * 5 / 9 - 40)

 MsgBox(Celsius, , "Temperature in Celsius")

 End If

Loop While strFTemp <> ""

End

Tip  Be sure to include the End statement at the bottom of the Form1_Load event
procedure. When the user has had his or her fill of converting temperatures, this is how
the program terminates.

This code handles the calculations for the project. The first line declares two
single-precision variables, FTemp and Celsius, to hold the Fahrenheit and Celsius
temperatures, respectively. The second line declares a string variable named
strFTemp that holds a string version of the Fahrenheit temperature. The third line
declares a string variable named Prompt, which will be used in the InputBox function,
and assigns it an initial value. The Do loop repeatedly prompts the user for a Fahrenheit
temperature, converts the number to Celsius, and then displays it on the screen by
using the MsgBox function.

The value that the user enters in the input box is stored in the strFTemp variable. The
InputBox function always returns a value of type String, even if the user enters numbers.
Because we want to perform mathematical calculations on the entered value, strFTemp
must be converted to a number. The CSng function is used to convert a string into the
Single data type. CSng is one of many conversion functions you can use to convert a string
to a different data type. The converted single value is then stored in the FTemp variable.

The loop executes until the user clicks the Cancel button or until the user presses
ENTER or clicks OK with no value in the input box. Clicking the Cancel button or

	 Chapter 7  Using Loops and Timers	 195

entering no value returns an empty string (“”). The loop checks for the empty string by
using a While conditional test at the bottom of the loop. The program statement:

Celsius = Int((FTemp + 40) * 5 / 9 - 40)

handles the conversion from Fahrenheit to Celsius in the program. This statement
employs a standard conversion formula, but it uses the Int function to return a value
that contains no decimal places to the Celsius variable. (Everything to the right of the
decimal point is discarded.) This cutting sacrifices accuracy, but it helps you avoid long,
unsightly numbers such as 21.11111, the Celsius value for 70 degrees Fahrenheit.

	 5.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap07 folder as the location.

Now you’ll try running the program.

Tip  The complete Celsius Conversion program is available in the C:\Vb10sbs\Chap07\
Celsius Conversion folder.

	 6.	 Click the Start Debugging button on the Standard toolbar.

The program starts, and the InputBox function prompts you for a Fahrenheit
temperature.

	 7.	 Type 212.

Your screen looks like this:

	 8.	 Click OK.

The temperature 212 degrees Fahrenheit is converted to 100 degrees Celsius, as shown
in this message box:

196	 Part II  Programming Fundamentals

	 9.	 Click OK. Then type 72 in the input box, and click OK again.

The temperature 72 degrees Fahrenheit is converted to 22 degrees Celsius.

	 10.	 Click OK, and then click Cancel in the input box.

The program closes, and the development environment returns.

Using the Until Keyword in Do Loops
The Do loops you’ve worked with so far have used the While keyword to execute
a group of statements so long as the loop condition remains True. With Visual Basic,
you can also use the Until keyword in Do loops to cycle until a certain condition is True.
Use the Until keyword at the top or bottom of a Do loop to test a condition, just like
the While keyword. For example, the following Do loop uses the Until keyword to loop
repeatedly until the user enters the word Done in the input box:

Dim InpName As String

Do

 InpName = InputBox("Enter your name or type Done to quit.")

 If InpName <> "Done" Then TextBox1.Text = InpName

Loop Until InpName = "Done"

As you can see, a loop that uses the Until keyword is similar to a loop that uses the While
keyword, except that the test condition usually contains the opposite operator—in this
case, the = (equal to) operator versus the <> (not equal to) operator. If using the Until
keyword makes sense to you, feel free to use it with test conditions in your Do loops.

The Timer Control
As we wrap up our consideration of flow control tools and techniques in this chapter, you
should also consider the benefits of using the Visual Studio Timer control, which you can
use to execute a group of statements for a specific period of time or at specific intervals. The
Timer control is essentially an invisible stopwatch that gives you access to the system clock in
your programs. The Timer control can be used like an egg timer to count down from a preset
time, to cause a delay in a program, or to repeat an action at prescribed intervals.

Although timer objects aren’t visible at run time, each timer is associated with an event
procedure that runs every time the timer’s preset interval has elapsed. You set a timer’s
interval by using the Interval property, and you activate a timer by setting the timer’s Enabled
property to True. Once a timer is enabled, it runs constantly—executing its event procedure
at the prescribed interval—until the user stops the program or the timer object is disabled.
Your job as a programmer is to conceive of how to use time in your programs creatively.
In other words, what events in a program (or in life) happen at regular intervals? Can you
predict or envision the passage of time so that it can be integrated into your code?

	 Chapter 7  Using Loops and Timers	 197

Creating a Digital Clock by Using a Timer Control
One of the most straightforward uses for a Timer control is creating a custom digital clock. In the
following exercise, you’ll create a simple digital clock that keeps track of the current time down to
the second. In the example, you’ll set the Interval property for the timer to 1000, directing Visual
Studio to update the clock time every 1000 milliseconds, or once a second. Because the Windows
operating system is a multitasking environment and other programs also require processing
time, Visual Studio might not update the clock precisely every second, but it will always catch
up if it falls a bit behind. To keep track of the time at other intervals, such as once every tenth of
a second, you simply adjust the number in the Interval property.

Create the Digital Clock program

	 1.	 On the File menu, click the New Project command, and create a new Windows Forms
Application project named My Digital Clock.

The new project is created and a blank form opens in the Designer.

	 2.	 Resize the form to a small rectangular window (one that’s wider than it is tall).

You don’t want the clock to take up much room.

	 3.	 Double-click the Timer control on the Components tab of the Toolbox.

This is the first time that you have used the Components tab and the Timer control in
this book. (The Components tab provides a number of interesting controls that work
“behind the scenes” in your programs.) Visual Studio creates a small timer object in the
component tray beneath your form, as shown here:

198	 Part II  Programming Fundamentals

Recall from Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes,” that certain
Visual Studio controls don’t have a visual representation on the form, and when
objects for these controls are created, they appear in the component tray beneath
the form. (This was the case for the MenuStrip and ToolStrip controls that you used in
Chapter 4.) However, you can still select controls in this special pane and set properties
for them, as you’ll do for the timer object in this exercise.

	 4.	 Click the Label control in the Toolbox, and then draw a very large label object on the
form—a label that’s almost the size of the entire form itself.

You’ll use the label to display the time in the clock, and you want to create a very big
label to hold the 24-point type you’ll be using.

Note  When you first create the label object, it resizes automatically to hold the text
Label1 in the default size. But when you set the AutoSize property to False in the next step,
the label object is restored to the size you originally created.

	 5.	 Open the Properties window, and set the following properties for the form and the two
objects in your program:

Object Property Setting

Label1 AutoSize

Font

Text

TextAlign

False

Times New Roman, Bold, 24-point

(empty)

MiddleCenter

Timer1 Enabled

Interval

True

1000

Form1 Text “Digital Clock”

Tip  If you’d like to put some artwork in the background of your clock, set the
BackgroundImage property of the Form1 object to the path of a graphics file.

Now you’ll write the program code for the timer.

	 6.	 Double-click the timer object in the component tray.

The Timer1_Tick event procedure appears in the Code Editor. This is the event procedure
that runs each time that the timer clock ticks.

	 7.	 Type the following statement:

Label1.Text = TimeString

This statement gets the current time from the system clock and assigns it to the Text
property of the Label1 object. (If you’d like to have the date displayed in the clock as well

	 Chapter 7  Using Loops and Timers	 199

as the time, use the System.DateTime.Now property instead of the TimeString property.)
Only one statement is required in this program because you set the Interval property for
the timer by using the Properties window. The timer object handles the rest.

	 8.	 Click the Save All button on the Standard toolbar to save your changes. Specify
C:\Vb10sbs\Chap07 as the folder location.

Tip  The complete Digital Clock program is available in the C:\Vb10sbs\Chap07\Digital
Clock folder.

	 9.	 Click the Start Debugging button on the Standard toolbar to run the clock.

The clock appears, as shown in the following screen shot. (Your time will be different, of
course.)

If you used the System.DateTime.Now property, you’ll also see the date in the clock,
as shown here:

I needed to enlarge the label object and the form a little here to get the date and time
to appear on one line. If your system clock information appears wrapped, close the
program and resize your label and form.

	 10.	 Watch the clock for a few moments.

Visual Basic updates the time every second.

	 11.	 Click the Close button in the title bar to stop the clock.

The Digital Clock program is so handy that you might want to compile it into an executable
file and use it now and then on your computer. Feel free to customize it by using your own
artwork, text, and colors.

200	 Part II  Programming Fundamentals

Using a Timer Object to Set a Time Limit
Another interesting use of a timer object is to set it to wait a given period of time before
either permitting or prohibiting an action. You can also use this timer technique to display
a welcome message or a copyright message on the screen or to repeat an event at a set
interval, such as saving a file every 10 minutes or backing up important files each night at
2:00 A.M. Again, this is a little like setting an egg timer in your program. You set the Interval
property with the delay you want, and then you start the clock ticking by setting the Enabled
property to True. So long as the program is still running, your timer object will be active.

The following exercise shows how you can use this approach to set a time limit for entering
a password. (The password for this program is “secret.”) The program uses a timer to close its
own program if a valid password isn’t entered in 15 seconds. (Normally, a program like this
would be one of the initial forms in a larger application.)

Set a password time limit

	 1.	 On the File menu, click the New Project command, and create a new Windows Forms
Application project named My Timed Password.

The new project is created, and a blank form opens in the Designer.

	 2.	 Resize the form to a small rectangular window about the size of an input box.

	 3.	 Click the TextBox control in the Toolbox, and then draw a text box for the password in
the middle of the form.

	 4.	 Click the Label control in the Toolbox, and then draw a long label above the text box.

	 5.	 Click the Button control in the Toolbox, and then draw a button below the text box.

	 6.	 Double-click the Timer control on the Components tab of the Toolbox.

Visual Studio adds a timer object to the component tray below the form.

	 7.	 Set the properties for the program in the following table:

Object Property Setting

Label1 Text “Enter your password within 15 seconds”

TextBox1 PasswordChar “*”

Button1 Text “Try Password”

Timer1 Enabled

Interval

True

15000

Form1 Text “Password”

The PasswordChar setting displays asterisk (*) characters in the text box as the user enters
a password. Setting the timer Interval property to 15000 gives the user 15 seconds to
enter a password and click the Try Password button. Setting the Enabled property to

	 Chapter 7  Using Loops and Timers	 201

True starts the timer running when the program starts. (If the timer wasn’t needed until
later in the program, you could disable this property and then enable it in an event
procedure.)

Your form looks like this:

	 8.	 Double-click the timer object in the component tray, and then type the following
statements in the Timer1_Tick event procedure:

MsgBox("Sorry, your time is up.")

End

The first statement displays a message indicating that the time has expired, and the
second statement stops the program. Visual Basic executes this event procedure if the
timer interval reaches 15 seconds and a valid password hasn’t been entered.

	 9.	 Display the form, double-click the button object, and then type the following statements
in the Button1_Click event procedure:

If TextBox1.Text = "secret" Then

 Timer1.Enabled = False

 MsgBox("Welcome to the system!")

 End

Else

 MsgBox("Sorry, friend, I don't know you.")

End If

This program code tests whether the password entered in the text box is “secret.” If it is,
the timer is disabled, a welcome message is displayed, and the program ends. (A more
useful program would continue working rather than ending here.) If the password
entered isn’t a match, the user is notified with a message box and is given another
chance to enter the password. But the user has only 15 seconds to do so!

	 10.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap07 folder as the location.

202	 Part II  Programming Fundamentals

Test the Timed Password program

Tip  The complete Timed Password program is available in the C:\Vb10sbs\Chap07\Timed
Password folder.

	 1.	 Click the Start Debugging button to run the program.

The program starts, and the 15-second clock starts ticking.

	 2.	 Type open in the text box.

The asterisk characters hide your input, as shown here:

	 3.	 Click the Try Password button.

The following message box opens on the screen, noting your incorrect response:

	 4.	 Click OK, and then wait patiently until the sign-on period expires.

The program displays the time-up message shown in this message box:

	 5.	 Click OK to end the program.

	 Chapter 7  Using Loops and Timers	 203

	 6.	 Run the program again, type secret (the correct password) in the text box, and then
click Try Password.

The program displays this message:

	 7.	 Click OK to end the program.

The Visual Basic development environment appears.

As you can imagine, there are many practical uses for timer objects. As with For . . . Next
loops and Do loops, you can use timer objects to repeat commands and procedures as many
times as you need in a program. Combined with what you learned about the If . . . Then and
Select Case decision structures in Chapter 6, you now have several statements, controls,
and techniques that can help you organize your programs and make them respond to
user input and data processing tasks in innovative ways. Learning to pick the best tool for
the flow-control situation at hand takes some practice, of course, but you’ll have ample
opportunity to try these tools and techniques as you continue working in the upcoming
chapters, and as you construct interesting applications on your own. In fact, you might
take the opportunity right now to create a simple project or two from scratch before you
tackle the next chapter, which discusses debugging. How about creating a digital clock that
displays a different piece of art in a picture box object every 30 seconds?

One Step Further: Inserting Code Snippets
If you enjoyed using the system clock and other Windows resources in this chapter, you
might appreciate one additional example that uses the Computer.Info object to display useful
information about the operating system you’re currently using. This example also demonstrates
an interesting feature of Visual Studio called the Insert Snippet command, which lets you
insert ready-made code templates or snippets into the Code Editor from a list of common
programming tasks. Visual Studio comes automatically configured with a library of useful
code snippets, and you can add additional snippets from your own programs or from online
resources such as MSDN. The following exercise shows you how to use this helpful feature.

Insert the Current Windows Version Snippet

	 1.	 On the File menu, click the New Project command, and create a new Windows Forms
Application project named My Windows Version Snippet.

The new project is created, and a blank form opens in the Designer.

204	 Part II  Programming Fundamentals

	 2.	 Create a new button object in the middle of the form, and set the Text property of the
button to “Display Windows Version.”

	 3.	 Double-click the button object to display the Button1_Click event procedure.

Now you’ll use the Insert Snippet command to insert a code template that automatically
returns information about the version of Windows installed on your computer. Note that
this particular snippet is just one example from a list of dozens of useful code templates.

	 4.	 Click the Edit menu, point to the IntelliSense submenu, and then click the Insert Snippet
command.

The Insert Snippet list box appears in the Code Editor, as shown in the following
screen shot. Depending on what components of Visual Studio you have installed, your
snippet list will have some differences.

Tip  You can also open the snippet list by right-clicking in the Designer and selecting
Insert Snippet.

The Insert Snippet list box is a navigation tool that you can use to explore the snippet
library and insert snippets into your program at the insertion point. To open a folder in
the list box, double-click the folder name. To return to the previous folder in the folder
hierarchy, press the BACKSPACE key.

	 Chapter 7  Using Loops and Timers	 205

	 5.	 Scroll down in the list box, and then double-click the Windows System - Logging,
Processes, Registry, Services folder.

In this folder, you’ll find snippets related to querying and setting operating system
settings.

Tip  If you are using Visual Basic 2010 Express, you might not see the Windows System -
Logging, Processes, Registry, Services folder. If you do not see this folder, you can just type
the code listed in Step 7.

	 6.	 Double-click the Windows - System Information folder.

A list of system information snippets appears. Now you’ll select the snippet that returns
information about the current version of Windows.

	 7.	 Double-click the snippet entitled “Determine the Current Windows Version.”

Visual Studio inserts the following line of code into the Button1_Click event procedure
at the insertion point:

Dim osVersion = My.Computer.Info.OSVersion

These statements declare the string variable osVersion to hold version information about
the operating system, and then use the Computer.Info object to fill the variable with current
information. The snippet also uses the My namespace to gather information about your
computer. The My namespace is a “speed-dial” feature of Visual Basic designed to reduce the
time it takes to code common tasks, and I will introduce it more fully in Chapter 13.

This code snippet is called a template because it supplies the majority of the code
that you need to insert for a particular task, but the code is not fully integrated into
your project yet. In this case, we should add a second variable to hold the name of
the operating system (because there are different Windows versions), and we’ll add
a MsgBox function to display the results for the user. (In other cases, you might need to
add controls to your form, create new variables or data structures, or write additional
program statements that use the snippet.)

	 8.	 Press the ENTER key twice to add a blank line below the snippet.

	 9.	 Type the following program statements:

Dim osName = My.Computer.Info.OSFullName

MsgBox(osName & vbCr & osVersion)

These statements declare a second string variable named osName that will hold the
Windows version retrieved by the OSFullName property of the Computer.Info object. There
is also a MsgBox function that displays the two returned values: the operating system name
(osName) and the operating system version number (osVersion). As you probably know,
the operating system version number has now become quite detailed in Windows because

206	 Part II  Programming Fundamentals

Windows has the ability to be updated automatically over the Web each time a new
security update or improvement is released. Examining the version number is therefore
a handy way to see whether your system is up-to-date and safe.

You’ll also notice that I used vbCr. This is a constant that represents a carriage return.
This can be used as an alternative to the Chr(13) statement that was used earlier in the
chapter. There are several of these constants that can be helpful. When you type vb in
the Code Editor, you’ll see a list of all these constants. Your screen looks like this:

	 10.	 Click the Save All button to save your changes, and specify the C:\Vb10sbs\Chap07
folder as the location.

	 11.	 Click the Start Debugging button to run the program.

Visual Studio runs the program in the IDE.

	 12.	 Click the Display Windows Version button to display the version information returned
by the snippet.

Your dialog box looks similar to the following:

	 13.	 Click OK to close the dialog box, and then click the Close button to end the program.

	 Chapter 7  Using Loops and Timers	 207

You’ve learned a handy skill that will allow you to insert a variety of useful code templates
into your own programs.

Tip  To insert new snippets or reorganize the snippets you have, click the Code Snippets
Manager command on the Tools menu. The Code Snippets Manager dialog box gives you
complete control over the contents of the Insert Snippet list box and also contains a mechanism
for gathering new snippets online.

Chapter 7 Quick Reference

To Do This

Execute a group of
program statements
a specific number
of times

Insert the statements between For and Next statements in a loop. For
example:

Dim i As Integer

For i = 1 To 10

 MsgBox("Press OK already!")

Next

Use a specific
sequence of numbers
with statements

Insert the statements in a For . . . Next loop, and use the To and Step
keywords to define the sequence of numbers. For example:

Dim i As Integer

For i = 2 To 8 Step 2

 TextBox1.Text = TextBox1.Text & i

Next

Avoid an endless
Do loop

Be sure the loop has a test condition that can evaluate to False.

Declare a variable
and assign a value to
it at the same time

Use Dim to declare the variable, and then assign a value with the equal to
(=) operator. For example:

Dim Counter As Integer = 1

Exit a For . . . Next
loop prematurely

Use the Exit For statement. For example:

Dim InpName As String

Dim i As Integer

For i = 1 To 10

 InpName = InputBox("Name?")

 If InpName = "Trotsky" Then Exit For

 TextBox1.Text = InpName

Next

Execute a group of
program statements
until a specific
condition is met

Insert the statements between the Do and Loop statements. For example:

Dim Query As String = ""

Do While Query <> "Yes"

 Query = InputBox("Trotsky?")

 If Query = "Yes" Then MsgBox("Hi")

Loop

208	 Part II  Programming Fundamentals

To Do This

Loop until a specific
condition is True

Use a Do loop with the Until keyword. For example:

Dim GiveIn As String

Do

 GiveIn = InputBox("Say 'Uncle'")

Loop Until GiveIn = "Uncle"

Loop for a specific
period of time in your
program

Use the Timer control.

Insert a code snippet
into your program

In the Code Editor, position the insertion point (I-beam) at the location
where you want to insert the snippet. On the Edit menu, click IntelliSense,
and then click Insert Snippet. Browse to the snippet that you want to use,
and then double-click the snippet name.

Add or reorganize
snippets in the Insert
Snippet list box

Click the Code Snippet Manager command on the Tools menu.

		 209

Chapter 8

Debugging Visual Basic Programs
After completing this chapter, you will be able to:

n	 Identify different types of errors in your programs.

n	 Use Visual Studio debugging tools to set breakpoints and correct mistakes.

n	 Use the Autos and Watch windows to examine variables during program execution.

n	 Use a visualizer to examine string data types and complex data types within the IDE.

n	 Use the Immediate and Command windows to change the value of variables and
execute commands in Visual Studio.

n	 Remove breakpoints.

In the past few chapters, you’ve had plenty of opportunity to make programming mistakes
in your code. Unlike human conversation, which usually works well despite occasional
grammatical mistakes and mispronunciations, communication between a software
developer and the Microsoft Visual Basic compiler is successful only when the precise rules
and regulations of the Visual Basic programming language are followed.

In this chapter, you’ll learn more about the software defects, or bugs, that stop Visual Basic
programs from running. You’ll learn about the different types of errors that turn up in
programs and how to use the Microsoft Visual Studio debugging tools to detect and correct
these defects. What you learn will be useful as you experiment with the programs in this
book and when you write longer programs in the future.

Why focus on debugging now? Some programming books skip this topic altogether or place
it near the end of the book (after you’ve learned all the language features of a particular
product). There is a certain logic to postponing the discussion, but I think it makes the most
sense to master debugging techniques while you learn to program so that detecting and
correcting errors becomes part of your standard approach to writing programs and solving
problems. At this point in this book, you know just enough about objects, decision structures,
and statement syntax to create interesting programs—but also enough to get yourself into
a little bit of trouble! As you’ll soon see, however, Visual Studio 2010 makes it easy to uncover
your mistakes and get back on the straight and narrow.

Finding and Correcting Errors
The defects you’ve encountered in your programs so far have probably been simple typing
mistakes or syntax errors. But what if you discover a nastier problem in your program—one
you can’t find and correct by a simple review of the objects, properties, and statements

Table of Contents

Debugging Visual Basic Programs . 209
Finding and Correcting Errors . . 209

Three Types of Errors . 210

Identifying Logic Errors . 211

Debugging 101: Using Debugging Mode . . 212

Tracking Variables by Using a Watch Window . 217

Visualizers: Debugging Tools That Display Data . 220

Using the Immediate and Command Windows . . 221

Switching to the Command Window . . 223

One Step Further: Removing Breakpoints . 224

Chapter 8 Quick Reference . 225

210	 Part II  Programming Fundamentals

you’ve used? The Visual Studio Integrated Development Environment (IDE) contains several
tools that help you track down and fix errors in your programs. These tools won’t stop you
from making mistakes, but they often ease the pain when you encounter one.

Three Types of Errors
Three types of errors can occur in a Visual Basic program: syntax errors, run-time errors,
and logic errors, as follows:

n	 A syntax error (or compiler error) is a mistake (such as a misspelled property or keyword)
that violates the programming rules of Visual Basic. Visual Basic will point out several
types of syntax errors in your programs while you enter program statements, and it
won’t let you run a program until you fix each syntax error.

n	 A run-time error is a mistake that causes a program to stop unexpectedly during
execution. Run-time errors occur when an outside event or an undiscovered syntax
error forces a program to stop while it’s running. For instance, if you misspell a file
name when you use the System.Drawing.Image.FromFile method, or if you try to
read a disk drive and it doesn’t contain a CD or DVD, your code will generate a
run-time error.

n	 A logic error is a human error—a mistake that causes the program code to produce
the wrong results. Most debugging efforts are focused on tracking down logic errors
introduced by the programmer.

If you encounter a syntax error, you often can solve the problem by using the Visual Studio
Help documentation to learn more about the error message, and you can fix the mistake
by paying close attention to the exact syntax of the functions, objects, methods, and
properties that you have used. In the Code Editor, incorrect statements are underlined with
a jagged line, and you can learn more about the error by holding the mouse pointer over the
statement. The following screen shot shows the error message that appears in Visual Studio
when I type the keyword Case incorrectly as “Csae” and then hold the mouse pointer over
the error. This error message appears as a ScreenTip.

	 Chapter 8  Debugging Visual Basic Programs	 211

Tip  By default, a green jagged line indicates a warning, a red jagged line indicates a syntax
error, a blue jagged line indicates a compiler error, and a purple jagged line indicates some other
error. The color of these items and most of the features in the user interface can be adjusted by
selecting the Options command on the Tools menu, clicking the Fonts And Colors option under
Environment, and adjusting the default values under Display Items.

If you encounter a run-time error, you often can address the problem by correcting your
typing. For example, if a bitmap loads incorrectly into a picture box object, the problem
might simply be a misspelled path. However, many run-time errors require a more thorough
solution. You can add a structured error handler—a special block of program code that
recognizes a run-time error when it happens, suppresses any error messages, and adjusts
program conditions to handle the problem—to your programs. I discuss the new syntax for
structured error handlers in Chapter 9, “Trapping Errors by Using Structured Error Handling.”

Identifying Logic Errors
Logic errors in your programs are often the most difficult to fix. They’re the result of faulty
reasoning and planning, not a misunderstanding about Visual Basic syntax. Consider the
following If . . . Then decision structure, which evaluates two conditional expressions and then
displays one of two messages based on the result.

If Age > 13 And Age < 20 Then

 TextBox2.Text = "You're a teenager"

Else

 TextBox2.Text = "You're not a teenager"

End If

Can you spot the problem with this decision structure? A teenager is a person who is
between 13 and 19 years old, inclusive, but the structure fails to identify the person who’s
exactly 13. (For this age, the structure erroneously displays the message “You’re not a
teenager.”) This type of mistake isn’t a syntax error (because the statements follow the rules
of Visual Basic); it’s a mental mistake or logic error. The correct decision structure contains
a greater than or equal to operator (>=) in the first comparison after the If . . . Then statement,
as shown here:

If Age >= 13 And Age < 20 Then

Believe it or not, this type of mistake is the most common problem in a Visual Basic program.
Code that produces the expected results most of the time—but not all the time—is the
hardest to identify and to fix.

212	 Part II  Programming Fundamentals

Debugging 101: Using Debugging Mode
One way to identify a logic error is to execute your program code one line at a time and examine
the content of one or more variables or properties as they change. To do this, you can enter
debugging mode (or break mode) while your program is running and then view your code in the
Code Editor. Debugging mode gives you a close-up look at your program while the Visual
Basic compiler is executing it. It’s kind of like pulling up a chair behind the pilot and copilot
and watching them fly the airplane. But in this case, you can touch the controls.

While you’re debugging your application, you’ll use buttons on the Standard toolbar and the
Debug toolbar, as well as commands on the Debug menu and special buttons and windows
in the IDE. The following screen shot shows the debugging buttons on the Standard
and Debug toolbars, which you can open by pointing to the Toolbars command on the View
menu and then clicking Standard or Debug. In this chapter, you’ll use the Immediate, Locals,
Start Debugging, Stop Debugging, and Step Into commands.

Immediate

Locals

Watch

Start Debugging

Stop Debugging

Step Into

In the following exercise, you’ll set a breakpoint—a place in a program where execution
stops. You’ll then use debugging mode to find and correct the logic error you discovered
earlier in the If . . . Then structure. (The error is part of an actual program.) To isolate the
problem, you’ll use the Step Into button on the Standard toolbar to execute program
instructions one at a time, and you’ll use the Autos window to examine the value of key
program variables and properties. Pay close attention to this debugging strategy. You can
use it to correct many types of glitches in your own programs.

Debug the Debug Test program

	 1.	 Start Visual Studio.

	 2.	 On the File menu, click Open Project.

The Open Project dialog box opens.

	 3.	 Open the Debug Test project in the C:\Vb10sbs\Chap08\Debug Test folder.

The project opens in the development environment.

	 Chapter 8  Debugging Visual Basic Programs	 213

	 4.	 If the form isn’t visible, display it now.

The Debug Test program prompts the user for his or her age. When the user
clicks the Test button, the program informs the user whether he or she is a teenager.
The program still has the problem with 13-year-olds that we identified earlier in the
chapter, however. You’ll open the Debug toolbar now and set a breakpoint to find the
problem.

	 5.	 If the Debug toolbar isn’t visible, click the View menu, point to Toolbars, and then
click Debug.

The Debug toolbar appears below or to the right of the Standard toolbar.

	 6.	 Click the Start Debugging button on the Standard toolbar.

The program runs and the Debug Test form opens.

	 7.	 Remove the 0 from the Age text box, type 14, and then click the Test button.

The program displays the message “You’re a teenager.” So far, the program displays
the correct result.

	 8.	 Type 13 in the Age text box, and then click the Test button again.

The program displays the message “You’re not a teenager,” as shown in the following
screen shot:

This answer is incorrect, and you need to look at the program code to fix the problem.

	 9.	 Click the Quit button on the form, and then open the Code Editor.

	 10.	 Move the mouse pointer to the Margin Indicator bar (the gray bar just beyond the left
margin of the Code Editor window), next to the statement Age = TextBox1.Text in the
Button1_Click event procedure, and then click the bar to set a breakpoint.

214	 Part II  Programming Fundamentals

The breakpoint immediately appears in red. See the following screen shot for the
breakpoint’s location and shape:

	 11.	 Click the Start Debugging button to run the program again.

The form opens just as before, and you can continue your tests.

	 12.	 Type 13 in the Age text box, and then click Test.

Visual Basic opens the Code Editor again and displays the Button1_Click event
procedure—the program code currently being executed by the compiler. The
statement that you selected as a breakpoint is highlighted in yellow, and an arrow
appears in the Margin Indicator bar, as shown in the following screen shot:

You can tell that Visual Studio is now in debugging mode because the word
“Debugging” appears in its title bar. In debugging mode, you have an opportunity to
see how the logic in your program is evaluated.

	 Chapter 8  Debugging Visual Basic Programs	 215

Note  You can also enter debugging mode in a Visual Basic program by placing the Stop
statement in your program code where you’d like to pause execution. This is an older, but
still reliable, method for entering debugging mode in a Visual Basic program.

	 13.	 Place the pointer over the Age variable in the Code Editor.

Visual Studio displays the message “Age | 0” and a tiny pin icon appears next to the
value. While you’re in debugging mode, you can display the value of variables or
properties by simply holding the mouse pointer over the value in the program code.
Age currently holds a value of 0 because it hasn’t yet been filled by the TextBox1 text
box—that statement is the next statement the compiler will evaluate.

The pin icon is a new feature of Visual Studio 2010 that lets you pin the value of
an expression somewhere in the IDE while you are debugging. The pinned expression
is called a DataTip, and there are four commands on the Debug menu that are related
to this feature. Try using a DataTip now to watch the value of the Age variable.

	 14.	 Click the pin icon to create a DataTip for the Age variable in the IDE.

	 15.	 Hold the mouse over the DataTip that appears until three small buttons are displayed
next to the Age variable.

Your screen will look like the following:

Close

Age�variable�and�its�current�value

Comment

Unpin�from�source

Until you remove this DataTip, it will display the value of the Age variable in the IDE.
If you click the Unpin From Source button, the Age variable will remain in its current
position in the IDE, even if you scroll the Code Editor window up or down. The
Comment button lets you add a descriptive comment to the Age variable, and the
Close button lets you remove the DataTip from the IDE.

	 16.	 Click the Close button next to the DataTip to remove the Age variable and its value
of 0 for now.

As you can see, this is a handy way to watch variables change in a program as it runs,
and you should feel free to use DataTips whenever you debug your code. Before you
use them exclusively, however, experiment with some additional techniques in the
following steps.

216	 Part II  Programming Fundamentals

Note  If you add more than a few DataTips to your program code, be sure to use the Clear
All DataTips, Import DataTips, and Export DataTips commands on the Debug menu. These
features are especially useful in large development projects where you have numerous
variables and expressions and many DataTips active. In particular, the Import and Export
commands will allow you to transfer DataTips from one project to the next.

	 17.	 Continue by clicking the Step Into button on the Standard toolbar.

The Step Into button executes the next program statement in the event procedure (the
line that’s currently highlighted). By clicking the Step Into button, you can see how the
program state changes when just one more program statement is evaluated. If you hold
the pointer over the Age variable now, you’ll see that it contains a value of 13.

	 18.	 On the Debug menu, point to Windows, and then click Autos.

Tip  If you are using Visual Basic 2010 Express, the Autos window is not available.
Alternatively, you can open the Locals window to see the value of the Age variable.
The Locals window displays a different set of variables.

The Windows submenu provides access to the entire set of debugging windows in
Visual Studio. The Autos window shows the state of variables and properties currently
being used (not only the properties you are currently setting, but others as well).
As you can see in the following screen shot, the Age variable holds a value of 13
and the TextBox1.Text property holds a string of “13”.

	 Chapter 8  Debugging Visual Basic Programs	 217

	 19.	 Click the Step Into button twice more.

The If statement evaluates the conditional expression to False, and the compiler moves
to the Else statement in the decision structure. Here’s our bug—the decision structure
logic is incorrect because a 13-year-old is a teenager. Do you recognize the problem?
The first comparison needs the greater than or equal to (>=) operator to specifically
test for this boundary case of 13. You’ll stop debugging now so that you can fix this
logic error.

	 20.	 Click the Stop Debugging button on the Standard toolbar.

	 21.	 In the Code Editor, add the equal to sign (=) to the first condition in the If statement so
that it reads:

If Age >= 13 And Age < 20 Then

	 22.	 Run the program again and test your solution, paying particular attention to the
numbers 12, 13, 19, and 20—the boundary, or “fringe,” cases that are likely to cause
problems.

Remember that you still have a breakpoint set, so you’ll enter debugging mode
when you run the program again. Use the Step Into button to watch the program
flow around the crucial If statement, and use the Autos window to track the value
of your variables as you complete the tests. When the form opens, enter a new
value and try the test again. (You’ll learn how to remove the breakpoint later in
the chapter.)

	 23.	 When you’re finished experimenting with debugging mode, click the Stop Debugging
button on the Standard toolbar to end the program.

Congratulations! You’ve successfully used debugging mode to find and correct a logic error
in a program.

Tracking Variables by Using a Watch Window
The Autos window is useful for examining the state of certain variables and properties as
they’re evaluated by the compiler, but items in the Autos window persist, or maintain their
values, only for the current statement (the statement highlighted in the debugger) and the
previous statement (the statement just executed). When your program goes on to execute
code that doesn’t use the variables, they disappear from the Autos window.

To view the contents of variables and properties throughout the execution of a program,
you need to use a Watch window, a special Visual Studio tool that tracks important
values for you so long as you’re working in debugging mode. In Visual Studio, you can

218	 Part II  Programming Fundamentals

open up to four Watch windows, numbered Watch 1, Watch 2, Watch 3, and Watch 4.
If you are using Visual Basic 2010 Express, only one Watch window is available. When
you are in debugging mode, you can open these windows by pointing to the Windows
command on the Debug menu, pointing to Watch, and then clicking the window you
want on the Watch submenu. You can also add expressions, such as Age >= 13, to a Watch
window.

Open a Watch window

Tip  The Debug Test project is located in the C:\Vb10sbs\Chap08\Debug Test folder.

	 1.	 Click the Start Debugging button on the Standard toolbar to run the Debug Test
program again.

I’m assuming that the breakpoint you set on the line Age = TextBox1.Text in the
previous exercise is still present. If that breakpoint isn’t set, stop the program
now, and set the breakpoint by clicking in the Margin Indicator bar next to
the statement, as shown in Step 10 of the previous exercise, and then start the
program again.

	 2.	 Type 20 in the Age text box, and then click Test.

The program stops at the breakpoint and Visual Studio enters debugging mode,
which is where you need to be if you want to add variables, properties, or
expressions to a Watch window. One way to add an item is to select its value in
the Code Editor, right-click the selection, and then click the Add
Watch command.

	 3.	 Select the Age variable, right-click it, and then click the Add Watch command.

Visual Studio opens the Watch 1 window and adds the Age variable to it. The value
for the variable is currently 0, and the Type column in the window identifies the Age
variable as an Integer type.

Another way to add an item is to drag the item from the Code Editor into the Watch
window.

	 4.	 Select the TextBox2.Text property, and then drag it to the empty row in the
Watch 1 window.

When you release the mouse button, Visual Studio adds the property and displays its
value. (Right now, the property is an empty string.)

	 Chapter 8  Debugging Visual Basic Programs	 219

	 5.	 Select the expression Age < 20, and then add it to the Watch window.

Age < 20 is a conditional expression, and you can use the Watch window to display its
logical, or Boolean, value. Your Watch window looks like this:

Now step through the program code to see how the values in the Watch 1 window change.

	 6.	 Click the Step Into button on the Standard toolbar.

Tip  Instead of clicking the Step Into button on the Standard toolbar, you can press the
F8 key on the keyboard.

The Age variable is set to 20, and the Age < 20 condition evaluates to False. These values
are displayed in red type in the Watch window because they’ve just been updated.

	 7.	 Click the Step Into button three more times.

The Else clause is executed in the decision structure, and the value of the TextBox2.Text
property in the Watch window changes to “You’re not a teenager.” This conditional test
is operating correctly. Because you’re satisfied with this condition, you can remove the
test from the Watch window.

	 8.	 Click the Age < 20 row in the Watch window, and then press the DELETE key.

Visual Studio removes the value from the Watch window. As you can see, adding
and removing values from the Watch window is a speedy process.

Leave Visual Studio running in debugging mode for now. You’ll continue using the Watch
window in the next section.

220	 Part II  Programming Fundamentals

Visualizers: Debugging Tools That Display Data
Although you can use the DataTip, Watch, Autos, and Locals windows to examine
simple data types such as Integer and String in the IDE, you’ll eventually be faced with
more complex data in your programs. For example, you might be examining a variable
or property containing structured information from a database (a dataset) or a string
containing Hypertext Markup Language (HTML) or Extensible Markup Language (XML)
formatting information from a Web page. So that you can examine this type of item
more closely in a debugging session, Visual Studio offers a set of tools in the IDE called
visualizers. The icon for a visualizer is a small magnifying glass.

The Visual Studio 2010 IDE offers a number of standard visualizers, such as the text, HTML,
and XML visualizers (which work on string objects), and the dataset visualizer (which works for
DataSet, DataView, and DataTable objects). Microsoft has implied that it will offer additional
visualizers as downloads at some point in the future, and they have designed Visual Studio
so that third-party developers can write their own visualizers and install them into the Visual
Studio debugger. In the following exercise, you’ll see how the text visualizer works. (For this
exercise, I assume that you are still in debugging mode and that the Watch window is open
with a few expressions in it from the Debug Test program.)

Open a text visualizer in the debugger

	 1.	 Look on the right side of the Watch window for a small magnifying glass icon.

A magnifying glass icon indicates that a visualizer is available for the variable or
property that you are examining in a Watch window, an Autos window, or a Locals
window. If you completed the previous exercise, the TextBox2.Text property shows
a visualizer now.

	 2.	 Click the visualizer arrow.

When the property you are examining is a text (string) property, Visual Studio offers
three visualizers: a simple text visualizer that displays the selected string expression as
readable text, an HTML visualizer that converts HTML code to a Web page, and an XML
visualizer that converts XML code to a viewable document. The Watch window looks
like this:

	 Chapter 8  Debugging Visual Basic Programs	 221

	 3.	 Select the Text Visualizer option.

Visual Studio opens a dialog box and displays the contents of the TextBox2.Text property.
Your screen looks like this:

Although this particular result offers little more than the Watch window did, the
benefits of the visualizer tool become immediately obvious when the Text property of
a multiline text box object is displayed, or when you examine variables or properties
containing database information or Web documents. You’ll experiment with these more
sophisticated data types later in the book.

	 4.	 Click Close to close the Text Visualizer dialog box.

Leave Visual Studio running in debugging mode. You’ll continue using the Watch window
in the next section, too.

Tip  In debugging mode, visualizers also sometimes appear in the Code Editor next to
interesting variables or properties. If a visualizer appears, feel free to click it to get more
information about the underlying data, as you did in the previous exercise.

Using the Immediate and Command Windows
So far, you’ve used the Visual Studio debugging tools that allow you to enter debugging
mode; execute code one statement at a time; and examine the value of important variables,
properties, and expressions in your program. Now you’ll learn how to change the value of
a variable by using the Immediate window, and you’ll learn how to run commands, such as
Save All or Print, within the Visual Studio IDE by using the Command window. The windows
contain scroll bars, so you can execute more than one command and view the results by
using the arrow keys.

222	 Part II  Programming Fundamentals

The following exercises demonstrate how the Immediate and Command windows work.
I discuss these windows together because, with the following special commands, you can
switch between them:

n	 In the Immediate window, the >cmd command switches to the Command window.

n	 In the Command window, the immed command switches to the Immediate window.

The exercises assume that you’re debugging the Debug Test program in debugging mode.

Use the Immediate window to modify a variable

	 1.	 Click the Immediate button on the Standard or Debug toolbar. (Alternatively, you can
click the Debug menu, point to Windows, and then click Immediate.)

When you select the command, Visual Studio opens the Immediate window and prepares
the compiler to receive commands from you while the Debug Test program is running.
This is a very handy feature because you can test program conditions on the fly, without
stopping the program and inserting program statements in the Code Editor.

	 2.	 In the Immediate window, type Age = 17, and then press ENTER.

You’ve just used the Immediate window to change the value of a variable. The value of
the Age variable in the Watch window immediately changes to 17, and the next time
the If statement is executed, the value in the TextBox2.Text property will change to
“You’re a teenager.” Your Immediate window looks like this:

	 3.	 Type the following statement in the Immediate window, and then press ENTER:

TextBox2.Text = "You're a great age!"

The Text property of the TextBox2 object is immediately changed to “You’re a great
age!” In the Immediate window, you can change the value of properties, as well as
variables.

	 4.	 Display the Watch 1 window if it is not currently visible. (Click the Watch 1 tab in the
Visual Studio IDE to do this.)

	 Chapter 8  Debugging Visual Basic Programs	 223

The Watch window looks like this:

As you can see, both items now contain new values, and this gives you the opportunity
to test the program further.

	 5.	 Click the Step Into button two times to display the Debug Test form again.

Notice that the Text property of the TextBox2 object has been changed, as you directed,
but the Text property of the TextBox1 object still holds a value of 20 (not 17). This is
because you changed the Age variable in the program, not the property that assigned
a value to Age. Your screen looks like the following screen shot:

The Immediate window has many uses—it provides an excellent companion to the Watch
window, and it can help you experiment with specific test cases that might otherwise be very
difficult to enter into your program.

Switching to the Command Window
The text-based Command window offers a complement to the Visual Studio Immediate
window. Reminiscent of the UNIX or MS-DOS command prompt, it can be used to run
interface commands in the Visual Studio IDE. For example, entering the File.SaveAll command
in the Command window saves all the files in the current project. (This command is the
equivalent of the Save All command on the File menu.) If you already have the Immediate
window open, you can switch between the Immediate and the Command windows by
entering the >cmd and immed commands, respectively. You can also click the View menu,
point to Other Windows, and then click Command Window to open the Command window.
You’ll practice using the Command window in the following exercise.

224	 Part II  Programming Fundamentals

Tip  Visual Basic 2010 Express does not include the Command window. (If you’re using the
Express version you will not be able to complete this exercise.)

Run the File.SaveAll command

	 1.	 Click the Immediate Window tab to display the Immediate window.

	 2.	 Type >cmd, and then press ENTER to switch to the Command window.

The Command window opens, and the Immediate or Watch window might now be
partially (or totally) hidden. (You can return to the Immediate window by clicking its
tab or typing immed in the Command window.) The > prompt appears, a visual clue
that you are now working in the Command window.

	 3.	 Type File.SaveAll in the Command window, and then press ENTER.

As you begin typing File, all the Visual Studio commands associate with the File
menu and file operations appear in a pop-up list box. This Microsoft IntelliSense
feature offers a useful way to learn about the many commands that can be executed
within the Command window. After you type File.SaveAll and press ENTER, Visual
Studio saves the current project, and the command prompt returns, as shown in the
following screen shot:

	 4.	 Experiment with other commands now if you like. (Begin your commands with menu
names to discover the different commands available.) When you’re finished, click the
Close button in both the Command and Immediate windows. You’re finished with them
for now.

One Step Further: Removing Breakpoints
If you’ve been following the instructions in this chapter carefully, the Debug Test program is
still running and has a breakpoint in it. Follow these steps to remove the breakpoint and end
the program. You’re finished debugging the Debug Test program.

Tip  Visual Basic 2010 Express does not include the Delete All Breakpoints command
mentioned below, so to remove breakpoints you need to delete them one by one.

	 Chapter 8  Debugging Visual Basic Programs	 225

Remove a breakpoint

	 1.	 In the Code Editor, click the red circle associated with the breakpoint in the Margin
Indicator bar.

The breakpoint disappears. That’s all there is to it! But note that if you have more
than one breakpoint in a program, you can remove them all by clicking the Delete All
Breakpoints command on the Debug menu. Visual Studio saves breakpoints with your
project, so it’s important to know how to remove them; otherwise, they’ll still be in
your program, even if you close Visual Studio and restart it!

	 2.	 Click the Stop Debugging button on the Standard toolbar.

The Debug Test program ends.

	 3.	 On the View menu, point to Toolbars, and then click Debug.

The Debug toolbar closes.

You’ve learned the fundamental techniques of debugging Visual Basic programs with Visual
Studio. Place a bookmark in this chapter so that you can return to it as you encounter
problems later in the book. In the next chapter, you’ll learn how to handle run-time errors by
using structured error handling techniques.

Chapter 8 Quick Reference

To Do This

Display the Debug toolbar On the View menu, point to Toolbars, and then click Debug.

Set a breakpoint In the Code Editor, click in the Margin Indicator bar next to the
statement where you want to stop program execution. When the
compiler reaches the breakpoint, it will enter debugging mode.
or
Place a Stop statement in the program code where you want to
enter debugging mode.

Execute one line of code
in the Code Editor

Click the Step Into button on the Standard toolbar.

Examine a variable,
a property, or an expression
in the Code Editor

In debugging mode, select the value in the Code Editor, and then
hold the pointer over it.

Use the Autos window to
examine a variable on the
current or previous line

In debugging mode, click the Debug menu, point to Windows, and
then click Autos.

Add a variable, a property,
or an expression to a Watch
window

In debugging mode, select the value in the Code Editor, right-click
the value, and then click Add Watch.

226	 Part II  Programming Fundamentals

To Do This

Display a Watch window In debugging mode, click the Debug menu, point to Windows,
point to Watch, and then click the window.

Display HTML, XML, or
dataset information during
a debugging session

Click the visualizer icon in an Autos window, a Watch window, a
Locals window, or a DataTip window during a debugging session.

Open the Immediate
window

Click the Debug menu, point to Windows, and then click
Immediate.

Run a command in the
Visual Studio IDE from the
Command window

At the > prompt, type the name of the command, and then press
ENTER. For example, to save the current project, type File.SaveAll,
and then press ENTER.

Switch to the Command
window from the
Immediate window

Type >cmd, and then press ENTER. To switch back to the
Immediate window, type immed, and then press ENTER.

Remove one or more
breakpoints

Click the breakpoint in the Margin Indicator bar of the Code Editor.
or
Click the Delete All Breakpoints command on the Debug menu.

Stop debugging Click the Stop Debugging button on the Standard toolbar.

		 227

Chapter 9

Trapping Errors by Using
Structured Error Handling

After completing this chapter, you will be able to:

n	 Manage run-time errors by using the Try . . . Catch error handler.

n	 Create a disc drive error handler that tests specific error conditions by using the Catch
statement.

n	 Write complex error handlers that use the Exception object and the Message property.

n	 Build nested Try . . . Catch statements.

n	 Use error handlers in combination with defensive programming techniques.

n	 Leave error handlers prematurely by using the Exit Try statement.

In Chapter 8, “Debugging Visual Basic Programs,” you learned how to recognize run-time
errors in a Microsoft Visual Basic program and how to locate logic errors and other defects
in your program code by using the Microsoft Visual Studio 2010 debugging tools. In this
chapter, you’ll learn how to build blocks of code that handle run-time errors, also referred
to as exceptions, which occur as a result of normal operating conditions—for example, errors
due to a CD or DVD not being in an optical drive, a broken Internet connection, or an offline
printer. These routines are called structured error handlers (or structured exception handlers),
and you can use them to recognize run-time errors, suppress unwanted error messages,
and adjust program conditions so that your application can regain control and run again.

Fortunately, Visual Basic offers the powerful Try . . . Catch code block for handling errors.
In this chapter, you’ll learn how to trap run-time errors by using Try . . . Catch code blocks,
and you’ll learn how to use the Exception object to identify specific run-time errors. You’ll
also learn how to use multiple Catch statements to write more flexible error handlers, build
nested Try . . . Catch code blocks, and use the Exit Try statement to exit a Try . . . Catch code
block prematurely. The programming techniques you’ll learn are similar to the structured
error handlers provided by the most advanced programming languages, such as Java
and C++. The most reliable, or robust, Visual Basic programs use several error handlers
to manage unforeseen circumstances and provide users with consistent and trouble-free
computing experiences.

Processing Errors by Using the Try . . . Catch Statement
A program crash is an unexpected problem from which a program can’t recover. You might
have experienced your first program crash when Visual Basic couldn’t load artwork from
a file, or when you intentionally introduced errors into your program code during debugging

Table of Contents

Trapping Errors by Using
Structured Error Handling . 227

Processing Errors by Using the Try . . . Catch Statement 227

When to Use Error Handlers . 228

Setting the Trap: The Try . . . Catch Code Block . 229

Path and Disc Drive Errors . . 229

Writing a Disc Drive Error Handler . . 233

Using the Finally Clause to Perform Cleanup Tasks 234

More Complex Try . . . Catch Error Handlers . 236

The Exception Object . 236

Specifying a Retry Period . 239

Using Nested Try . . . Catch Blocks . 242

Comparing Error Handlers with Defensive
Programming Techniques . 242

One Step Further: The Exit Try Statement . 243

Chapter 9 Quick Reference . 244

228	 Part II  Programming Fundamentals

in Chapter 8. It’s not that Visual Basic isn’t smart enough to handle the glitch; it’s just that the
program hasn’t been “told” what to do when something goes wrong.

Fortunately, you don’t have to live with occasional errors that cause your programs to crash.
You can write special Visual Basic routines, called structured error handlers, to manage and
respond to run-time errors before they force the Visual Basic compiler to terminate your
program. An error handler handles a run-time error by telling the program how to continue
when one of its statements doesn’t work. Error handlers can be placed in each event procedure
where there is potential for trouble, or in generic functions or subprograms that receive control
after an error has occurred and handle the problem systematically. (You’ll learn more about
writing functions and subprograms in Chapter 10, “Creating Modules and Procedures.”)

Error handlers handle, or trap, a problem by using a Try . . . Catch code block and a special
error-handling object named Exception. The Exception object has a Message property
that you can use to display a description of the error. For example, if the run-time error
is associated with loading a file from a CD or DVD drive, your error handler might display
a custom error message that identifies the problem and prompts the user to insert a CD
or DVD, rather than allowing the failed operation to crash the program.

When to Use Error Handlers
You can use error handlers in any situation where an action (either expected or unexpected)
has the potential to produce an error that stops program execution. Typically, error handlers
are used to manage external events that influence a program—for example, events caused by
a failed network or Internet connection, a CD, DVD, or diskette not being inserted correctly
in the drive, or an offline printer or scanner. Table 9-1 lists potential problems that can be
addressed by error handlers.

TABLE 9-1  Potential Problems for Error Handlers

Problem Description

Network/Internet
problems

Network servers, Internet connections, and other resources that fail, or
go down, unexpectedly.

Database problems Unable to make a database connection, a query can’t be processed or
times out, a database returns an error, and so on.

Disc drive problems Unformatted or incorrectly formatted CDs, DVDs, diskettes, or media
that aren’t properly inserted; bad sectors, CDs, DVDs, or diskettes that
are full; problems with a CD or DVD drive; and so on.

Path problems A path to a necessary file that is missing or incorrect.

Printer problems Printers that are offline, out of paper, out of memory, or otherwise
unavailable.

Software not installed A file or component that your application relies on but that is not
installed on the user’s computer, or an operating system incompatibility.

Security problems An application or process that attempts to modify operating system files,
use the Internet inappropriately, or modify other programs or files.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 229

Problem Description

Permissions problems User permissions that are not appropriate for performing a task.

Overflow errors An activity that exceeds the allocated storage space.

Out-of-memory errors Insufficient application or resource space available in the Microsoft
Windows memory management scheme.

Clipboard problems Problems with data transfer or the Windows Clipboard.

Logic errors Syntax or logic errors undetected by the compiler and previous tests
(such as an incorrectly spelled file name).

Setting the Trap: The Try . . . Catch Code Block
The code block used to handle a run-time error is called Try . . . Catch. You place the Try
statement in an event procedure right before the statement you’re worried about, and the
Catch statement follows immediately with a list of the statements that you want to run if
a run-time error actually occurs. A number of optional statements, such as Finally, Exit Try,
and nested Try . . . Catch code blocks can also be included, as the examples in this chapter
will demonstrate. However, the basic syntax for a Try . . . Catch exception handler is simply the
following:

Try

 Statements that might produce a run-time error

Catch

 Statements to run if a run-time error occurs

Finally

 Optional statements to run whether an error occurs or not

End Try

The Try statement identifies the beginning of an error handler in which Try, Catch, and End
Try are required keywords, and Finally and the statements that follow are optional. Note
that programmers sometimes call the statements between the Try and Catch keywords
protected code because any run-time errors resulting from these statements won’t cause
the program to crash. (Instead, Visual Basic executes the error-handling statements in the
Catch code block.)

Path and Disc Drive Errors
The following example demonstrates a common run-time error situation—a problem
with a path, disc drive, or attached peripheral device. To complete this exercise, you’ll
load a sample Visual Basic project that I created to show how artwork files are opened
in a picture box object on a Windows form.

To prepare for the exercise, insert a blank CD or DVD into drive D (or equivalent), and use
Windows Explorer or your CD or DVD creation software to copy or burn the Fileopen.bmp
file to it. Alternatively, you can copy the .bmp file to a diskette in drive A or another type of
removable storage media, such as an attached digital camera, memory stick, MP3 player,
or USB flash drive.

230	 Part II  Programming Fundamentals

Tip  You’ll find the Fileopen.bmp file, along with the Disc Drive Error project, in the
C:\Vb10sbs\Chap09 folder.

To complete the exercise, you’ll need to be able to remove the CD or DVD, or connect
and disconnect your external storage device, as test conditions dictate, and you’ll need to
modify the program code with the drive letter you’re using. You’ll use the CD or DVD (or
equivalent media) throughout the chapter to force run-time errors and recover from them.

Experiment with disc drive errors

	 1.	 Insert a blank CD or DVD in drive D (or the drive in which you create CDs or DVDs),
and copy the Fileopen.bmp file to it.

Use Windows Explorer or a third-party CD or DVD creation program to copy the file
and burn the disc. If you’re using a different external storage device, connect the device
or insert a blank disc, copy Fileopen.bmp to it, and make a note of the drive letter that
Windows assigns to the device.

	 2.	 Start Visual Studio, and then open the Disc Drive Error project, which is located in the
C:\Vb10sbs\Chap09\Disc Drive Error folder.

The Disc Drive Error project opens in the IDE.

	 3.	 If the project’s form isn’t visible, display it now.

The Disc Drive Error project is a skeleton program that displays the Fileopen.bmp file
in a picture box when the user clicks the Check Drive button. I designed the project as
a convenient way to create and trap run-time errors, and you can use it throughout
this chapter to build error handlers by using the Try . . . Catch code block.

	 4.	 Double-click the Check Drive button on the form to display the Button1_Click event
procedure.

You’ll see the following line of program code between the Private Sub and End Sub
statements:

PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

As you’ve learned in earlier chapters, the FromFile method opens the specified file.
This particular use of FromFile opens the Fileopen.bmp file on drive D and displays it
in a picture box. However, if the CD or DVD is missing, the CD or DVD tray is open, the
file is not on the CD or DVD, or there is another problem with the path or drive letter
specified in the code, the statement produces a “File Not Found” error in Visual Basic.
This is the run-time error we want to trap.

	 5.	 If your CD or DVD drive or attached peripheral device is using a drive letter other than “D”
now, change the drive letter in this program statement to match the letter you’re using.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 231

For example, a floppy disc drive typically requires the letter “A.” USB flash drives,
digital cameras, and other detachable media typically use “E,” “F,” or higher letters for
the drive.

	 6.	 With your CD or DVD still in drive D (or equivalent), click the Start Debugging button
on the Standard toolbar to run the program.

The form for the project opens, as shown here:

	 7.	 Click the Check Drive button on the form.

The program loads the Fileopen.bmp file from the CD or DVD and displays it in the
picture box, as shown in the following screen shot:

232	 Part II  Programming Fundamentals

The SizeMode property of the picture box object is set to StretchImage, so the file fills
the entire picture box object. Now see what happens when the CD or DVD isn’t in the
drive when the program attempts to load the file.

	 8.	 Remove the CD or DVD from the drive.

If you are using a different media type, remove it now. If you are testing with a
removable storage device, follow your usual procedure to safely remove or turn it off,
and remove the media containing Fileopen.bmp.

	 9.	 Click the Check Drive button again on the form.

The program can’t find the file, and Visual Basic issues a run-time error, or unhandled
exception, which causes the program to crash. Visual Studio enters debugging mode,
highlighting the problem statement.

Your screen will look like this:

Notice how helpful Visual Studio is trying to be here, by offering troubleshooting
tips to assist you in locating the source of the unhandled exception that has stopped
the program. The Actions list allows you to learn even more about the specific error
message that is displayed at the top of the dialog box.

	 10.	 Click the Stop Debugging button on the Standard toolbar to close the program.

The development environment returns.

Now you’ll modify the code to handle this plausible error scenario in the future.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 233

Writing a Disc Drive Error Handler
The problem with the Disc Drive Error program isn’t that it somehow defies the
inherent capabilities of Visual Basic to process errors. We just haven’t specified what
Visual Basic should do when it encounters an exception that it doesn’t know how
to handle. The solution to this problem is to write a Try . . . Catch code block that
recognizes the error and tells Visual Basic what to do about it. You’ll add this error
handler now.

Use Try . . . Catch to trap the error

	 1.	 Display the Button1_Click event procedure if it isn’t visible in the Code Editor.

You need to add an error handler to the event procedure that’s causing the problems.
As you’ll see in this example, you actually build the Try . . . Catch code block around the
code that’s the potential source of trouble, protecting the rest of the program from
the run-time errors that it might produce.

	 2.	 Modify the event procedure so that the existing FromFile statement fits between Try
and Catch statements, as shown in the following code block:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Please insert the disc in drive D!")

End Try

You don’t need to retype the FromFile statement—just type the Try, Catch, MsgBox,
and End Try statements above and below it. If Visual Studio adds Catch, variable
declaration, or End Try statements in the wrong place, simply delete the statements and
retype them as shown in the book. (The Code Editor tries to be helpful, but its Auto
Complete feature sometimes gets in the way.)

This program code demonstrates the most basic use of a Try . . . Catch code block. It
places the problematic FromFile statement in a Try code block so that if the program
code produces an error, the statements in the Catch code block are executed. The
Catch code block simply displays a message box asking the user to insert the required
disc in drive D so that the program can continue. This Try . . . Catch code block contains
no Finally statement, so the error handler ends with the keywords End Try.

Again, if you are using a removable storage device or media associated with a
different drive letter, you would make those changes in the statements that you
just typed.

234	 Part II  Programming Fundamentals

Test the error handler

	 1.	 Remove the CD or DVD from drive D, and then click the Start Debugging button to run
the program.

	 2.	 Click the Check Drive button.

Instead of stopping program execution, Visual Basic invokes the Catch statement, which
displays the following message box:

	 3.	 Click OK, and then click the Check Drive button again.

The program displays the message box again, asking you to insert the disc in drive D.
Each time there’s a problem loading the file, this message box appears.

	 4.	 Insert the disc in drive D, wait a moment for the system to recognize the CD or DVD
(close any windows that appear when you insert the disc), click OK, and then click the
Check Drive button again.

The bitmap graphic appears in the picture box, as expected. The error handler has
completed its work effectively—rather than the program crashing inadvertently, it’s
told you how to correct your mistake, and you can now continue working with the
application.

	 5.	 Click the Close button on the form to stop the program.

It’s time to learn some of the variations of the Try . . . Catch error handler.

Using the Finally Clause to Perform Cleanup Tasks
As with the syntax description for Try . . . Catch noted earlier in the chapter, you can use
the optional Finally clause with Try . . . Catch to execute a block of statements regardless
of how the compiler executes the Try or Catch blocks. In other words, whether or not the
Try statements produced a run-time error, there might be some code that you need to run
each time an error handler is finished. For example, you might want to update variables or
properties, display the results of a computation, close database connections, or perform
“cleanup” operations by clearing variables or disabling unneeded objects on a form.

The following exercise demonstrates how the Finally clause works, by displaying a second
message box whether or not the FromFile method produces a run-time error.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 235

Use Finally to display a message box

	 1.	 Display the Button1_Click event procedure, and then edit the Try . . . Catch code block so
that it contains two additional lines of code above the End Try statement. The complete
error handler should look like this:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Please insert the disc in drive D!")

Finally

 MsgBox("Error handler complete")

End Try

The Finally statement indicates to the compiler that a final block of code should be
executed whether or not a run-time error is processed. To help you learn exactly how
this feature works, I’ve inserted a MsgBox function to display a test message after
the Finally statement. Although this simple use of the Finally statement is helpful for
testing purposes, in a real program you’ll probably want to use the Finally code block
to update important variables or properties, display data, or perform other cleanup
operations.

	 2.	 Remove the CD or DVD from drive D, and then click the Start Debugging button to run
the program.

	 3.	 Click the Check Drive button.

The error handler displays a dialog box asking you to insert the disc in drive D.

	 4.	 Click OK.

The program executes the Finally clause in the error handler, and the following message
box appears:

	 5.	 Click OK, insert the disc in drive D, and then click the Check Drive button again.

The file appears in the picture box as expected. In addition, the Finally clause is
executed, and the “Error handler complete” message box appears again. As I noted
earlier, Finally statements are executed at the end of a Try . . . Catch block whether or
not there’s an error.

	 6.	 Click OK, and then click the Close button on the form to stop the program.

236	 Part II  Programming Fundamentals

More Complex Try . . . Catch Error Handlers
As your programs become more sophisticated, you might find it useful to write more
complex Try . . . Catch error handlers that manage a variety of run-time errors and unusual
error-handling situations. Try . . . Catch provides for this complexity by:

n	 Permitting multiple lines of code in each Try, Catch, or Finally code block.

n	 Using the Catch statement with particular Exception objects, which tests specific error
conditions.

n	 Allowing nested Try . . . Catch code blocks, which can be used to build sophisticated
and robust error handlers.

In addition, by using a special error-handling object named Exception, you can identify
and process specific run-time errors and conditions in your program. You’ll investigate each
of these error-handling features in the following section.

The Exception Object
The Microsoft .NET Framework provides the Exception object to help you learn about the
errors that occur in your programs. Exception provides you with information about the
exception that occurred so that you can respond to it programmatically. The most useful
Exception property is the Message property, which contains a short message about the error.

There are several different types of Exception objects. Table 9-2 lists the most important
Exception objects and what they mean.

TABLE 9-2  Important Exception Objects

Exception Description

ArgumentException Occurs when an argument passed to a method is not valid.

ArgumentOutOfRangeException Occurs when an argument is passed to a method that is outside
the allowable range.

ArithmeticException Occurs when there is an arithmetic-related error.

DataException Occurs when there is an error when accessing data using
ADO.NET.

DirectoryNotFoundException Occurs when a folder can’t be found.

DivideByZeroException Occurs when an attempt is made to divide by zero.

EndOfStreamException Occurs when an attempt is made to read past the end of
a stream.

Exception Occurs for any exception that is thrown. Other exceptions inherit
from this object.

FileNotFoundException Occurs when a file can’t be found.

IndexOutOfRangeException Occurs when an index is used that is outside the allowable range
of an array.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 237

Exception Description
IOException Occurs when there is an input/output error.

OutOfMemoryException Occurs when there isn’t enough memory.

OverflowException Occurs when an arithmetic-related operation results in an
overflow.

SecurityException Occurs when there is a security-related error.

SqlException Occurs when there is an error when accessing data in Microsoft
SQL Server.

UnauthorizedAccessException Occurs when the operation denies access.

So how do you know which exception types to use? That depends on your code. For
example, in the exercise that we are working on you have been using the System.Drawing
.Bitmap.FromFile method. If you open the Visual Studio Help documentation for FromFile,
you will see an “Exceptions” section.

Tip  To quickly open up the Help documentation for FromFile, put your cursor in the FromFile
text in Visual Studio and then press the F1 key. From here, click on the Image.FromFile(String)
topic.

The “Exceptions” section in the Image.FromFile Method (String) topic lists the following
exceptions:

n	 ArgumentException

n	 FileNotFoundException

n	 OutOfMemoryException

With this information in hand, you can write code to handle common exceptions that
take place when a programmer uses FromFile. As you write more code, you will discover
additional Exception objects, and you can also learn about them by using the Help
documentation. Even though there are many different Exception objects, you will use them
in the same way described here and demonstrated below. The following exercise uses two
of the Exception objects above in a Try . . . Catch error handler to test for more than one
run-time error condition.

Test for multiple run-time error conditions

	 1.	 In the Button1_Click event procedure, edit the Try . . . Catch error handler so that it looks
like the following code block. (The original FromFile statement is the same as the code
you used in the previous exercises, but the Catch statements are all new.)

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

238	 Part II  Programming Fundamentals

Catch ex As System.IO.FileNotFoundException 'if File Not Found error

 MsgBox("Check pathname and disc drive")

Catch ex As OutOfMemoryException 'if Out Of Memory error

 MsgBox("Is this really a bitmap?", , ex.Message)

Catch ex As Exception

 MsgBox("Problem loading file", , ex.Message)

End Try

This code has three Catch statements. If the FileNotFoundException occurs during the
file open procedure, the message “Check pathname and disc drive” is displayed in
a message box. If the OutOfMemoryException occurs—probably the result of loading
a file that doesn’t actually contain artwork—the message “Is this really a bitmap?” is
displayed. (I get this error if I accidentally try to open a Microsoft Word document in
a picture box object by using the FromFile method.)

The final Catch statement handles all other run-time errors that could potentially
occur during a file-opening process—it’s a general “catch-all” code block that
prints a general error message inside a message box and a specific error message
from the Message property in the title bar of the message box.

	 2.	 Click the Start Debugging button to run the program.

	 3.	 Remove the CD or DVD from drive D.

	 4.	 Click the Check Drive button.

The error handler displays the error message “Check pathname and disc drive” in a
message box. The first Catch statement works.

	 5.	 Click OK, and then click the Close button on the form to end the program.

	 6.	 Insert the CD or DVD again, and then use Windows Explorer or another tool to
copy a second file to the CD or DVD that isn’t an artwork file. For example, copy
a Word document or a Microsoft Excel spreadsheet to the CD or DVD.

You won’t open this file in Word or Excel, but you will try to open it (unsuccessfully,
we hope) in your program’s picture box object. (If your CD or DVD software or drive
doesn’t allow you to add additional files to a CD or DVD after you have burned it, you
might need to create a second CD or DVD with the two files.)

	 7.	 In the Code Editor, change the name of the Fileopen.bmp file in the FromFile program
statement to the name of the file (Word, Excel, or other) you copied to the CD or DVD
in drive D.

Using a file with a different format gives you an opportunity to test a second
type of run-time error—an Out of Memory exception, which occurs when Visual
Basic attempts to load a file that isn’t a graphic or has too much information for
a picture box.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 239

	 8.	 Run the program again, and then click the Check Drive button.

The error handler displays the following error message:

Notice that I have used the Message property to display a short description of the
problem (“Out of memory.”) in the message box title bar. Using this property in your
error handler can give the user a clearer idea of what has happened.

	 9.	 Click OK, and then click the Close button on the form to stop the program.

	 10.	 Change the file name back to Fileopen.bmp in the FromFile method. (You’ll use it in the
next exercise.)

The Catch statement is very powerful. By using Catch in combination with the Exception
object and Message property, you can write sophisticated error handlers that recognize
and respond to several types of exceptions.

Raising Your Own Errors
For testing purposes and other specialized uses, you can artificially generate your own
run-time errors in a program with a technique called throwing, or raising, exceptions. To
accomplish this, you use the Throw statement. For example, the following syntax uses
the Throw statement to produce an exception and then handles the exception by using
a Catch statement:

Try

 Throw New Exception("There was a problem")

Catch ex As Exception

 MsgBox(ex.Message)

End Try

When you learn how to write your own procedures, you can generate your own errors
by using this technique and return them to the calling routine.

Specifying a Retry Period
Another strategy that you can use in an error handler is to try an operation a few times and
then disable it if the problem isn’t resolved. For example, in the following exercise, a
Try . . . Catch block employs a counter variable named Retries to track the number of times
the message “Please insert the disc in drive D!” is displayed, and after the second time, the
error handler disables the Check Drive button. The trick to this technique is declaring the

240	 Part II  Programming Fundamentals

Retries variable at the top of the form’s program code so that it has scope throughout all
the form’s event procedures. The Retries variable is then incremented and tested in the
Catch code block. The number of retries can be modified by simply changing the “2” in the
statement, as shown here:

If Retries <= 2

Use a variable to track run-time errors

	 1.	 In the Code Editor, scroll to the top of the form’s program code, and directly below the
Public Class Form1 statement, type the following variable declaration:

Dim Retries As Short = 0

Retries is declared as a Short integer variable because it won’t contain very big numbers.
It’s assigned an initial value of 0 so that it resets properly each time the program runs.

	 2.	 In the Button1_Click event procedure, edit the Try . . . Catch error handler so that it looks
like the following code block:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 Retries += 1

 If Retries <= 2 Then

 MsgBox("Please insert the disc in drive D!")

 Else

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End If

End Try

The Try block tests the same file-opening procedure, but this time, if an error occurs,
the Catch block increments the Retries variable and tests the variable to be sure that
it’s less than or equal to 2. The number 2 can be changed to allow any number of
retries—currently it allows only two run-time errors. After two errors, the Else clause
is executed, and a message box appears indicating that the file-loading feature has
been disabled. The Check Drive button is then disabled—in other words, dimmed
and rendered unusable for the remainder of the program.

Tip  This revised version of the error handler that you have been building has been renamed
Disc Drive Handler and is stored in the C:\Vb10sbs\Chap09\Disc Drive Handler folder. You
may notice the new project title in the title bar of your message boxes, but otherwise the
project is the same as what you have been experimenting with thus far. (I’ve simply saved the
revised version so that you can open it later if you want.)

	 3.	 Click the Start Debugging button to run the program.

	 4.	 Remove the CD or DVD from drive D.

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 241

	 5.	 Click the Check Drive button.

The error handler displays the error message “Please insert the disc in drive D!”
in a message box, as shown here. Behind the scenes, the Retries variable is also
incremented to 1.

	 6.	 Click OK, and then click the Check Drive button again.

The Retries variable is set to 2, and the message “Please insert the disc in drive D!”
appears again.

	 7.	 Click OK, and then click the Check Drive button a third time.

The Retries variable is incremented to 3, and the Else clause is executed. The message
“File Load feature disabled” appears, as shown here:

	 8.	 Click OK in the message box.

The Check Drive button is disabled on the form, as shown here:

242	 Part II  Programming Fundamentals

The error handler has responded to the disc drive problem by allowing the user a few
tries to fix the problem, and then it has disabled the problematic button. (In other
words, the user can no longer click the button.) This disabling action stops future
run-time errors, although the program might no longer function exactly as it was
originally designed.

	 9.	 Click the Close button on the form to stop the program.

Using Nested Try . . . Catch Blocks
You can also use nested Try . . . Catch code blocks in your error handlers. For example, the
following disc drive error handler uses a second Try . . . Catch block to retry the file open
operation a single time if the first attempt fails and generates a run-time error:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Insert the disc in drive D, then click OK!")

 Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

 Catch

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End Try

End Try

If the user inserts the disc in the drive as a result of the message prompt, the second Try
block opens the file without error. However, if a file-related run-time error still appears, the
second Catch block displays a message saying that the file load feature is being disabled,
and the button is disabled.

In general, nested Try . . . Catch error handlers work well so long as you don’t have too many
tests or retries to manage. If you do need to retry a problematic operation many times, use
a variable to track your retries, or develop a function containing an error handler that can
be called repeatedly from your event procedures. (For more information about creating
functions, see Chapter 10.)

Comparing Error Handlers with Defensive
Programming Techniques

Error handlers aren’t the only mechanism for protecting a program against run-time errors. For
example, the following program code uses the File.Exists method in the System.IO namespace
of the .NET Framework class library to check whether a file exists on CD or DVD before it’s
opened:

If File.Exists("d:\fileopen.bmp") Then

 PictureBox1.Image = _

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 243

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Else

 MsgBox("Cannot find fileopen.bmp on drive D.")

End If

This If . . . Then statement isn’t an actual error handler because it doesn’t prevent a run-time
error from halting a program. Instead, it’s a validation technique that some programmers
call defensive programming. It uses a handy method in the .NET Framework class library to
verify the intended file operation before it’s actually attempted in the program code. And in
this particular case, testing to see whether the file exists with the .NET Framework method
is actually faster than waiting for Visual Basic to issue an exception and recover from a
run-time error using an error handler.

Note  To get this particular program logic to work, the following statement must be included
in the declarations section at the very top of the form’s program code to make reference to the
.NET Framework class library that’s being invoked:

Imports System.IO

For more information about utilizing the Imports statement to use the objects, properties,
and methods in the .NET Framework class libraries, see Chapter 5, “Visual Basic Variables and
Formulas, and the .NET Framework.”

When should you use defensive programming techniques, and when should you use
structured error handlers? The answer is really that you should use a combination of defensive
programming and structured error-handling techniques in your code. Defensive programming
logic is usually the most efficient way to manage potential problems. As I mentioned earlier
when discussing the If . . . Then code block, the File.Exists method is actually faster than using
a Try . . . Catch error handler, so it also makes sense to use a defensive programming technique
if performance issues are involved. You should use defensive programming logic for errors
that you expect to occur frequently in your program. Use structured error handlers for errors
that you don’t expect to occur very often. Structured error handlers are essential if you have
more than one condition to test and if you want to provide the user with numerous options
for responding to the error. Structured error handlers also allow you to gracefully handle errors
that you aren’t even aware of.

One Step Further: The Exit Try Statement
You’ve learned a lot about error handlers in this chapter; now you’re ready to put them to
work in your own programs. But before you move on to the next chapter, here’s one more
syntax option for Try . . . Catch code blocks that you might find useful: the Exit Try statement.
Exit Try is a quick and slightly abrupt technique for exiting a Try . . . Catch code block
prematurely. If you’ve written Visual Basic programs before, you might notice its similarity to
the Exit For and Exit Sub statements, which you can use to leave a structured routine early.

244	 Part II  Programming Fundamentals

Using the Exit Try syntax, you can jump completely out of the current Try or Catch code
block. If there’s a Finally code block, this code will be executed, but Exit Try lets you jump
over any remaining Try or Catch statements you don’t want to execute.

The following sample routine shows how the Exit Try statement works. It first checks to
see whether the Enabled property of the PictureBox1 object is set to False, a flag that
might indicate that the picture box isn’t ready to receive input. If the picture box isn’t yet
enabled, the Exit Try statement skips to the end of the Catch code block, and the file load
operation isn’t attempted.

Try

 If PictureBox1.Enabled = False Then Exit Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 Retries += 1

 If Retries <= 2 Then

 MsgBox("Please insert the disc in drive D!")

 Else

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End If

End Try

The example builds on the last error handler that you experimented with in this chapter
(the Disc Drive Handler project). If you’d like to test the Exit Try statement in the context of
that program, open the Disc Drive Handler project and enter the If statement that contains
the Exit Try in the Code Editor. You’ll also need to use the Properties window to disable the
picture box object on the form (in other words, to set its Enabled property to False).

Congratulations! You’ve learned a number of important fundamental programming
techniques in Visual Basic, including how to write error handlers. Now you’re ready to
increase your programming efficiency by learning to write Visual Basic modules and
procedures.

Chapter 9 Quick Reference

To Do this

Detect and process
run-time errors

Build an error handler by using one or more Try . . . Catch code blocks.
For example, the following error handler code tests for path or disc drive
problems:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Check path or insert disc")

Finally

 MsgBox("Error handler complete")

End Try

	 Chapter 9  Trapping Errors by Using Structured Error Handling	 245

To Do this

Test for specific error
conditions in an event
handler

Use the Catch statement and the appropriate Exception object. For example:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch ex As System.IO.FileNotFoundException 'if File Not Found

 MsgBox("Check pathname and disc drive")

Catch ex As OutOfMemoryException 'if Out Of Memory

 MsgBox("Is this really a bitmap?", , ex.Message)

Catch ex As Exception

 MsgBox("Problem loading file", , ex.Message)

End Try

Create your own
errors in a program

Use the Throw statement. For example, the following code generates
an exception and handles it:

Try

 Throw New Exception("There was a problem")

Catch ex As Exception

 MsgBox(ex.Message)

End Try

Write nested Try . . .
Catch error handlers

Place one Try . . . Catch code block within another. For example:

Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

Catch

 MsgBox("Insert the disc in drive D!, then click OK!")

 Try

 PictureBox1.Image = _

 System.Drawing.Bitmap.FromFile("d:\fileopen.bmp")

 Catch

 MsgBox("File Load feature disabled")

 Button1.Enabled = False

 End Try

End Try

Exit the current Try or
Catch code block

Use the Exit Try statement in the Try or the Catch code block. For example:

If PictureBox1.Enabled = False Then Exit Try

		 247

Chapter 10

Creating Modules and Procedures
After completing this chapter, you will be able to:

n	 Employ structured programming techniques and create modules containing public
variables and procedure definitions.

n	 Practice using public variables that have a global scope.

n	 Increase programming efficiency by creating user-defined Sub and Function
procedures.

n	 Master the syntax for calling and using user-defined procedures.

n	 Pass arguments to procedures by value and by reference.

In the first nine chapters of this book, you have used event procedures such as Button1_Click,
Timer1_Tick, and Form1_Load to manage events and organize the flow of your programs.
In Microsoft Visual Basic programming, all executable statements must be placed inside
some procedure; only general declarations and instructions to the compiler can be placed
outside a procedure’s scope. In this chapter, you’ll continue to organize your programs by
breaking computing tasks into discrete logical units.

You’ll start by learning how to create modules, which are separate areas within a program
that contain global, or public, variables and Function and Sub procedures. You’ll learn how to
declare and use public variables, and you’ll learn how to build general-purpose procedures
that save coding time and can be used in more than one project. The skills you’ll learn will be
especially applicable to larger programming projects and team development efforts.

Working with Modules
As you write longer programs, you’re likely to have several forms and event procedures
that use some of the same variables and routines. By default, variables are local to an event
procedure—they can be read or changed only within the event procedure in which they
were created. You can also declare variables at the top of a form’s program code and give
the variables a greater scope throughout the form. However, if you create multiple forms in
a project, the variables declared at the top of a form are valid only in the form in which they
were declared. Likewise, event procedures are by default declared as private and are only
local to the form in which they are created. For example, you can’t call the Button1_Click
event procedure from a second form named Form2 if the event procedure is declared to be
private to Form1. (You’ll learn how to add additional forms to your project in Chapter 14,
“Managing Windows Forms and Controls at Run Time.”)

Table of Contents

Creating Modules and Procedures . 247
Working with Modules . . 247

Creating a Module . 248

Working with Public Variables . 251

Creating Procedures . 255

Writing Function Procedures . 256

Function Syntax . . 257

Calling a Function Procedure . 258

Using a Function to Perform a Calculation . . 258

Writing Sub Procedures . 262

Sub Procedure Syntax . 262

Calling a Sub Procedure . 263

Using a Sub Procedure to Manage Input . 264

One Step Further: Passing Arguments by Value
and by Reference . 268

Chapter 10 Quick Reference . 270

248	 Part II  Programming Fundamentals

To share variables and procedures among all the forms and event procedures in a project,
you can declare them in one or more modules included in the project. A module is a special
file that has a .vb file name extension and contains variable declarations and procedures that
can be used anywhere in the program.

Like forms, modules are listed separately in Solution Explorer. Unlike forms, modules contain
only code and don’t have a user interface. And although modules have some similarities
with classes, they are unlike classes in that they are not object-oriented, do not define the
structure and characteristics of objects, and cannot be inherited. (You’ll learn more about
creating classes in Chapter 16, “Inheriting Forms and Creating Base Classes.”)

Creating a Module
To create a new module in a program, you click the Add New Item button on the Standard
toolbar or click the Add New Item command on the Project menu. (You can also click the
Add Module command on the Project menu.) A dialog box opens, in which you select the
Module template and specify the name of the module. A new, blank module then appears
in the Code Editor. The first module in a program is named Module1.vb by default, but you
can change the name by right-clicking the module in Solution Explorer, selecting Rename,
and typing a new name. You can also rename a module by changing the File Name property
in the Properties window. Try creating an empty module in a project now.

Create and save a module

	 1.	 Start Microsoft Visual Studio 2010, and then create a new Visual Basic Windows Forms
Application project named My Module Test.

The new project is created, and a blank form opens in the Designer.

	 2.	 Click the Add New Item command on the Project menu.

The Add New Item dialog box opens.

	 3.	 Scroll down the list of common templates in the central pane, and then select the
Module template.

The default name, Module1.vb, appears in the Name text box, as shown on the
following page:

Tip  The Add New Item dialog box offers several templates that you can use in your
projects. Each template has different characteristics and includes starter code to help
you use them. Visual Studio includes many useful Windows Forms templates, including
Explorer Form, Splash Screen, and Login Form, plus numerous class-related templates.
You’ll use these templates after you read the introductory material about object-oriented
programming in Chapter 16.

	 Chapter 10  Creating Modules and Procedures	 249

	 4.	 Click the Add button.

Visual Basic adds Module1 to your project. The module appears in the Code Editor,
as shown here:

250	 Part II  Programming Fundamentals

The Method Name list box indicates that the general declarations section of the
module is open. Variables and procedures declared in this section are available to the
entire project. (You’ll try declaring variables and procedures later.)

	 5.	 Double-click the Solution Explorer title bar to undock the Solution Explorer window.

As shown previously, Solution Explorer lists the module you added to the program in
the list of components for the project. The name Module1 identifies the default file
name of the module. You’ll change this file name in the following steps.

	 6.	 Select Module1.vb in the Solution Explorer.

	 7.	 Double-click the Properties window title bar to undock it.

The Properties window displays the properties for Module1.vb, as shown here:

Because a module contains only code, it has only a few properties. By using the most
significant property, File Name, you can create a custom file name for the module to
describe its purpose. Give this identifying label some thought because later you might
want to incorporate your module into another solution. The remaining properties for
the module are useful for more sophisticated projects—you don’t need to worry about
them now.

	 8.	 Change the File Name property to Math Functions.vb or another file name that
sounds impressive, and then press ENTER. (I’m granting you considerable leeway here
because this project is simply for testing purposes—you won’t actually create math
functions or any other “content” for the module, and later you’ll discard it.)

The file name for your module is updated in the Properties window, Solution Explorer,
and the Code Editor.

	 Chapter 10  Creating Modules and Procedures	 251

	 9.	 Return the Properties window and Solution Explorer to their regular docked positions
by pressing the CTRL key and double-clicking their title bars.

As you can see, working with modules in a project is a lot like working with forms. In the next
exercise, you’ll add a public variable to a module.

Tip  To remove a module from a project, click the module in Solution Explorer, and then click the
Exclude From Project command on the Project menu. (Visual Basic 2010 Express does not include
the Exclude From Project command.) Exclude From Project doesn’t delete the module from your
hard disk, but it does remove the link between the specified module and the current project.
You can reverse the effects of this command by clicking the Add Existing Item command on the
Project menu, selecting the file that you want to add to the project, and then clicking Add.

Working with Public Variables
Declaring a global, or public, variable in a module is simple—you type the keyword Public
followed by the variable name and a type declaration. After you declare the variable, you
can read it, change it, or display it in any procedure in your program. For example, the
program statement:

Public RunningTotal As Integer

declares a public variable named RunningTotal of type Integer.

The following exercises demonstrate how you can use a public variable named Wins in
a module. You’ll revisit Lucky Seven, the first program you created in this book, and you’ll
use the Wins variable to record how many spins you win as the slot machine runs.

Note  Lucky Seven is the slot machine program from Chapter 2, “Writing Your First Program.”

Revisit the Lucky Seven project

	 1.	 Click the Close Project command on the File menu to close the Module Test project.

Because you have named (but not saved) the project yet, you see the following
dialog box:

252	 Part II  Programming Fundamentals

You don’t need to keep this project on your hard disk; it was only for testing purposes.
To demonstrate the “close without saving” feature in Visual Studio, you’ll discard the
project now.

	 2.	 Click the Discard button.

Visual Studio discards the entire project, removing any temporary files associated with
the module from your computer’s memory and hard disk. It seems like a rather obvious
feature, but I wanted to demonstrate that the ability to close a project without saving
it is just the thing for this type of test. (Just be careful with it, OK?) Now you’ll open
a more substantial project and modify it.

	 3.	 Open the Track Wins project in the C:\Vb10sbs\Chap10\Track Wins folder.

The project opens in the Integrated Development Environment (IDE).

	 4.	 If the form isn’t visible, display it now.

You see the following user interface:

The Track Wins project is the same slot machine program that you created in Chapter 2.
With this program, the user can click a spin button to display random numbers in three
number boxes, and if the number 7 appears in one of the boxes, the computer beeps
and displays a bitmap showing an eclectic cash payout. I’ve simply renamed the Lucky7
solution in this chapter so that you won’t confuse this new version with the original.

	 5.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 6.	 Click the Spin button six or seven times, and then click the End button.

As you might recall, the program uses the Rnd function to generate three random
numbers each time you click the Spin button. If one of the numbers is a 7, the event
procedure for the Spin button (Button1_Click) displays a cash payout picture and beeps.

Now you’ll edit the form and add a module to enhance the program.

Add a module

	 1.	 Click the Label control in the Toolbox, and then create a new rectangular label on the
form below the Lucky Seven label.

	 Chapter 10  Creating Modules and Procedures	 253

	 2.	 Set the properties shown in the following table for the new label. To help identify the
new label in the program code, you’ll change the new label object’s name to lblWins.

Object Property Setting

Label5 Font

ForeColor

Name

Text

TextAlign

Arial, Bold Italic, 12-point

Green (on Custom tab)

lblWins

“Wins: 0”

MiddleCenter

When you’ve finished, your form looks similar to this:

Now you’ll add a new module to the project.

	 3.	 Click the Add New Item command on the Project menu, select the Module template,
and then click Add.

A module named Module1.vb appears in the Code Editor.

	 4.	 Move the insertion point to the blank line between the Module Module1 and End
Module statements, type Public Wins As Short, and then press ENTER.

This program statement declares a public variable of the Short integer type in your
program. It’s identical to a normal variable declaration that you might make in your
program code, except the Public keyword has been substituted for the Dim keyword.
When your program runs, each event procedure in the program will have access to this
variable. Your module looks like this:

254	 Part II  Programming Fundamentals

	 5.	 In Solution Explorer, click Form1.vb, click the View Designer button, and then
double-click the Spin button.

The Button1_Click event procedure for the Spin button appears in the Code Editor.

	 6.	 Type the following statements below the Beep() statement in the event procedure:

Wins = Wins + 1

lblWins.Text = "Wins: " & Wins

This part of the program code increments the Wins public variable if a 7 appears
during a spin. The second statement uses the concatenation operator (&) to assign
a string to the lblWins object in the format Wins: X, in which X is the number of wins.
The completed event procedure looks like this:

	 7.	 Click the Save All button on the Standard toolbar to save all your changes to disk.

Save All saves your module changes as well as the changes on your form and in your
event procedures.

	 8.	 Click the Start Debugging button to run the program.

	 9.	 Click the Spin button until you have won a few times.

The Wins label keeps track of your jackpots. Each time you win, it increments the total
by 1. After eight spins, I had the output shown on the following page:

Note  The exact number of wins will be different each time you run the program due to
the Randomize statement in the Form1_Load event procedure.

	 Chapter 10  Creating Modules and Procedures	 255

	 10.	 Click End to exit the program.

The public variable Wins was useful in the previous procedure because it maintained its
value through several calls to the Button1_Click event procedure. If you had declared
Wins locally in the Button1_Click event procedure, the variable would have reset each
time, just as the trip odometer in your car does when you reset it. By using a public
variable in a module, you can avoid “hitting the reset button.”

Public Variables vs. Form Variables
In the preceding exercise, you used a public variable to track the number of wins in
the slot machine program. Alternatively, you could have declared the Wins variable at
the top of the form’s program code. Both techniques produce the same result because
both a public variable and a variable declared in the general declarations area of a form
have scope throughout the entire form. Public variables are unique, however, because
they maintain their values in all the forms and modules you use in a project—in other
words, in all the components that share the same project namespace. The project
namespace keyword is set automatically when you first save your project. You can view
or change the namespace name by selecting the project in Solution Explorer, clicking
the Track Wins Properties command on the Project menu, and then examining or
changing the text in the Root Namespace text box on the Application tab.

Creating Procedures
Procedures provide a way to group a set of related statements to perform a task. Visual Basic
includes two primary types of procedures:

n	 Function procedures are called by name from event procedures or other procedures.
Often used for calculations, function procedures can receive arguments and always
return a value in the function name.

n	 Sub procedures are called by name from event procedures or other procedures. They
can receive arguments and also pass back modified values in an argument list. Unlike

256	 Part II  Programming Fundamentals

functions, however, Sub procedures don’t return values associated with their particular
Sub procedure names. Sub procedures are typically used to receive or process input,
display output, or set properties.

Function procedures and Sub procedures can be defined in a form’s program code, but for
many users, creating procedures in a module is more useful because then the procedures
have scope throughout the entire project. This is especially true for procedures that might
be called general-purpose procedures—blocks of code that are flexible and useful enough to
serve in a variety of programming contexts.

For example, imagine a program that has three mechanisms for printing a bitmap on
different forms: a menu command named Print, a Print toolbar button, and a drag-
and-drop printer icon. You could place the same printing statements in each of the three
event procedures, or you could handle printing requests from all three sources by using one
procedure in a module.

Advantages of General-Purpose Procedures
General-purpose procedures provide the following benefits:

n	 They enable you to associate a frequently used group of program statements
with a familiar name.

n	 They eliminate repeated lines. You can define a procedure once and have your
program execute it any number of times.

n	 They make programs easier to read. A program divided into a collection of
small parts is easier to take apart and understand than a program made up of
one large part.

n	 They simplify program development. Programs separated into logical units
are easier to design, write, and debug. Plus, if you’re writing a program in
a group setting, you can exchange procedures and modules instead of entire
programs.

n	 They can be reused in other projects and solutions. You can easily incorporate
standard-module procedures into other programming projects.

n	 They extend the Visual Basic language. Procedures often can perform tasks
that can’t be accomplished by individual Visual Basic keywords or Microsoft
.NET Framework methods.

Writing Function Procedures
A Function procedure is a group of statements located between a Function statement
and an End Function statement. The statements in the function do the meaningful work—
typically processing text, handling input, or calculating a numeric value. You execute, or call,

	 Chapter 10  Creating Modules and Procedures	 257

a function in a program by placing the function name in a program statement along with any
required arguments.

Arguments are the data used to make functions work, and they must be included between
parentheses and be separated by commas. Basically, using a Function procedure is exactly
like using a built-in function or method such as Int, Rnd, or FromFile.

Tip  Functions declared in modules are public by default. As a result, you can use them in any
event procedure within the project.

Function Syntax
The basic syntax of a function is as follows:

Function FunctionName([arguments]) As Type

 function statements

 [Return value]

End Function

The following syntax items are important:

n	 FunctionName is the name of the function you’re creating.

n	 As Type is a pair of keywords that specifies the function return type. It is strongly
recommended that you specify a specific data type. If you don’t provide a type, the
return type defaults to Object.

n	 arguments is a list of optional arguments (separated by commas) to be used in the
function. Each argument should also be declared as a specific type. (By default, Visual
Basic adds the ByVal keyword to each argument, indicating that a copy of the data is
passed to the function through this argument but that any changes to the arguments
won’t be returned to the calling routine.)

n	 function statements is a block of statements that accomplishes the work of the function.
The first statements in a function typically declare local variables that will be used in
the function, and the remaining statements perform the work of the function.

n	 Return allows you to return a value to the calling procedure and specify that value.
The type of the return value must be the same type as specified in the As Type
keywords. When a Return statement is executed, the function is exited, so if there
are any function statements after the Return statement, these won’t be executed.
(Alternatively, you can return a value to the calling routine by assigning the value to
FunctionName.)

n	 Brackets ([]) enclose optional syntax items. Visual Basic requires that those syntax
items are not enclosed by brackets.

Functions always return a value to the calling procedure in the function’s name
(FunctionName). For this reason, the last statement in a function is often an assignment

258	 Part II  Programming Fundamentals

statement that places the final calculation of the function in FunctionName. For example, the
Function procedure TotalTax computes the state and city taxes for an item and then assigns
the result to the TotalTax name, as shown here:

Function TotalTax(ByVal Cost as Single) As Single

 Dim StateTax, CityTax As Single

 StateTax = Cost * 0.05 'State tax is 5%

 CityTax = Cost * 0.015 'City tax is 1.5%

 TotalTax = StateTax + CityTax

End Function

Alternatively, you can return a value to the calling procedure by using the Return statement,
as shown in the following function declaration:

Function TotalTax(ByVal Cost as Single) As Single

 Dim StateTax, CityTax As Single

 StateTax = Cost * 0.05 'State tax is 5%

 CityTax = Cost * 0.015 'City tax is 1.5%

 Return StateTax + CityTax

End Function

I’ll use the Return syntax most often in this book, but you can use either mechanism for re-
turning data from a function.

Calling a Function Procedure
To call the TotalTax function in an event procedure, you use a statement similar to the
following:

lblTaxes.Text = TotalTax(500)

This statement computes the total taxes required for a $500 item and then assigns the result
to the Text property of the lblTaxes object. The TotalTax function can also take a variable as
an argument, as shown in the following statements:

Dim TotalCost, SalesPrice As Single

SalesPrice = 500

TotalCost = SalesPrice + TotalTax(SalesPrice)

The last statement uses the TotalTax function to determine the taxes for the number in the
SalesPrice variable and then adds the computed tax to SalesPrice to get the total cost of an
item. See how much clearer the code is when a function is used?

Using a Function to Perform a Calculation
In the following exercise, you’ll add a function to the Track Wins program to calculate the win
rate in the game—in other words, the percentage of spins in which one or more 7s appear.
To perform the calculation, you’ll add a function named HitRate and a public variable named

	 Chapter 10  Creating Modules and Procedures	 259

Spins to the module. Then you’ll call the HitRate function every time the Spin button is
clicked. You’ll display the results in a new label that you’ll create on the form.

Create a win rate function

	 1.	 Display the form for the Track Wins program that you’ve been modifying.

The user interface for the slot machine game appears.

	 2.	 Use the Label control to create a new label below the Wins label. Set the following
properties for the label:

Object Property Setting

Label5 Font

ForeColor

Name

Text

TextAlign

Arial, Bold Italic, 12-point

Red (on Custom tab)

lblRate

“0.0%”

MiddleCenter

Your form looks similar to the following graphic:

	 3.	 In Solution Explorer, click the Module1.vb module, and then click the View Code
button.

The Module1 module appears in the Code Editor.

	 4.	 Type the following public variable declaration below the Public Wins As Short statement:

Public Spins As Short

The module now includes two public variables, Wins and Spins, which will be available
to all the procedures in the project. You’ll use Spins as a counter to keep track of the
number of spins you make.

	 5.	 Insert a blank line in the module, and then type the following function declaration:

Function HitRate(ByVal Hits As Short, ByVal Tries As Short) As String

 Dim Percent As Single

260	 Part II  Programming Fundamentals

 Percent = Hits / Tries

 Return Format(Percent, "0.0%")

End Function

After you type the first line of the function code, Visual Basic automatically adds
an End Function statement. After you type the remainder of the function’s code, your
screen looks like this:

The HitRate function determines the percentage of wins by dividing the Hits argument
by the Tries argument and then adjusts the appearance of the result by using the
Format function. The HitRate function is declared as a string because the Format
function returns a string value. The Hits and the Tries arguments are placeholders for
the two short integer variables that will be passed to the function during the function
call. The HitRate function is general-purpose enough to be used with any shorter
integer numbers or variables, not only with Wins and Spins.

	 6.	 Display the form again, and then double-click the Spin button on the Form1.vb form to
bring up the Button1_Click event procedure.

	 7.	 Below the fourth line of the event procedure (Label3.Text = CStr(Int(Rnd() * 10))), type
the following statement:

Spins = Spins + 1

This statement increments the Spins variable each time the user clicks Spin, and new
numbers are placed in the spin windows.

	 8.	 Scroll down in the Code Editor, and then, between the End If and the End Sub statements,
type the following statement as the last line in the Button1_Click event procedure:

lblRate.Text = HitRate(Wins, Spins)

As you type the HitRate function, notice how Visual Studio automatically displays the
names and types of the arguments for the HitRate function you just built (a nice touch).

The purpose of this statement is to call the HitRate function by using the Wins and
the Spins variables as arguments. The result returned is a percentage in string format,

	 Chapter 10  Creating Modules and Procedures	 261

and this value is assigned to the Text property of the lblRate label on the form after
each spin. Now remove the Randomize function from the Form1_Load event procedure,
so that while you test the project, your results will follow a familiar pattern.

	 9.	 Scroll down in the Code Editor to the Form1_Load event procedure, and remove or
“comment out” (place a comment character (‘) before) the Randomize function.

Now, each time that you run this program, the random numbers generated will follow
a predictable pattern. This helps you test your code, but when you’re finished testing,
you’ll want to add the function back again so that your results are truly random.

Now you’ll run the program.

Run the Track Wins program

	 1.	 Click the Start Debugging button to run the modified Track Wins program.

	 2.	 Click the Spin button 10 times.

The first five times you click Spin, the win rate stays at 100.0%. You’re hitting the
jackpot every time. As you continue to click, however, the win rate adjusts to 83.3%,
71.4%, 75.0% (another win), 66.7%, and 60.0% (a total of 6 for 10). After 10 spins, your
screen looks like this:

If you continue to spin, you’ll notice that the win rate drops to about 28%. The HitRate
function shows that you were really pretty lucky when you started spinning, but after
a while reality sets in.

	 3.	 When you’re finished with the program, click the End button.

The program stops, and the development environment returns. You can add the
Randomize function to the Form1_Load event procedure again to see how the program
works with “true” randomness. After about 100 spins (enough iterations for statistical
variation to even out a little), you should be close to the 28% win rate each time that
you run the program. If you like numbers, it is an interesting experiment.

	 4.	 Click the Save All button on the Standard toolbar to save your changes.

262	 Part II  Programming Fundamentals

Writing Sub Procedures
A Sub procedure is similar to a Function procedure, except that a Sub procedure doesn’t
return a value associated with its name. Sub procedures are typically used to get input
from the user, display or print information, or manipulate several properties associated with
a condition. Sub procedures can also be used to process and update variables received in
an argument list during a procedure call and pass back one or more of these values to the
calling program.

Sub Procedure Syntax
The basic syntax for a Sub procedure is:

Sub ProcedureName([arguments])

 procedure statements

End Sub

The following syntax items are important:

n	 ProcedureName is the name of the Sub procedure you’re creating.

n	 arguments is a list of optional arguments (separated by commas if there’s more than
one) to be used in the Sub procedure. Each argument should also be declared as
a specific type. (Visual Studio adds the ByVal keyword by default to each argument,
indicating that a copy of the data is passed to the function through this argument but
that any changes to the arguments won’t be returned to the calling routine.)

n	 procedure statements is a block of statements that accomplishes the work of the
procedure.

In the Sub procedure call, the number and type of arguments sent to the procedure must
match the number and type of arguments in the Sub procedure declaration, and the entire
group must be enclosed in parentheses. If variables passed to a Sub procedure are modified
during the procedure, the updated variables aren’t passed back to the program unless the
procedure defined the arguments by using the ByRef keyword. Sub procedures declared in
a module are public by default, so they can be called by any event procedure in a project.

Important  All calls to a Sub procedure must include parentheses after the procedure
name. A set of empty parentheses is required even if no arguments are being passed to the
procedure.

For example, the following Sub procedure receives a string argument representing a person’s
name and uses a text box to wish that person happy birthday. If this Sub procedure is
declared in a module, it can be called from any event procedure in the program.

	 Chapter 10  Creating Modules and Procedures	 263

Sub BirthdayGreeting (ByVal Person As String)

 Dim Msg As String

 If Person <> "" Then

 Msg = "Happy birthday " & Person & "!"

 Else

 Msg = "Name not specified."

 End If

 MsgBox(Msg, , "Best Wishes")

End Sub

The BirthdayGreeting procedure receives the name to be greeted by using the Person
argument, a string variable received by value during the procedure call. If the value of
Person isn’t empty, or null, the specified name is used to build a message string that will
be displayed with a MsgBox function. If the argument is null, the procedure displays the
message “Name not specified.”

Calling a Sub Procedure
To call a Sub procedure in a program, you specify the name of the procedure, and then list
the arguments required by the Sub procedure. For example, to call the BirthdayGreeting
procedure, you could type the following statement:

BirthdayGreeting("Robert")

In this example, the BirthdayGreeting procedure would insert the name “Robert” into
a message string, and the routine would display the following message box:

The space-saving advantages of a procedure become clear when you call the procedure
many times using a variable, as shown in the example below:

Dim NewName As String

Do

 NewName = InputBox("Enter a name for greeting.", "Birthday List")

 BirthdayGreeting(NewName)

Loop Until NewName = ""

Here the user can enter as many names for birthday greetings as he or she likes. The next
exercise gives you a chance to practice using a Sub procedure to handle another type of
input in a program.

264	 Part II  Programming Fundamentals

Using a Sub Procedure to Manage Input
Sub procedures are often used to handle input in a program when information comes from
two or more sources and needs to be in the same format. In the following exercise, you’ll
create a Sub procedure named AddName that prompts the user for input and formats the
text so that it can be displayed on multiple lines in a text box. The procedure will save you
programming time because you’ll use it in two event procedures, each associated with
a different text box. Because the procedure will be declared in a module, you’ll need to type
it in only one place. If you add additional forms to the project, the procedure will be available
to them as well.

Create a text box Sub procedure

	 1.	 On the File menu, click the Close Project command.

Visual Studio closes the current project (the Track Wins slot machine).

	 2.	 Create a new Windows Forms Application project named My Text Box Sub.

The new project is created, and a blank form opens in the Designer.

	 3.	 Use the TextBox control to create two text boxes, side by side, in the middle of
the form.

Today you’ll make some personnel decisions, and you’ll use these text boxes to hold
the names of employees you’ll be assigning to two departments.

	 4.	 Use the Label control to create two labels above the text boxes.

These labels will hold the names of the departments.

	 5.	 Use the Button control to create three buttons: one under each text box and one at the
bottom of the form.

You’ll use the first two buttons to assign employees to their departments and the last
button to quit the program.

	 6.	 Set the properties shown in the following table for the objects on the form.

Because the text boxes will contain more than one line, you’ll set their Multiline
properties to True and their ScrollBars properties to Vertical. These settings are typically
used when multiple lines are displayed in text boxes. You’ll also set their TabStop
properties to False and their ReadOnly properties to True so that the information can’t
be modified.

Object Property Setting

TextBox1 Multiline

Name

ReadOnly

ScrollBars

TabStop

True

txtSales

True

Vertical

False

	 Chapter 10  Creating Modules and Procedures	 265

Object Property Setting

TextBox2 Multiline

Name

ReadOnly

ScrollBars

TabStop

True

txtMkt

True

Vertical

False

Label1 Font

Name

Text

Bold

lblSales

“Sales”

Label2 Font

Name

Text

Bold

lblMkt

“Marketing”

Button1 Name

Text

btnSales

“Add Name”

Button2 Name

Text

btnMkt

“Add Name”

Button3 Name

Text

btnQuit

“Quit”

Form1 Text “Assign Department
Teams”

	 7.	 Resize and position the objects so that your form looks similar to this:

Now you’ll add a module and create the general-purpose AddName Sub procedure.

	 8.	 On the Project menu, click the Add New Item command, select the Module template,
and then click Add.

A new module appears in the Code Editor.

266	 Part II  Programming Fundamentals

	 9.	 Type the following AddName procedure between the Module Module1 and End Module
statements:

Sub AddName(ByVal Team As String, ByRef ReturnString As String)

 Dim Prompt, Nm, WrapCharacter As String

 Prompt = "Enter a " & Team & " employee."

 Nm = InputBox(Prompt, "Input Box")

 WrapCharacter = Chr(13) + Chr(10)

 ReturnString = Nm & WrapCharacter

End Sub

This general-purpose Sub procedure uses the InputBox function to prompt the user for
an employee name. It receives two arguments during the procedure call: Team, a string
containing the department name; and ReturnString, an empty string variable that will
contain the formatted employee name. ReturnString is declared with the ByRef keyword
so that any changes made to this argument in the procedure will be passed back to the
calling routine through the argument.

Before the employee name is returned, carriage return and linefeed characters are
appended to the string so that each name in the text box will appear on its own line.
You can use this general technique in any string to create a new line.

Your Code Editor looks like this:

	 10.	 Display the form again, and then double-click the first Add Name button on the form
(the button below the Sales text box). Type the following statements in the btnSales_
Click event procedure:

Dim SalesPosition As String = ""

AddName("Sales", SalesPosition)

txtSales.Text = txtSales.Text & SalesPosition

The call to the AddName Sub procedure includes one argument passed by value
(“Sales”) and one argument passed by reference (SalesPosition). The last line uses the
argument passed by reference to add text to the txtSales text box. The concatenation
operator (&) adds the new name to the end of the text in the text box.

	 Chapter 10  Creating Modules and Procedures	 267

	 11.	 In the Code Editor, just below the Form1.vb tab name, click the Class Name arrow,
and then click the btnMkt object in the list. Then click the Method Name arrow,
and click the Click event.

The btnMkt_Click event procedure appears in the Code Editor. Using the Class Name
and Method Name list boxes is another way to practice adding event procedures.

	 12.	 Type the following statements in the event procedure:

Dim MktPosition As String = ""

AddName("Marketing", MktPosition)

txtMkt.Text = txtMkt.Text & MktPosition

This event procedure is identical to btnSales_Click, except that it sends “Marketing”
to the AddName procedure and updates the txtMkt text box. (The name of the local
return variable MktPosition was renamed to make it more intuitive.)

	 13.	 Click the Class Name arrow, and then click the btnQuit object in the list. Then click the
Method Name arrow, and click the Click event.

The btnQuit_Click event procedure appears in the Code Editor.

	 14.	 Type End in the btnQuit_Click event procedure.

	 15.	 Click the Save All button on the Standard toolbar, and then specify the
C:\Vb10sbs\Chap10 folder as the location.

That’s it! Now you’ll run the Text Box Sub program.

Run the Text Box Sub program

Tip  The complete Text Box Sub program is located in the C:\Vb10sbs\Chap10\Text Box
Sub folder.

	 1.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 2.	 Click the Add Name button under the Sales text box, and then type Manuel Oliveira
in the input box. (Feel free to type a different name.)

Your input box looks like this:

268	 Part II  Programming Fundamentals

	 3.	 Click the OK button to add the name to the Sales text box.

The name appears in the first text box.

	 4.	 Click the Add Name button under the Marketing text box, type Raymond Fong in the
Marketing input box, and then press ENTER.

The name appears in the Marketing text box. Your screen looks like this:

	 5.	 Enter a few more names in each of the text boxes. This is your chance to create your
own dream office staffing configurations.

Each name appears on its own line in the text boxes. The text boxes don’t scroll
automatically, so you won’t see every name you’ve entered if you enter more names
than can fit in a text box. You can use the scroll bars to access names that aren’t visible.

	 6.	 When you’ve finished, click the Quit button to stop the program.

You’ve demonstrated that one Sub procedure can manage input tasks from two or more
event procedures. Using this basic concept as a starting point, you can now create more
sophisticated programs that use Sub and Function procedures as organizing tools and that
place common tasks in logical units that can be called over and over again.

One Step Further: Passing Arguments by Value
and by Reference

In the discussion of Sub and Function procedures, you learned that arguments are passed
to procedures by value or by reference. Using the ByVal keyword indicates that variables
should be passed to a procedure by value (the default). Any changes made to a variable
passed in by value aren’t passed back to the calling procedure. However, as you learned
in the Text Box Sub program, using the ByRef keyword indicates that variables should be
passed to a procedure by reference, meaning that any changes made to the variable in the

	 Chapter 10  Creating Modules and Procedures	 269

procedure are passed back to the calling routine. Passing by reference can have significant
advantages, so long as you’re careful not to change a variable unintentionally in a procedure.
For example, consider the following Sub procedure declaration and call:

Sub CostPlusInterest(ByRef Cost As Single, ByRef Total As Single)

 Cost = Cost * 1.05 'add 5% to cost...

 Total = Int(Cost) 'then make integer and return

End Sub

.

.

.

Dim Price, TotalPrice As Single

Price = 100

TotalPrice = 0

CostPlusInterest(Price, TotalPrice)

MsgBox(Price & " at 5% interest is " & TotalPrice)

In this example, the programmer passes two single-precision variables by reference to the
CostPlusInterest procedure: Price and TotalPrice. The programmer plans to use the updated
TotalPrice variable in the subsequent MsgBox call but has unfortunately forgotten that the
Price variable was also updated in an intermediate step in the CostPlusInterest procedure.
(Because Price was passed by reference, changes to Cost automatically result in the same
changes to Price.) This produces the following erroneous result when the program is run:

However, the programmer probably wanted to show the following message:

So how should the CostPlusInterest procedure be fixed to produce the desired result? The
easiest way is to declare the Cost argument by using the ByVal keyword, as shown in the
following program statement:

Sub CostPlusInterest(ByVal Cost As Single, ByRef Total As Single)

270	 Part II  Programming Fundamentals

By declaring Cost using ByVal, you can safely modify Cost in the CostPlusInterest procedure
without sending the changes back to the calling procedure. By keeping Total declared using
ByRef, you can modify the variable that’s being passed, and only those changes will be
passed back to the calling procedure. In general, if you use ByRef only when it’s needed, your
programs will be freer of defects.

Here are some guidelines on when to use ByVal and when to use ByRef:

n	 Use ByVal when you don’t want a procedure to modify a variable that’s passed to the
procedure through an argument.

n	 Use ByRef when you want to allow a procedure to modify a variable that’s passed to
the procedure through an argument.

n	 When in doubt, use the ByVal keyword.

Chapter 10 Quick Reference

To Do This

Create a new
module

Click the Add New Item button on the Standard toolbar, and then select
the Module template;
or
Click the Add New Item command on the Project menu, and then select
the Module template.

Rename a module Select the module in Solution Explorer. In the Properties window, specify
a new name in the File Name property;
or
Right-click the module in Solution Explorer, select Rename, and then
specify a new name.

Remove a module
from a program

Select the module in Solution Explorer, and then click the Exclude From
Project command on the Project menu.

Add an existing
module to a project

On the Project menu, click the Add Existing Item command.

Create a public
variable

Declare the variable by using the Public keyword between the Module
and End Module keywords in a module. For example:

Public TotalSales As Integer

Create a public
function

Place the function statements between the Function and End Function
keywords in a module. Functions are public by default. For example:

Function HitRate(ByVal Hits As Short, ByVal _

 Tries As Short) As String

 Dim Percent As Single

 Percent = Hits / Tries

 Return Format(Percent, "0.0%")

End Function

	 Chapter 10  Creating Modules and Procedures	 271

To Do This

Call a Function
procedure

Type the function name and any necessary arguments in a program
statement, and assign it to a variable or property of the appropriate
return type. For example:

lblRate.Text = HitRate(Wins, Spins)

Create a public
Sub procedure

Place the procedure statements between the Sub and End Sub keywords
in a module. Sub procedures are public by default. For example:

Sub CostPlusInterest(ByVal Cost As Single, _

 ByRef Total As Single)

 Cost = Cost * 1.05

 Total = Int(Cost)

End Sub

Call a Sub procedure Type the procedure name and any necessary arguments in a program
statement. For example:

CostPlusInterest(Price, TotalPrice)

Pass an argument
by value

Use the ByVal keyword in the procedure declaration. For example:

Sub GreetPerson(ByVal Name As String)

Pass an argument
by reference

Use the ByRef keyword in the procedure declaration. For example:

Sub GreetPerson(ByRef Name As String)

		 273

Chapter 11

Using Arrays to Manage Numeric
and String Data

After completing this chapter, you will be able to:

n	 Organize information in fixed-size and dynamic arrays.

n	 Preserve array data when you redimension arrays.

n	 Use arrays in your code to manage large amounts of data.

n	 Use the Sort and Reverse methods in the Array class to reorder arrays.

n	 Use the ProgressBar control in your programs to show how long a task is taking.

Managing information in a Microsoft Visual Basic application is an important task, and as
your programs become more substantial, you’ll need additional tools to store and process
data. A quick-and-dirty approach to data management in programs is to store and retrieve
information in auxiliary text files, as you’ll see in Chapter 13, “Exploring Text Files and
String Processing.” However, the most comprehensive approach is storing and retrieving
information by using databases, and you’ll start learning how to integrate Visual Basic
programs with databases in Chapter 18, “Getting Started with ADO.NET.”

In this chapter, you’ll learn how to organize variables and other information into useful
containers called arrays. You’ll learn how to streamline data-management tasks with
fixed-size and dynamic arrays and how to use arrays in your code to manage large amounts
of data. You’ll learn how to redimension arrays and preserve the data in arrays when you
decide to change an array’s size. To demonstrate how large arrays can be processed, you’ll
use the Sort and Reverse methods in the Microsoft .NET Framework Array class to reorder
an array containing random six-digit integer values. Finally, you’ll learn to use the ProgressBar
control to give your users an indication of how long a process (array-related or otherwise) is
taking. The techniques you’ll learn provide a solid introduction to the database programming
techniques that you’ll explore later in the book.

Working with Arrays of Variables
In this section, you’ll learn about arrays, a useful method for storing almost any amount
of data during program execution. Arrays are a powerful and time-tested mechanism for
storing logically related values in a program. The developers of BASIC, Pascal, C, and other
popular programming languages incorporated arrays into the earliest versions of these
products to refer to a group of values by using one name and to process those values
individually or collectively.

Table of Contents

Using Arrays to Manage Numeric and String Data 273
Working with Arrays of Variables . 273

Creating an Array . 274

Declaring a Fixed-Size Array . 275

Setting Aside Memory . 276

Working with Array Elements . 277

Declaring an Array and Assigning It Initial Values 278

Creating a Fixed-Size Array to Hold Temperatures 279

Creating a Dynamic Array . 283

Preserving Array Contents by Using ReDim Preserve 287

Using ReDim for Three-Dimensional Arrays . 288

One Step Further: Processing Large Arrays
by Using Methods in the Array Class . 288

The Array Class . 288

Chapter 11 Quick Reference . 295

274	 Part II  Programming Fundamentals

Arrays can help you track a small set of values in ways that are impractical using traditional
variables. For example, imagine creating a nine-inning baseball scoreboard in a program.
To save and recall the scores for each inning of the game, you might be tempted to create
two groups of 9 variables (a total of 18 variables) in the program. You’d probably name them
something like Inning1HomeTeam, Inning1VisitingTeam, and so on, to keep them straight.
Working with these variables individually would take considerable time and space in your
program. Fortunately, with Visual Basic you can organize groups of similar variables into
an array that has one common name and an easy-to-use index. For example, you can create
a two-dimensional array (two units high by nine units wide) named Scoreboard to contain the
scores for the baseball game. Let’s see how this works.

Creating an Array
You create, or declare, arrays in program code just as you declare simple variables. As usual,
the place in which you declare the array determines where it can be used, or its scope,
as follows:

n	 If you declare an array locally in a procedure, you can use it only in that procedure.

n	 If you declare an array at the top of a form, you can use it throughout the form.

n	 If you declare an array publicly in a module, you can use it anywhere in the project.

When you declare an array, you typically include the information shown in Table 11-1 in your
declaration statement.

TABLE 11-1  Syntax Elements for an Array Declaration

Syntax Elements
in Array Declaration Description

Array name The name you’ll use to represent your array in the program. In general,
array names follow the same rules as variable names. (See Chapter 5,
“Visual Basic Variables and Formulas, and the .NET Framework,” for
more information about variables.)

Data type The type of data you’ll store in the array. In most cases, all the
variables in an array are the same type. You can specify one of the
fundamental data types, or if you’re not yet sure which type of data
will be stored in the array or whether you’ll store more than one type,
you can specify the Object type.

Number of dimensions The number of dimensions that your array will contain. Most arrays are
one-dimensional (a list of values) or two-dimensional (a table of values),
but you can specify additional dimensions if you’re working with a
complex mathematical model, such as a three-dimensional shape. The
number of dimensions in an array is sometimes called the array’s rank.

Number of elements The number of elements that your array will contain. The elements in
your array correspond directly to the array index. The first array index
is always 0 (zero).

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 275

Tip  Arrays that contain a set number of elements are called fixed-size arrays. Arrays that contain
a variable number of elements (arrays that can expand during the execution of the program) are
called dynamic arrays.

Declaring a Fixed-Size Array
The basic syntax for a public fixed-size array is

Dim ArrayName(Dim1Index, Dim2Index, ...) As DataType

The following arguments are important:

n	 Dim is the keyword that declares the array. Use Public instead if you place the array
in a module.

n	 ArrayName is the variable name of the array.

n	 Dim1Index is the upper bound of the first dimension of the array, which is the number
of elements minus 1.

n	 Dim2Index is the upper bound of the second dimension of the array, which is the
number of elements minus 1. (Additional dimensions can be included if they’re
separated by commas.)

n	 DataType is a keyword corresponding to the type of data that will be included in the
array.

For example, to declare a one-dimensional string array named Employees that has room
for 10 employee names (numbered 0 through 9), you can type the following in an event
procedure:

Dim Employees(9) As String

In a module, the same array declaration looks like this:

Public Employees(9) As String

You can also explicitly specify the lower bound of the array as zero by using the following
code in an event procedure:

Dim Employees(0 To 9) As String

This “0 to 9” syntax is included to make your code more readable—newcomers to your
program will understand immediately that the Employees array has 10 elements numbered
0 through 9. However, the lower bound of the array must always be zero. You cannot use this
syntax to create a different lower bound for the array.

276	 Part II  Programming Fundamentals

Setting Aside Memory
When you create an array, Visual Basic sets aside room for it in memory. The following screen
shot shows conceptually how the 10-element Employees array is organized. The elements are
numbered 0 through 9 rather than 1 through 10 because array indexes always start with 0.

9

8

7

6

5

4

3

2

1

0

Employees

To declare a public two-dimensional array named Scoreboard that has room for two rows
and nine columns of Short integer data, you can type this statement in an event procedure
or at the top of the form:

Dim Scoreboard(1, 8) As Short

Using the syntax that emphasizes the lower (zero) bound, you can also declare the array
as follows:

Dim Scoreboard(0 To 1, 0 To 8) As Short

After you declare such a two-dimensional array and Visual Basic sets aside room for it in
memory, you can use the array in your program as if it were a table of values, as shown in
the following screen shot. (In this case, the array elements are numbered 0 through 1 and 0
through 8.)

0

0 1 2 3 4 5 6 7 8

1

Rows

Columns
Scoreboard

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 277

Working with Array Elements
To refer to an element of an array, you use the array name and an array index enclosed
in parentheses. The index must be an integer or an expression that results in an integer.
For example, the index could be a number such as 5, an integer variable such as num, or
an expression such as num-1. (The counter variable of a For . . . Next loop is often used.)
For example, the following statement assigns the value “Leslie” to the element with an
index of 5 in the Employees array example in the previous section:

Employees(5) = "Leslie"

This statement produces the following result in our Employees array:

9

8

7

6

5

4

3

2

1

0

Employees

Leslie

Similarly, the following statement assigns the number 4 to row 0, column 2 (the top of the
third inning) in the Scoreboard array example in the previous section:

Scoreboard(0, 2) = 4

This statement produces the following result in our Scoreboard array:

0

0 1 2

4

3 4 5 6 7 8

1

Rows

Columns

Scoreboard

You can use these indexing techniques to assign or retrieve any array element.

278	 Part II  Programming Fundamentals

Declaring an Array and Assigning It Initial Values
It is also possible to declare an array and assign it initial values at the same time. This
statement syntax is somewhat parallel to what you learned about assigning an initial value to
a variable at the moment of declaration, and it is useful when you know in advance just how
large an array needs to be and what its contents are.

To create an array in this manner, you use what is called an array literal. An array literal consists of
a list of comma-separated values that are enclosed in braces ({}). When using this syntax, you can
either supply the array type or let Visual Basic use type inference to determine what type the array
should be. For example, to declare a one-dimensional array named Waiters of type String and fill
it with seven names, you would use the following syntax:

Dim Waiters() As String = {"Ben", "Sue", "Lee", "Kim", "Pat", "Eve", "Sal"}

Note that the size of this array is determined automatically by Visual Basic when Waiters is
declared. In addition, if you don’t indicate an array type, Visual Basic will use type inference
to determine the right array data type for you. Obviously if all the values are the same
type, it should be clear to the compiler what data type should be used for the array. But if
there is a mixture of types, such as an assortment of integer, single, and double-precision
numbers, Microsoft Visual Studio will pick a data type for the array that is large enough to
accommodate all the values. In many cases, this will be the data type Object because Object
variables (and arrays) are specifically designed to hold any type of data.

The following statement declares an array named Investments and uses an array literal to add
four values to the array when it is created. Since no type is specified, Visual Basic evaluates
the array elements and determines that in this case, the Object type is most appropriate.

Dim Investments() = {5000, 20350.50, 499.99, 10000}

Note  If the compiler’s Option Infer setting is set to On, the Double type will be specified when
the above statement is executed. See Chapter 1 for help adjusting this setting.

A multi-dimensional array can also be declared in this way, although you need to take care
to list the elements in the proper order (that is, row 0 first, then row 1, row 2, and so on).
For example, the following statement declares a two-dimensional array named Rectangle
and assigns four values to the array:

Dim Rectangle = {{10, 20}, {50, 60}}

This array has two rows and two columns. Array element (0, 0—that is, row 0, column 0)
now contains a value of 10 and element (0, 1—that is, row 0, column 1) now contains

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 279

a value of 20. Also, notice that there are three sets of braces used in the declaration;
these braces clarify which elements are being assigned and keep them in the proper order.

The following screen shot shows the Visual Studio Code Editor with the three examples of
array literal declarations that I have shown in this section. Notice that the Code Editor is in
debugging mode (or break mode) and the Watch window is visible and shows the contents
of the Waiters array. (Debugging mode and the Watch window were introduced in Chapter 8,
“Debugging Visual Basic Programs.”) A For . . . Next loop is also being used to display the
contents of the Waiters array in a message box, although you cannot see the results of that
loop on this screen. For . . . Next loops are excellent tools to process arrays, as you’ll see in the
next section.

Creating a Fixed-Size Array to Hold Temperatures
The following exercise uses a one-dimensional array named Temperatures to record the
daily high temperatures for a seven-day week. The program demonstrates how you can use
an array to store and process a group of related values on a form. The Temperatures array
variable is declared at the top of the form, and then temperatures are assigned to the array
by using an InputBox function and a For . . . Next loop, which you learned about in Chapter 7,

280	 Part II  Programming Fundamentals

“Using Loops and Timers.” The loop counter is used to reference each element in the
array. The array contents are then displayed on the form by using a For . . . Next loop
and a text box object. The average high temperature is also calculated and displayed—
how fun!

The UBound and LBound Functions
To simplify working with the array, the Fixed Array program uses the UBound function
to check for the upper bound, or top index value, of the array. With UBound, you can
process arrays without referring to the declaration statements that defined exactly how
many values the array would hold. The closely related LBound function, which confirms
the lower index value, or lower bound, of an array, is also available to you as a feature of
early versions of Visual Basic. However, because all Visual Basic arrays now have a lower
bound of zero (0), the function simply returns a value of 0. The UBound and LBound
functions have the syntax

LBound(ArrayName)

UBound(ArrayName)

where ArrayName is the name of an array that’s been declared in the project.

Use a fixed-size array

	 1.	 Start Visual Studio, and create a new Visual Basic Windows Forms Application project
named My Fixed Array.

	 2.	 Draw a text box object on the form.

	 3.	 Set the Multiline property of the TextBox1 object to True so that you can resize the
object.

	 4.	 Resize the text box object so that it fills up most of the form.

	 5.	 Draw two wide button objects on the form below the text box object, oriented one
beside the other.

	 6.	 Set the following properties for the form and its objects:

Object Property Setting

TextBox1 ScrollBars Vertical

Button1 Text “Enter Temps”

Button2 Text “Display Temps”

Form1 Text “Fixed Array Temps”

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 281

Your form looks like the one shown in the following screen shot:

	 7.	 In Solution Explorer, click the View Code button to display the Code Editor.

	 8.	 Scroll to the top of the form’s program code, and directly below the Public Class Form1
statement, type the following array declaration:

Dim Temperatures(0 To 6) As Single

This statement creates an array named Temperatures (of the type Single) that contains
seven elements numbered 0 through 6. Because the array has been declared at the top
of the form, it is available in all the event procedures in the form.

	 9.	 Display the form again, and then double-click the Enter Temps button (Button1).

The Button1_Click event procedure appears in the Code Editor.

	 10.	 Type the following program statements to prompt the user for temperatures and to
load the input into the array:

Dim Prompt, Title As String

Dim i As Short

Prompt = "Enter the day's high temperature."

For i = 0 To UBound(Temperatures)

 Title = "Day " & (i + 1)

 Temperatures(i) = InputBox(Prompt, Title)

Next

The For . . . Next loop uses the short integer counter variable i as an array index to load
temperatures into array elements 0 through 6. Rather than using the simplified For
loop syntax:

For i = 0 to 6

282	 Part II  Programming Fundamentals

to process the array, I chose a slightly more complex syntax involving the UBound
function for future flexibility. The For loop construction:

For i = 0 To UBound(Temperatures)

determines the upper bound of the array by using the UBound statement. This
technique is more flexible because if the array is expanded or reduced later, the For
loop automatically adjusts itself to the new array size.

To fill the array with temperatures, the event procedure uses an InputBox function,
which displays the current day by using the For loop counter.

	 11.	 Display the form again, and then double-click the Display Temps button (Button2).

	 12.	 Type the following statements in the Button2_Click event procedure:

Dim Result As String

Dim i As Short

Dim Total As Single = 0

Result = "High temperatures for the week:" & vbCrLf & vbCrLf

For i = 0 To UBound(Temperatures)

 Result = Result & "Day " & (i + 1) & vbTab & _

 Temperatures(i) & vbCrLf

 Total = Total + Temperatures(i)

Next

Result = Result & vbCrLf & _

 "Average temperature: " & Format(Total / 7, "0.0")

TextBox1.Text = Result

This event procedure uses a For . . . Next loop to cycle through the elements in the
array, and it adds each element in the array to a string variable named Result, which is
declared at the top of the event procedure. I’ve used several literal strings, constants,
and string concatenation operators (&) to pad and format the string by using carriage
returns (vbCrLf), tab characters (vbTab), and headings. The vbCrLf constant, used
here for the first time, contains the carriage return and line feed characters and is an
efficient way to create new lines. The vbTab constant is also used here for the first time
to put some distance between the day and temperature values in the Result string. At
the end of the event procedure, an average for the temperatures is determined, and
the final string is assigned to the Text property of the text box object, as shown in this
statement:

TextBox1.Text = Result

	 13.	 Click the Save All button on the Standard toolbar to save the project. Specify the
C:\Vb10sbs\Chap11 folder as the location.

Now you’ll run the program.

Tip  The complete Fixed Array program is located in the C:\Vb10sbs\Chap11\Fixed Array
folder.

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 283

	 14.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 15.	 Click the Enter Temps button, and when prompted by the InputBox function, enter seven
different temperatures. (How about using the temperatures from your last vacation?)

The InputBox function dialog box looks like this:

	 16.	 After you’ve entered the temperatures, click the Display Temps button.

Using the array, Visual Basic displays each of the temperatures in the text box and
prints an average at the bottom. Your screen looks similar to this:

	 17.	 Click the Close button on the form to end the program.

Creating a Dynamic Array
As you can see, arrays are quite handy for working with lists of numbers, especially if you
process them by using For . . . Next loops. But what if you’re not sure how much array space
you’ll need before you run your program? For example, what if you want to let the user
choose how many temperatures are entered into the Fixed Array program?

Visual Basic handles this problem efficiently with a special elastic container called a dynamic
array. Dynamic arrays are dimensioned at run time, either when the user specifies the size of
the array or when logic you add to the program determines an array size based on specific

284	 Part II  Programming Fundamentals

conditions. Dimensioning a dynamic array takes several steps because although the size of
the array isn’t specified until the program is running, you need to make “reservations” for the
array at design time. To create a dynamic array, you follow these basic steps:

	 1.	 Specify the name and type of the array in the program at design time, omitting the
number of elements in the array. For example, to create a dynamic array named
Temperatures, you type:

Dim Temperatures() As Single

	 2.	 Add code to determine the number of elements that should be in the array at run time.
You can prompt the user by using an InputBox function or a text box object, or you
can calculate the storage needs of the program by using properties or other logic. For
example, the following statements get the array size from the user and assign it to the
Days variable of type Short:

Dim Days As Short

Days = InputBox("How many days?", "Create Array")

	 3.	 Use the variable in a ReDim statement to dimension the array, subtracting 1 because
arrays are zero-based. For example, the following statement sets the size of the
Temperatures array at run time by using the Days variable:

ReDim Temperatures(Days - 1)

Important  With ReDim, you should not try to change the number of dimensions in
an array that you’ve previously declared.

	 4.	 Use the UBound function to determine the upper bound in a For . . . Next loop, and
process the array elements as necessary, as shown here:

For i = 0 to UBound(Temperatures)

 Temperatures(i) = InputBox(Prompt, Title)

Next

In the following exercise, you’ll use these steps to revise the Fixed Array program so that it
can process any number of temperatures by using a dynamic array.

Use a dynamic array to hold temperatures

	 1.	 Open the Code Editor to display the program code for the Fixed Array project.

	 2.	 Scroll to the top of the form’s code, in which you originally declared the Temperatures
fixed array.

	 3.	 Remove 0 To 6 from the Temperatures array declaration so that the array is now a
dynamic array.

The statement looks like the following:

Dim Temperatures() As Single

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 285

	 4.	 Add the following variable declaration just below the Temperatures array declaration:

Dim Days As Integer

The integer variable Days will be used to receive input from the user and to dimension
the dynamic array at run time.

	 5.	 Scroll down in the Code Editor to display the Button1_Click event procedure,
and modify the code so that it looks like the following. (The changed or added
elements are shaded.)

Dim Prompt, Title As String

Dim i As Short

Prompt = "Enter the day's high temperature."

Days = InputBox("How many days?", "Create Array")

If Days > 0 Then ReDim Temperatures(Days - 1)

For i = 0 To UBound(Temperatures)

 Title = "Day " & (i + 1)

 Temperatures(i) = InputBox(Prompt, Title)

Next

The fourth and fifth lines prompt the user for the number of temperatures he or she
wants to save, and then the user’s input is used to dimension a dynamic array. The
If . . . Then decision structure is used to verify that the number of days is greater
than zero. (Dimensioning an array with a number less than zero or equal to zero
generates an error.) Because index 0 of the array is used to store the temperature for the
first day, the Days variable is decremented by 1 when dimensioning the array. The Days
variable isn’t needed to determine the upper bound of the For . . . Next loop—as in the
previous example, the UBound function is used instead.

	 6.	 Scroll down in the Code Editor to display the Button2_Click event procedure. Modify
the code so that it looks like the following routine. (The changed elements are shaded.)

Dim Result As String

Dim i As Short

Dim Total As Single = 0

Result = "High temperatures:" & vbCrLf & vbCrLf

For i = 0 To UBound(Temperatures)

 Result = Result & "Day " & (i + 1) & vbTab & _

 Temperatures(i) & vbCrLf

 Total = Total + Temperatures(i)

Next

Result = Result & vbCrLf & _

 "Average temperature: " & Format(Total / Days, "0.0")

TextBox1.Text = Result

The Days variable replaces the number 7 in the average temperature calculation at the
bottom of the event procedure. I also edited the “High temperatures” heading that will
be displayed in the text box.

	 7.	 Display the form.

	 8.	 Change the Text property of Form1 to “Dynamic Array.”

286	 Part II  Programming Fundamentals

	 9.	 Save your changes to disk.

Tip  On the companion CD, I gave this project a separate name to keep it distinct from
the Fixed Array project. The complete Dynamic Array project is located in the C:\Vb10sbs\
Chap11\Dynamic Array folder.

	 10.	 Click the Start Debugging button to run the program.

	 11.	 Click the Enter Temps button.

	 12.	 Type 5 when you’re prompted for the number of days you want to record, and then
click OK.

	 13.	 Enter five temperatures when prompted.

	 14.	 When you’ve finished entering temperatures, click the Display Temps button.

The program displays the five temperatures on the form, along with their average.
Your screen looks similar to the following screen shot:

	 15.	 Click the Close button on the form to end the program.

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 287

You’ve practiced using the two most common array types in Visual Basic programming.
When you write your own programs, you’ll soon use much larger arrays, but the concepts
are the same, and you’ll be amazed at how fast Visual Basic can complete array-related
computations.

Preserving Array Contents by Using ReDim Preserve
In the previous exercise, you used the ReDim statement to specify the size of a dynamic array
at run time. However, one potential shortcoming associated with the ReDim statement is that
if you redimension an array that already has data in it, all the existing data is irretrievably
lost. After the ReDim statement is executed, the contents of a dynamic array are set to
their default value, such as zero or null. Depending on your outlook, this can be considered
a useful feature for emptying the contents of arrays, or it can be an irksome feature that
requires a workaround.

Fortunately, Visual Basic provides the Preserve keyword, which you use to preserve the
data in an array when you change its dimensions. The syntax for the Preserve keyword is
as follows:

ReDim Preserve ArrayName(Dim1Elements, Dim2Elements, ...)

In such a ReDim statement, the array must continue to have the same number of dimensions
and contain the same type of data. In addition, there’s a caveat that you can resize only
the last array dimension. For example, if your array has two or more dimensions, you can
change the size of only the last dimension and still preserve the contents of the array.
(Single-dimension arrays automatically pass this test, so you can freely expand the size of
dynamic arrays by using the Preserve keyword.)

The following examples show how you can use Preserve to increase the size of the last
dimension in a dynamic array without erasing any existing data contained in the array.

If you originally declared a dynamic string array named Philosophers by using the syntax:

Dim Philosophers() As String

you can redimension the array and add data to it by using code similar to the following:

ReDim Philosophers(200)

Philosophers(200) = "David Probst"

You can expand the size of the Philosophers array to 301 elements (0–300), and preserve the
existing contents, by using the following syntax:

ReDim Preserve Philosophers(300)

288	 Part II  Programming Fundamentals

Using ReDim for Three-Dimensional Arrays
A more complex example involving a three-dimensional array uses a similar syntax. Imagine
that you want to use a three-dimensional, single-precision, floating-point array named
myCube in your program. You can declare the myCube array by using the following syntax:

Dim myCube(,,) As Single

You can then redimension the array and add data to it by using the following code:

ReDim myCube(25, 25, 25)

myCube(10, 1, 1) = 150.46

after which you can expand the size of the third dimension in the array (while preserving the
array’s contents) by using this syntax:

ReDim Preserve myCube(25, 25, 50)

In this example, however, only the third dimension can be expanded—the first and
second dimensions cannot be changed if you redimension the array by using the Preserve
keyword. Attempting to change the size of the first or second dimension in this example
produces a run-time error when the ReDim Preserve statement is executed.

Experiment a little with ReDim Preserve, and see how you can use it to make your own arrays
flexible and robust.

One Step Further: Processing Large Arrays
by Using Methods in the Array Class

In previous sections, you learned about using arrays to store information during program
execution. In this section, you’ll learn about using methods in the Array class of the .NET
Framework, which you can use to quickly sort, search, and reverse the elements in an array,
as well as perform other functions. The sample program I’ve created demonstrates how
these features work especially well with very large arrays. You’ll also learn how to use the
ProgressBar control.

The Array Class
When you create arrays in Visual Basic, you are using a base class that is defined by Visual
Basic for implementing arrays within user-created programs. This Array class also provides
a collection of methods that you can use to manipulate arrays while they are active in
programs. The most useful methods include Array.Sort, Array.Find, Array.Reverse, Array
.Copy, and Array.Clear. You can locate other interesting methods by experimenting with
the Array class in the Code Editor (by using Microsoft IntelliSense) and by checking the

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 289

Visual Studio Help documentation. The Array class methods function much like the .NET
Framework methods you have already used in this book; that is, they are called by name
and (in this case) require a valid array name as an argument. For example, to sort an array
of temperatures (such as the Temperatures array that you created in the last exercise), you
would use the following syntax:

Array.Sort(Temperatures)

You would make such a call after the Temperatures array had been declared and filled
with data in the program. When Visual Basic executes the Array.Sort method, it creates
a temporary storage location for the array in memory and uses a sorting routine to
reorganize the array in alphanumeric order. After the sort is complete, the original array is
shuffled in ascending order, with the smallest value in array location 0 and the largest value
in the last array location. With the Temperatures example above, the sort would produce
an array of daily temperatures organized from coolest to hottest.

In the following exercise, you’ll see how the Array.Sort and Array.Reverse methods can
be used to quickly reorder a large array containing six-digit numbers randomly selected
between 0 and 1,000,000. You’ll also experiment with the ProgressBar control, which provides
useful visual feedback for the user during long sorts.

Use Array methods to sort an array of 3,000 elements

	 1.	 On the File menu, click Open Project, and then open the Array Class Sorts project,
located in the C:\Vb10sbs\Chap11 folder.

	 2.	 Display the form if it is not already visible.

Your screen looks like this:

290	 Part II  Programming Fundamentals

This form looks similar to the earlier projects in this chapter and features a test box
for displaying array data. However, it also contains three buttons for manipulating
large arrays and a progress bar object that gives the user feedback during longer
array operations. (Visual feedback is useful when computations take longer than a few
seconds to complete, and if you use this code to sort an array of 3,000 array elements,
a slight delay is inevitable.)

	 3.	 Click the progress bar on the form.

The ProgressBar1 object is selected on the form and is listed in the Properties window.
I created the progress bar object by using the ProgressBar control on the Common
Controls tab in the Toolbox. A progress bar is designed to display the progress of
a computation by displaying an appropriate number of colored rectangles arranged
in a horizontal progress bar. When the computation is complete, the bar is filled with
rectangles. (In Windows 7 and Windows Vista, a smoothing effect is applied so that
the progress bar is gradually filled with a solid band of color—an especially attractive
effect.) You’ve probably seen the progress bar many times while you downloaded files
or installed programs within Windows. Now you can create one in your own programs!

The important properties that make a progress bar work are the Minimum, Maximum,
and Value properties, and these are typically manipulated using program code. (The
other progress bar properties, which you can examine in the Properties window, control
how the progress bar looks and functions.) You can examine how the Minimum and
Maximum properties are set by looking at this program’s Form1_Load event procedure.

	 4.	 Double-click the form to display the Form1_Load event procedure.

You see the following code:

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 291

For a progress bar to display an accurate indication of how long a computing task will
take to complete, you need to set relative measurements for the beginning and the end
of the bar. This is accomplished with the Minimum and Maximum properties, which are
set to match the first and the last elements in the array that we are building. As I have
noted, the first array element is always zero but the last array element depends on the
size of the array, so I have used the UBound function to return that number and set the
progress bar Maximum property accordingly. The array that we are manipulating in this
exercise is RandArray, a Long integer array declared initially to hold 500 elements
(0 to 499).

	 5.	 Click the Start Debugging button to run the program.

The program runs, and the Array Class Sorts form opens on the screen. In its
Form1_Load event procedure, the program declared an array named RandArray
and dimensioned it with 500 elements. A progress bar object was calibrated to track
a calculation of 500 units (the array size), and the number 500 appears to the right of
the progress bar (the work of a label object and the UBound function).

	 6.	 Click the Fill Array button.

The program loads RandArray with 500 random numbers (derived by the Rnd function),
and displays the numbers in the text box. As the program processes the array and fills
the text box object with data, the progress bar slowly fills with the color green. Your
screen looks like this when the process is finished:

The code that produced this result is the Button1_Click event procedure, which contains
the following program statements:

'Fill the array with random numbers and display in text box

Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

292	 Part II  Programming Fundamentals

 Dim i As Integer

 For i = 0 To UBound(RandArray)

 RandArray(i) = Int(Rnd() * 1000000)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

To get random numbers that are integers, I used the Int and Rnd functions together,
as I did in Chapter 2, “Writing Your First Program,” and I multiplied the random
number produced by Rnd by 1,000,000 to get whole numbers that are six digits or
less. Assigning these numbers to the array is facilitated by using a For . . . Next loop
with an array index that matches the loop counter (i). Filling the array is an extremely
fast operation; the slowdown (and the need for the progress bar) is caused by the
assignment of array elements to the text box object one at a time. This involves
updating a user interface component on the form 500 times, and the process takes a
few seconds to complete. It is instructional, however—the delay provides a way for me
to show off the ProgressBar control. Since the progress bar object has been calibrated
to use the number of array elements as its maximum, assigning the loop counter (i) to
the progress bar’s Value property allows the bar to display exactly how much of the
calculation has been completed.

	 7.	 Click the Sort Array button.

The program follows a similar process to sort RandArray, this time using the Array.
Sort method to reorder the array in ascending order. (The 500 elements are listed from
lowest to highest.) Your screen looks like this:

The code that produced this result is the Button2_Click event procedure, which contains
the following program statements:

'Sort the array using the Array.Sort method and display

Private Sub Button2_Click(ByVal sender As System.Object, _

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 293

 ByVal e As System.EventArgs) Handles Button2.Click

 Dim i As Integer

 TextBox1.Text = ""

 Array.Sort(RandArray)

 For i = 0 To UBound(RandArray)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

This event procedure clears the text box object when the user clicks the Sort Array
button, and then sorts the array by using the Array.Sort method described earlier. The
sorting process is very quick. Again, the only slowdown is rebuilding the text box object
one line at a time in the For . . . Next loop, a process that is reported by the ProgressBar1
object and its Value property. See how simple it is to use the Array.Sort method?

	 8.	 Click the Reverse button.

The program uses the Array.Reverse method to manipulate RandArray, reordering the
array in backward or reverse order; that is, the first element becomes last and the last
element becomes first.

Note  This method does not always produce a sorted list; the array elements are in
descending order only because RandArray had been sorted previously in ascending order by
the Array.Sort method. (To examine the list more closely, use the scroll bars or the
arrow keys.)

Your screen looks like this:

294	 Part II  Programming Fundamentals

The code that produced this result is the Button3_Click event procedure, which contains
the following program statements:

'Reverse the order of array elements using Array.Reverse

Private Sub Button3_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button3.Click

 Dim i As Integer

 TextBox1.Text = ""

 Array.Reverse(RandArray)

 For i = 0 To UBound(RandArray)

 TextBox1.Text = TextBox1.Text & RandArray(i) & vbCrLf

 ProgressBar1.Value = i 'move progress bar

 Next i

End Sub

This event procedure is identical to the Button2_Click event procedure, with the
following exception:

Array.Sort(RandArray)

has become:

Array.Reverse(RandArray)

	 9.	 Click the Stop Debugging button to end the program.

	 10.	 Scroll to the top of the Code Editor, and locate the program statement that declares the
RandArray array:

Dim RandArray(0 To 499) As Long

	 11.	 Replace 499 in the array declaration statement with 2999.

The statement now looks like this:

Dim RandArray(0 To 2999) As Long

	 12.	 Run the program again to see how declaring and filling an array with 3,000 elements
affects program performance.

Because processing 3,000 elements is much more work, Visual Basic takes a little while
to update the text box object again and again as you fill, sort, and reverse RandArray.
However, the progress bar keeps you posted, and you can see that with just a small
change, you can adapt what you’ve learned in this chapter to different situations.
(The secret was using the UBound function to report the size of the array to the
program’s event procedures, rather than “hard coding” the upper bound at 499.)

You can further experiment with this program by adding a Randomize statement to the
Form1_Load event procedure (to make the results truly random each time that you run the
program), or by trying additional array sizes and array types. (Try an array size of 100, 800,
2,000, or 5,000 elements, for example.) If you try larger numbers, you’ll eventually exceed the
amount of data that the text box object can display, but it takes a while before you exceed
the maximum array size allowed by Visual Basic.

	 Chapter 11  Using Arrays to Manage Numeric and String Data	 295

If you want to focus on array operations without displaying the results, place a comment
character (‘) before each line of code that manipulates a text box object to “comment out”
the text box (but not the progress bar) portions of the program. You’ll be amazed at how fast
array operations run when the results do not need to be displayed on the form. (An array of
100,000 elements loads in just a few seconds.)

Chapter 11 Quick Reference

To Do This

Create an array Dimension the array by using the Dim keyword. For example:

Dim Employees(9) As String

Create a public array Dimension the array by using the Public keyword in a module. For example:

Public Employees(9) As String

Create a public array
specifying upper and
lower bounds

Dimension the array as described earlier, but also use the To keyword. For
example:

Public Employees(0 To 9) As String

Note: The lower bound of the array must always be zero (0).

Assign a value to
an array

Specify the array name, the index of the array element, and the value. For
example:

Employees(5) = "Leslie"

Declare an array
and assign values to
it at the same time

Specify the array name, an array type (optional), and the values for the
array enclosed in braces. For example:

Dim Waiters() As String = {"Ben", "Sue", "Lee", "Kim", "Pat"}

Format text strings
with carriage return
and tab characters

Use the vbCrLf and vbTab constants within your program code. (To add
these values to strings, use the concatenation operator (&).)

Create a dynamic
array

Specify the name and type of the array, but omit the number of elements.
(If the array has multiple dimensions, insert commas but no numbers
between the dimensions.) In your program code, specify the size of the
array by using the ReDim statement. For example:

ReDim Temperatures(10)

Process the elements
in an array

Write a For . . . Next loop that uses the loop counter variable to address
each element in the array. For example:

Dim i As Short

Dim Total As Single

For i = 0 To UBound(Temperatures)

 Total = Total + Temperatures(i)

Next

Redimension an array
while preserving the
data in it

Use the Preserve keyword in your ReDim statement. For example:

ReDim Preserve myCube(25, 25, 50)

296	 Part II  Programming Fundamentals

To Do This

Reorder the contents
of an array

Use methods in the Array class of the .NET Framework. To sort an array
named RandArray in ascending order, use the Array.Sort method as
follows:

Array.Sort(RandArray)

To reverse the order of an array named RandArray, use the Array.Reverse
method as follows:

Array.Reverse(RandArray)

To give the user visual
feedback during long
calculations

Add a ProgressBar control to your form. (You can find the ProgressBar
control on the Common Controls tab of the Toolbox.) Set the Minimum,
Maximum, and Value properties for the control by using program code.
The counter variable in a For . . . Next loop often offers a good way to set
the Value property.

		 297

Chapter 12

Working with Collections
After completing this chapter, you will be able to:

n	 Manipulate the Controls collection on a form.

n	 Use a For Each . . . Next loop to cycle through objects in a collection.

n	 Create your own collections for managing Web site URLs and other information.

n	 Use VBA collections within Microsoft Office.

In this chapter, you’ll learn how to use groups of objects called collections in a Microsoft
Visual Basic program. You’ll learn how to manage information with collections and process
collection objects by using For Each . . . Next loops. When you combine collection-processing
skills with what you learned about arrays in Chapter 11, “Using Arrays to Manage Numeric
and String Data,” you’ll have much of what you need to know about managing data
effectively in a program, and you’ll have taken your first steps in manipulating the object
collections exposed by Microsoft Visual Studio 2010 and popular Windows applications.

Working with Object Collections
In this section, you’ll learn about collections, a powerful mechanism for controlling objects
and other data in a Visual Basic program. The Microsoft .NET Framework maintains several
standard object collections that you can use when you write your programs. You can use
Visual Studio to browse your system for collections and other application objects.

You already know that objects on a form are stored together in the same file. But did you
also know that Visual Basic considers the objects to be members of the same group? In Visual
Studio terminology, the entire set of objects on a form is called the Controls collection. The
Controls collection is created automatically when you open a new form, and when you add
objects to the form, they become part of that collection.

Each collection in a program has its own name so that you can reference it as a distinct unit
in the program code. For example, you use the Controls name to reference the collection of
objects on a form. This grouping method is similar to the way arrays group a list of elements
together under one name, and like Visual Basic arrays, the Controls collection is zero-based.

If you have more than one form in a project, you can create public variables associated with
the form names and use those variables to differentiate one Controls collection from another.
(You’ll learn more about using public variables to store form data in Chapter 14, “Managing
Windows Forms and Controls at Run Time.”) You can even add controls programmatically to
the Controls collection in a form.

Table of Contents

Working with Collections . 297
Working with Object Collections . 297

Referencing Objects in a Collection . 298

Writing For Each . . . Next Loops . 298

Experimenting with Objects in the Controls Collection 299

Using the Name Property in a For Each . . . Next Loop 302

Creating Your Own Collections . . 304

Declaring New Collections . 304

One Step Further: VBA Collections . 309

Entering the Word Macro . 310

Chapter 12 Quick Reference . 311

298	 Part II  Programming Fundamentals

Referencing Objects in a Collection
You can reference the objects in a collection, or the individual members of the collection,
by specifying the index position of the object in the group. Visual Basic stores collection
objects in the reverse order of that in which they were created, so you can use an object’s
“birth order” to reference the object individually, or you can use a loop to step through
several objects. For example, to identify the last object created on a form, you can specify
the 0 (zero) index, as shown in this example:

Controls(0).Text = "Business"

This statement sets the Text property of the last object on the form to “Business.” (The
second-to-last object created has an index of 1, the third-to-last object created has an index
of 2, and so on.) Considering this logic, it’s important that you don’t always associate a
particular object on the form with an index value because if a new object is added to the
collection, the new object takes the 0 index spot and the remaining object indexes are
incremented by 1.

The following For . . . Next loop uses a message box to display the names of the last four
controls added to a form:

Dim i As Integer

For i = 0 To 3

 MsgBox(Controls(i).Name)

Next i

Note that I’ve directed this loop to cycle from 0 to 3 because the last control object added to
a form is in the 0 position. In the following section, you’ll learn a more efficient method for
writing such a loop.

Writing For Each . . . Next Loops
Although you can reference the members of a collection individually, the most useful way
to work with objects in a collection is to process them as a group. In fact, the reason that
collections exist is so that you can process groups of objects efficiently. For example, you
might want to display, move, sort, rename, or resize an entire collection of objects at once.

To handle this kind of task, you can use a special loop called For Each . . . Next to cycle
through objects in a collection one at a time. A For Each . . . Next loop is similar to a
For . . . Next loop. When a For Each . . . Next loop is used with the Controls collection, it
looks like this:

Dim CtrlVar As Control

...

For Each CtrlVar In Controls

 process object

Next CtrlVar

The CtrlVar variable is declared as a Control type and represents the current object in the
For Each . . . Next loop. Controls (note the “s”) is the collection class that I introduced earlier
that represents all the control objects on the current form. The body of the loop is used to

	 Chapter 12  Working with Collections	 299

process the individual objects of the collection. For example, you might want to change the
Enabled, Left, Top, Text, or Visible property of the objects in the collection, or you might want
to list the name of each object in a list box.

Experimenting with Objects in the Controls Collection
In the following exercises, you’ll use program code to manipulate the objects on a form by
using the Controls collection. The project you’ll create will have three button objects, and
you’ll create event procedures that change the Text properties of each object, move objects to
the right, and give one object in the group special treatment. The program will use three For
Each . . . Next loops to manipulate the objects each time the user clicks one of the buttons.

Use a For Each . . . Next loop to change Text properties

	 1.	 Create a new Visual Basic Windows Forms Application project named My Controls
Collection.

	 2.	 Use the Button control to draw three button objects on the left side of the form, as
shown here:

	 3.	 Use the Properties window to set the Name property of the third button object
(Button3) to “btnMoveObjects.”

	 4.	 Double-click the first button object (Button1) on the form.

The Button1_Click event procedure appears in the Code Editor.

	 5.	 Type the following program statements:

For Each ctrl In Controls

 ctrl.Text = "Click Me!"

Next

300	 Part II  Programming Fundamentals

This For Each . . . Next loop steps through the Controls collection on the form one
control at a time and sets each control’s Text property to “Click Me!” The loop uses ctrl
as an object variable in the loop, which you’ll declare in the following step.

	 6.	 Scroll to the top of the form’s program code, and directly above the statement Public
Class Form1, type the following statement:

Option Infer Off

This statement tells the compiler that it should not try to infer the type of variables.
Since you will be explicitly declaring the variable types, this infer option is not
needed. If Option Infer is on and you try to run the code in this chapter, you may see
a warning message indicating that the type for a variable you are using cannot be
inferred. (For more information, see Chapter 1, “Exploring the Visual Studio Integrated
Development Environment.”)

	 7.	 Directly below the statement Public Class Form1, type the following comment
and variable declaration:

'Declare a variable of type Control to represent form controls

Dim ctrl As Control

This global variable declaration creates a variable in the Control class type that
represents the current form’s controls in the program. You’re declaring this variable in
the general declarations area of the form so that it is valid throughout all the form’s
event procedures.

Now you’re ready to run the program and change the Text property for each button on
the form.

	 8.	 Click the Start Debugging button on the Standard toolbar to run the program.

	 9.	 Click the first button on the form (Button1).

The Button1_Click event procedure changes the Text property for each control in the
Controls collection. Your form looks like this:

	 Chapter 12  Working with Collections	 301

	 10.	 Click the Close button on the form.

The program ends.

Note  The Text property changes made by the program have not been replicated on the
form within the Designer. Changes made at run time do not change the program’s core
property settings.

	 11.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap12 folder as the location.

Now you’re ready to try a different experiment with the Controls collection: using the Left
property to move each control in the Controls collection to the right.

Use a For Each . . . Next loop to move controls

	 1.	 Display the form again, and then double-click the second button
object (Button2).

	 2.	 Type the following program code in the Button2_Click event procedure:

For Each ctrl In Controls

 ctrl.Left = ctrl.Left + 25

Next

Each time the user clicks the second button, this For Each . . . Next loop steps
through the objects in the Controls collection one by one and moves them
25 pixels to the right. (To move objects 25 pixels to the left, you would subtract
25 instead.) A pixel is a device-independent measuring unit with which you can
precisely place objects on a form.

As in the previous event procedure that you typed, the ctrl variable is a
“stand-in” for the current object in the collection and contains the same
property settings as the object it represents. In this loop, you adjust the Left
property, which determines an object’s position relative to the left side of
the form.

	 3.	 Click the Start Debugging button.

The program runs, and three buttons appear on the left side of the form.

302	 Part II  Programming Fundamentals

	 4.	 Click the first button, and then click the second button several times.

The buttons on the form change to “Click Me!”, and then each time you click the
second button, the objects on the form gradually move to the right. Your screen looks
like this after five clicks:

	 5.	 Click the Close button on the form to stop the program.

	 6.	 Click the Save All button to save your changes.

You won’t always want to move all the objects on a form as a group. With Visual Basic,
you can process collection members individually. In the next exercise, you’ll learn
how to keep the third button object in one place while the other two buttons move
to the right.

Using the Name Property in a For Each . . . Next Loop
If you want to process one or more members of a collection differently than you process the
others, you can use the Name property, which uniquely identifies each object on the form.
You’ve set the Name property periodically in this book to make your program code more
readable, but Name also can be used programmatically to identify specific objects in your
program.

To use the Name property programmatically, single out the objects to which you want to
give special treatment, and then note their Name properties. Then as you loop through the
objects on the form by using a For Each . . . Next loop, you can use one or more If statements
to test for the important Name properties and handle those objects differently. For example,
let’s say you want to construct a For Each . . . Next loop that moves one object more slowly
across the form than the other objects. You could use an If . . . Then statement to spot the
Name property of the slower object and then move that object a shorter distance, by not
incrementing its Left property as much as those of the other objects.

	 Chapter 12  Working with Collections	 303

Tip  If you plan to give several objects special treatment in a For Each . . . Next loop, you can use
ElseIf statements with the If . . . Then statement, or you can use a Select Case decision structure.

In the following exercise, you’ll test the Name property of the third button object
(btnMoveObjects) to give that button special treatment in a For Each . . . Next loop. The result
will be an event procedure that moves the top two buttons to the right but keeps the bottom
button stationary.

Tip  In addition to the Name property, most objects support the Tag property. Similar to the
Name property, the Tag property is a location in which you can store string data about the
object. The Tag property is empty by default, but you can assign information to it and test it to
uniquely identify objects in your program that you want to process differently.

Use the Name property to give an object in the Controls collection special treatment

	 1.	 Display the form, and then double-click the third button object.

The btnMoveObjects_Click event procedure appears in the Code Editor. Remember that
you changed the Name property of this object from “Button3” to “btnMoveObjects” in
an earlier exercise.

	 2.	 Type the following program code in the event procedure:

For Each ctrl In Controls

 If ctrl.Name <> "btnMoveObjects" Then

 ctrl.Left = ctrl.Left + 25

 End If

Next

The new feature of this For Each . . . Next loop is the If . . . Then statement that checks
each collection member to see whether it has a Name property called “btnMoveObjects.”
If the loop encounters this marker, it passes over the object without moving it. Note that,
as in the previous examples, the ctrl variable was declared at the top of the form as a
variable of the Control type with scope throughout the form.

	 3.	 Click the Save All button to save your edits.

Tip  The complete Controls Collection program is located in the C:\Vb10sbs\Chap12\
Controls Collection folder.

	 4.	 Click the Start Debugging button.

The program runs, and the three button objects appear on the form.

304	 Part II  Programming Fundamentals

	 5.	 Click the third button object six or seven times.

As you click the button, the top two button objects move across the screen. The third
button stays in the same place, however, as shown here:

	 6.	 Click the Close button on the form to stop the program.

Giving one object in a collection special treatment can be very useful. In this case, using the
Name property in the For Each . . . Next loop improved the readability of the program code,
suggesting numerous potential uses for a game or graphics program. As you use other types
of collections in Visual Basic, be sure to keep the Name property in mind.

Creating Your Own Collections
With Visual Basic, you can also create your own collections to track data in a program
and manipulate it systematically. Although collections are often created to hold objects,
such as user interface controls, you can also use collections to store numeric or string
values while a program is running. In this way, collections nicely complement the
capabilities of arrays, which you learned about in Chapter 11.

Declaring New Collections
New collections are declared as variables in a program, and the location in which you declare
them determines their scope, or the extent to which their assigned values persist. Because
collections are so useful, I usually declare them at the top of a form or in a module.

New collection declarations require the syntax:

Dim CollectionName As New Collection()

where CollectionName is the name of your collection. If you place the collection declaration
in a module, you use the Public keyword instead of the Dim keyword. After you create

	 Chapter 12  Working with Collections	 305

a collection, you can add members to it by using the Add method, and you can examine
the individual members by using a For Each . . . Next loop.

The following exercise shows you how to create a collection that holds string data
representing the Internet addresses (Uniform Resource Locators, or URLs) that you’ve
recently used while surfing the Web. To connect to the Web, the program will use the Visual
Basic System.Diagnostics.Process.Start method and your default Web browser, a technique
that I first introduced in Chapter 3, “Working with Toolbox Controls.”

Track Internet addresses by using a new collection

	 1.	 Click the Close Project command on the File menu.

	 2.	 Create a new Windows Forms Application project named My URL Collection.

	 3.	 Draw a wide text box object at the top of the form, centered within the form.

	 4.	 Draw two wide button objects below the text box object on the form, one button
below the other.

	 5.	 Set the following properties for the form and its objects:

Object Property Setting

TextBox1 Text “http://www.microsoft.com/learning/books/”

Button1 Text “Visit Site”

Button2 Text “List Recent Sites”

Form1 Text “URL Collection”

Your form looks like this:

	 6.	 Click the View Code button in Solution Explorer to display the Code Editor.

	 7.	 Move the insertion point near the top of the form’s program code, and directly below
the statement Public Class Form1, type the following variable declaration, and then
press ENTER:

Dim URLsVisited As New Collection()

306	 Part II  Programming Fundamentals

This statement creates a new collection and assigns it the variable name URLsVisited.
Because you’re placing the declaration in the declaration area for the form, the
collection has scope throughout all the form’s event procedures.

	 8.	 Display the form again, double-click the Visit Site button, and then type the following
code in the Button1_Click event procedure:

URLsVisited.Add(TextBox1.Text)

System.Diagnostics.Process.Start(TextBox1.Text)

This program code uses the Add method to fill up, or populate, the collection with
members. When the user clicks the Button1 object, the program assumes that a valid
Internet address has been placed in the TextBox1 object. Every time the Button1
object is clicked, the current URL in TextBox1 is copied to the URLsVisited collection
as a string. Next, the System.Diagnostics.Process.Start method is called with the URL
as a parameter. Because the parameter is a URL, the Start method attempts to open
the URL by using the default Web browser on the system. (If the URL is invalid or
an Internet connection cannot be established, the Web browser handles the error.)

Note  The only URLs that this program adds to the URLsVisited collection are those you’ve
specified in the TextBox1 object. If you browse to additional Web sites by using your Web
browser, those sites won’t be added to the collection.

	 9.	 Display the form again, and then double-click the List Recent Sites button.

	 10.	 Type the following program code using the Code Editor:

Dim URLName As String = "", AllURLs As String = ""

For Each URLName In URLsVisited

 AllURLs = AllURLs & URLName & vbCrLf

Next URLName

MsgBox(AllURLs, MsgBoxStyle.Information, "Web sites visited")

This event procedure prints the entire collection by using a For Each . . . Next loop and a
MsgBox function. The routine declares a string variable named URLName to hold each
member of the collection as it’s processed and initializes the variable to empty (“”). The
value is added to a string named AllURLs by using the concatenation operator (&), and
the vbCrLf string constant is used to place each URL on its own line.

Finally, the AllURLs string, which represents the entire contents of the URLsVisited
collection, is displayed in a message box. I added the MsgBoxStyle.Information
argument in the MsgBox function to emphasize that the text being displayed is general
information and not a warning. (MsgBoxStyle.Information is also a built-in Visual Basic
constant.)

	 11.	 Click the Save All button to save your changes. Specify the C:\Vb10sbs\Chap12 folder as
the location.

	 Chapter 12  Working with Collections	 307

Note  To run the URL Collection program, your computer must establish a connection to the
Internet and be equipped with a Web browser, such as Windows Internet Explorer.

Run the URL Collection program

Tip  The complete URL Collection program is located in the C:\Vb10sbs\Chap12\URL
Collection folder.

	 1.	 Click the Start Debugging button to run the program.

The program displays a default Web site in the URL box, so it isn’t necessary to type
your own Internet address at first.

	 2.	 Click the Visit Site button.

Visual Basic adds the Microsoft Press Web site (http://www.microsoft.com/learning/
books/) to the URLsVisited collection, opens the default Web browser on your system,
and loads the requested Web page, as shown here. (You can explore the Web site if
you’re interested.)

308	 Part II  Programming Fundamentals

	 3.	 Click the form again. (You might need to click the form’s icon on the Windows taskbar.)

	 4.	 Click the List Recent Sites button.

Visual Basic executes the event procedure for the Button2 object. You see a message
box that looks like this:

	 5.	 Click OK in the message box, type a different Web site in the form’s text box, and then
click the Visit Site button.

Tip  You might want to visit the Microsoft Visual Basic Developer Center site, located at
http://msdn.microsoft.com/vbasic/, to learn more about Visual Basic.

	 6.	 Visit a few more Web sites by using the URL Collection form, and then click the List
Recent Sites button.

Each time you click List Recent Sites, the MsgBox function expands to show the growing
URL history list, as shown here:

If you visit more than a few dozen Web sites, you’ll need to replace the MsgBox function
with a multiline text box on the form. (Can you figure out how to write the code?)

	 7.	 When you’re finished, click the Close button on the form, and then close your Web
browser.

Congratulations! You’ve learned how to use the Controls collection and how to process
collections by using a For Each . . . Next loop. These skills will be useful whenever you work
with collections. As you become more familiar with classic computer science data structures
and algorithms related to list management (stacks, queues, dictionaries, hash tables,

	 Chapter 12  Working with Collections	 309

and other structured lists), you’ll find that Visual Studio and the .NET Framework provide
equivalents to help you manage information in extremely innovative ways. (For a few book
ideas related to data structures and algorithms, see the section entitled “General Books
About Programming and Computer Science” in the Appendix, “Where to Go for More
Information.”)

One Step Further: VBA Collections
If you decide to write Visual Basic macros for Office applications in the future, you’ll find that
collections play a big role in the object models of Microsoft Word, Microsoft Excel, Microsoft
Access, Microsoft PowerPoint, and several other applications that support the Visual Basic for
Applications (VBA) programming language. In Word, for example, all the open documents
are stored in the Documents collection, and each paragraph in the current document is
stored in the Paragraphs collection. You can manipulate these collections with a For
Each . . . Next loop just as you did the collections in the preceding exercises. Office 2003,
Office 2007, and Office 2010 offer a large installation base for solutions based on VBA.

Tip  As a software developer, you should be aware that companies and individual users often
have a mixture of application versions that they use, including Office 2003, Office 2007, and
Office 2010. In most cases, you’ll need to offer solutions based on VBA for several Office versions,
because a typical business or organization will have multiple versions of Office in use.

The following sample code comes from a Word VBA macro that uses a For Each . . . Next
loop to search each open document in the Documents collection for a file named MyLetter
.doc. If the file is found in the collection, the macro saves the file by using the Save method.
If the file isn’t found in the collection, the macro attempts to open the file from the
C:\Vb10sbs\Chap12 folder:

Dim aDoc As Document

Dim docFound As Boolean

Dim docLocation As String

docFound = False

docLocation = "c:\vb10sbs\chap12\myletter.doc"

For Each aDoc In Documents

 If InStr(1, aDoc.Name, "myletter.doc", 1) Then

 docFound = True

 aDoc.Save

 Exit For

 End If

Next aDoc

If docFound = False Then

 Documents.Open FileName:=docLocation

End If

The macro begins by declaring three variables. The aDoc object variable represents the
current collection element in the For Each . . . Next loop. The docFound Boolean variable

310	 Part II  Programming Fundamentals

assigns a Boolean value of True if the document is found in the Documents collection. The
docLocation string variable contains the path of the MyLetter.doc file on disk. (This routine
assumes that the MyLetter.doc file is with your book sample files in C:\Vb10sbs\Chap12.)

The For Each . . . Next loop cycles through each document in the Documents collection,
searching for the MyLetter file. If the file is detected by the InStr function (which detects one
string in another), the file is saved. If the file isn’t found, the macro attempts to open it by
using the Open method of the Documents object.

Also note the Exit For statement, which I use to exit the For Each . . . Next loop when the
MyLetter file has been found and saved. Exit For is a special program statement that you
can use to exit a For . . . Next loop or a For Each . . . Next loop when continuing will cause
unwanted results. In this example, if the MyLetter.doc file is located in the collection,
continuing the search is fruitless, and the Exit For statement affords a graceful way to stop
the loop as soon as its task is completed.

Entering the Word Macro
I’ve included this sample Word macro to show you how you can use collections in Visual
Basic for Applications, but the source code is designed for Word, not the Visual Studio
Integrated Development Environment (IDE). If you aren’t working in Word, the Documents
collection won’t have any meaning to the compiler.

The steps that you will follow to try the macro depend on the version of Word you are using.
If you are using Word 2007 or Word 2010, you’ll need to start Word, click the Developer tab,
click the Macros command, specify a name for the macro (I used OpenMyDoc), click Create,
and then enter the code by using the Visual Basic Editor. (If the Developer tab is not shown,
you will need to enable it in the Word Options dialog box.) If you are using Word 2003, you’ll
need to start Word, go to the Macro submenu of the Tools menu, click the Macros command,
specify a name for the macro, click Create, and then enter the code by using the Visual Basic
Editor.

In the Visual Basic Editor, the completed macro looks like the following screen shot. You can
run the macro by clicking the Run Sub/UserForm button on the toolbar, just as you would
run a program in the Visual Studio IDE. After the macro runs, click the Word application
again, and you’ll see that the MyLetter document has been opened for you.

Tip  Word macros are generally compatible between versions, although I have sometimes run
into problems when upgrading VBA macros or supporting multiple versions of Office. If you are
using a different version of Word, you may need to slightly modify the sample code shown on
the following page.

	 Chapter 12  Working with Collections	 311

Chapter 12 Quick Reference

To Do This

Process objects in
a collection

Write a For Each . . . Next loop that addresses each member of the collection
individually. For example:

Dim ctrl As Control

For Each ctrl In Controls

 ctrl.Text = "Click Me!"

Next

Move objects in the
Controls collection
from left to right
across the screen

Modify the Control.Left property of each collection object in a For
Each . . . Next loop. For example:

Dim ctrl As Control

For Each ctrl In Controls

 ctrl.Left = ctrl.Left + 25

Next

Give special
treatment to an
object in a collection

Test the Name property of the objects in the collection by using a For
Each . . . Next loop. For example:

Dim ctrl As Control

For Each ctrl In Controls

 If ctrl.Name <> "btnMoveObjects" Then

 ctrl.Left = ctrl.Left + 25

 End If

Next

312	 Part II  Programming Fundamentals

To Do This

Create a new
collection and add
members to it

Declare a variable by using the New Collection syntax. Use the Add method
to add members. For example:

Dim URLsVisited As New Collection()

URLsVisited.Add(TextBox1.Text)

Use Visual Basic
for Applications
collections in Word

If you are using Word 2007 or Word 2010, start the program, click the
Developer tab, click the Macros command, give the macro a name, click
Create, and then enter the macro code by using the Visual Basic Editor.

If you are using Word 2003, start the program, go to the Macro submenu
of the Tools menu, click the Macros command, give the macro a name,
click Create, and then enter the macro code by using the Visual Basic
Editor.

Word exposes many useful collections, including Documents and Paragraphs.

		 313

Chapter 13

Exploring Text Files
and String Processing

After completing this chapter, you will be able to:

n	 Use the My namespace, a time-saving “speed dial” feature within Visual Studio 2010.

n	 Display text from a file in a text box object by using the ReadAllText method and the
OpenFileDialog control.

n	 Save notes in a text file by using the WriteAllText method and the SaveFileDialog
control.

n	 Use string processing techniques in the String class to compare, combine, sort,
and encrypt strings.

Managing electronic documents is an important function in any modern business, and
Microsoft Visual Basic 2010 provides numerous mechanisms for working with different
document types and manipulating the information in documents. The most basic document
type is the text file, which is made up of non-formatted words and paragraphs, letters,
numbers, and a variety of special-purpose characters and symbols.

In this chapter, you’ll learn how to work with information stored in text files on your system.
You’ll learn how to open a text file and display its contents in a text box object, and you’ll
learn how to write to a text file on disk. You’ll also learn more about managing strings in your
programs, and you’ll use methods in the Microsoft .NET Framework String, StreamReader,
and StreamWriter classes to combine; sort; and display words, lines, and entire text files.

Reading Text Files
A text file consists of one or more lines of numbers, words, or characters. Text files are distinct
from document files and Web pages, which contain formatting codes, and from executable
files, which contain instructions for the operating system. Text files on your computer are
typically identified by Windows Explorer as “Text Documents,” or they have the file name
extension .txt, .ini, .log, or .inf.

The simplest way to display a text file in a program is to use a text box object. As you have
learned, you can create text box objects in any size. If the contents of the text file don’t
fit neatly in the text box, you can also add scroll bars to the text box so that the user can
examine the entire file.

Table of Contents

Exploring Text Files
and String Processing . 313

Reading Text Files . 313

The My Namespace . 314

The StreamReader Class . 316

Using the ReadAllText Method . 317

Writing Text Files . 321

The WriteAllText Method . 321

The StreamWriter Class . 322

Using the WriteAllText Method . . 323

Processing Strings with the String Class . 326

Sorting Text . 329

Working with ASCII Codes . 330

Sorting Strings in a Text Box . 331

Examining the Sort Text Program Code . 334

Protecting Text with Basic Encryption . 336

One Step Further: Using the Xor Operator . 340

Examining the Encryption Program Code . 342

Chapter 13 Quick Reference . 345

314	 Part II  Programming Fundamentals

By using an OpenFileDialog control to prompt the user for the file’s path, you can let the
user choose which text file to open in a program. This control contains the Filter property,
which controls the type of files displayed; the ShowDialog method, which displays the
Open dialog box; and the FileName property, which returns the path specified by the user.
The OpenFileDialog control doesn’t open the file; it just gets the path.

There are several ways to read text files, but the two most common ways are to use the My
namespace or the StreamReader class. The StreamReader class offers more features than
the My namespace, in particular the ability to process files one line at a time (a capability
that might be needed for sorting and parsing tasks). So it is best to master both methods
for opening text files discussed in this chapter. The one that you use in actual programming
practice will depend on the task at hand and the way you plan to use your code in the future.

The My Namespace
The My namespace is a rapid access feature designed to simplify accessing the .NET
Framework to perform common tasks, such as manipulating forms, exploring the host
computer and its file system, displaying information about the current application or its user,
and accessing Web services. Most of these capabilities were previously available through the
.NET Framework Base Class Library, but due to its complexity, many programmers found the
features difficult to locate and use. The My namespace was added in Microsoft Visual Studio
2005 to make programming easier.

The My namespace is organized into several categories of functionality, as shown in
Table 13-1. (My.Log, My.Response, and My.Request are not listed here because they are
designed for ASP.NET applications only.)

TABLE 13-1  The My Namespace

Object Description

My.Application Information related to the current application, including the title, directory,
and version number.

My.Computer Information about the hardware, software, and files located on the current
(local) computer. My.Computer includes My.Computer.FileSystem, which you
can use to open text files and encoded files on the system.

My.Forms Information about the forms in your current Visual Studio project. Chapter 14,
“Managing Windows Controls and Forms at Run Time,” shows how to
use My.Forms to switch back and forth between forms at run time.

My.Resources Information about your application’s resources (read only). Allows you to
dynamically retrieve resources for your application.

My.Settings Information about your application’s settings. Allows you to dynamically store
and retrieve property settings and other information for your application.

My.User Information about the current user active on My.Computer.

My.WebServices Information about Web services active on My.Computer, and a mechanism
to access new Web services.

	 Chapter 13  Exploring Text Files and String Processing	 315

The My namespace is truly a “speed dial” feature, fully explorable via the Microsoft
IntelliSense feature of the Code Editor. For example, to use a message box to display the
name of the current computer followed by the name of the current user in a program, you
can simply type:

MsgBox(My.User.Name)

This produces output similar to the following:

The My.Computer object can display many categories of information about your computer
and its files. For example, the following statement displays the current system time (the local
date and time) maintained by the computer:

MsgBox(My.Computer.Clock.LocalTime)

This produces output like this (your date and time will probably be different):

You can use the My.Computer.FileSystem object along with the ReadAllText method to open
a text file and display its contents within a text box object. Here’s the syntax you can use
if you have a text box object on your form named txtNote (as in the last sample program)
and you plan to use an open file dialog object named OpenFileDialog1 to get the name
of the text file from the user:

Dim AllText As String = ""

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box

 AllText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 txtNote.Text = AllText 'display file

End If

The ReadAllText method copies the entire contents of the specified text file to a string
variable or object (in this case, a string variable named AllText), so in terms of performance
and coding time, ReadAllText is faster than reading the file one line at a time.

316	 Part II  Programming Fundamentals

Because of this speed factor, the My namespace provides an excellent shortcut to many
common programming tasks. It is important to take note of this feature and its possible uses,
but the My namespace is efficient here because we are reading the entire text file.

If you forget the syntax for the ReadAllText method, you can quickly insert an example by
using the Insert Snippet command. As described in Chapter 7, “Using Loops and Timers,“
the Insert Snippet command allows you to insert common code snippets in the Code
Editor. To insert the ReadAllText method, display the Code Editor, and on the Edit menu,
click IntelliSense, and then click Insert Snippet. In the Insert Snippet list box, double-click
Fundamentals – Collections, Data Types, File System, Math; double-click File System –
Processing Drives, Folders, And Files; and then double-click Read Text From A File. This
inserts the following code snippet:

Dim fileContents1 As String

fileContents1 = My.Computer.FileSystem.ReadAllText("C:\Test.txt")

The StreamReader Class
The StreamReader class in the .NET Framework library allows you to open and display text
files in your programs. I’ll use this technique several times in this book when I work with text
files (for example, in Chapter 16, “Inheriting Forms and Creating Base Classes”). To make it
easier to use the StreamReader class, you add the following Imports statement to the top
of your code, as discussed in Chapter 5, “Visual Basic Variables and Formulas, and the .NET
Framework”:

Imports System.IO

Then, if your program contains a text box object, you can display a text file inside the text
box by using the following program code. (The text file opened in this example is Badbills.txt,
and the code assumes that an object named TextBox1 has been created on your form.)

Dim StreamToDisplay As StreamReader

StreamToDisplay = New StreamReader("C:\vb10sbs\chap13\text browser\badbills.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd

StreamToDisplay.Close()

In this StreamReader example, I declare a variable named StreamToDisplay of the type
StreamReader to hold the contents of the text file, and then I specify a valid path for the file
I want to open. Next, I read the contents of the text file into the StreamToDisplay variable
by using the ReadToEnd method, which retrieves all the text in the file from the current
location (the beginning of the text file) to the end of the text file and assigns it to the Text
property of the text box object. The final statement closes the StreamReader. Closing the

	 Chapter 13  Exploring Text Files and String Processing	 317

StreamReader can be important because if you try to read or write to the file again, you
might get an exception indicating that the process cannot access the file.

You can also use a combination of the My namespace and the StreamReader class.
The following example reads text from a file line by line and displays it in a text box.
The OpenTextFileReader method in the My namespace opens a StreamReader. The
EndOfStream property indicates the end of the file. The ReadLine method reads one line from
the file. When you are finished with a StreamReader, you should close it by calling the Close
method:

Dim AllText As String = "", LineOfText As String = ""

Dim StreamToDisplay As StreamReader

StreamToDisplay = My.Computer.FileSystem.OpenTextFileReader(_

 "C:\vb10sbs\chap13\text browser\badbills.txt")

Do Until StreamToDisplay.EndOfStream 'read lines from file

 LineOfText = StreamToDisplay.ReadLine()

 'add each line to the AllText variable

 AllText = AllText & LineOfText & vbCrLf

Loop

TextBox1.Text = AllText 'display file

StreamToDisplay.Close()

Tip  Text files that are opened by using this syntax are called sequential files because you must
work with their contents in sequential order. In contrast, you can access the information in
a database file in any order. (You’ll learn more about databases in Chapter 18, “Getting Started
with ADO.NET.”)

Using the ReadAllText Method
The following exercise demonstrates how you can use an OpenFileDialog control and the
ReadAllText method to open a text file. The exercise also demonstrates how you can display
the contents of a text file in a text box. (For more information about using controls on the
Dialogs tab of the Toolbox to create standard dialog boxes, see Chapter 4, “Working with
Menus, Toolbars, and Dialog Boxes.”)

Run the Text Browser program

	 1.	 Start Visual Studio, and open the Text Browser project in the
C:\Vb10sbs\Chap13\Text Browser folder.

The project opens in the Integrated Development Environment (IDE).

318	 Part II  Programming Fundamentals

	 2.	 If the project’s form isn’t visible, display it now.

The Text Browser form opens, as shown here:

The form contains a large text box object that has scroll bars. It also contains a menu
strip object that places Open, Close, and Exit commands on the File menu; an open file
dialog object; and a label providing operating instructions. I also created the property
settings shown in the following table. (Note especially the text box settings.)

Object Property Setting

txtNote Enabled

Multiline

Name

ScrollBars

False

True

txtNote

Both

CloseToolStripMenuItem Enabled False

lblNote Text

Name

“Load a text file with the Open command.”

lblNote

Form1 Text “Text Browser”

	 3.	 Click the Start Debugging button on the Standard toolbar.

The Text Browser program runs.

	 4.	 On the Text Browser File menu, click the Open command.

The Open dialog box opens.

	 Chapter 13  Exploring Text Files and String Processing	 319

	 5.	 Open the C:\Vb10sbs\Chap13\Text Browser folder.

The contents of the Text Browser folder are shown here:

	 6.	 Double-click the Badbills file name.

Badbills, a text file containing an article written in 1951 in the United States about the
dangers of counterfeit money, appears in the text box, as shown here:

	 7.	 Use the scroll bars to view the entire document. Memorize number 5.

	 8.	 When you’re finished, click the Close command on the File menu to close the file,
and then click the Exit command to quit the program.

The program stops, and the IDE returns.

Now you’ll look at two important event procedures in the program.

320	 Part II  Programming Fundamentals

Examine the Text Browser program code

	 1.	 On the File menu of the Text Browser form, double-click the Open command.

The OpenToolStripMenuItem_Click event procedure appears in the Code Editor.

	 2.	 Resize the Code Editor to see more of the program code, if necessary.

The OpenToolStripMenuItem_Click event procedure contains the following
program code:

Dim AllText As String = ""

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box

 Try 'open file and trap any errors using handler

 AllText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 lblNote.Text = OpenFileDialog1.FileName 'update label

 txtNote.Text = AllText 'display file

 txtNote.Enabled = True 'allow text cursor

 CloseToolStripMenuItem.Enabled = True 'enable Close command

 OpenToolStripMenuItem.Enabled = False 'disable Open command

 Catch ex As Exception

 MsgBox("An error occurred." & vbCrLf & ex.Message)

 End Try

End If

This event procedure performs the following actions:

o	 Declares variables and assigns a value to the Filter property of the open file
dialog object.

o	 Prompts the user for a path by using the OpenFileDialog1 object.

o	 Traps errors by using a Try . . . Catch code block.

o	 Reads the entire contents of the specified file by using the ReadAllText method.

o	 Copies the contents of the file into a string named AllText. The AllText string has
room for a very large file, but if an error occurs during the copying process, the
Catch clause displays the error.

o	 Displays the AllText string in the text box, and enables the scroll bars and text
cursor.

o	 Updates the File menu commands.

Take a moment to see how the statements in the OpenToolStripMenuItem_Click
event procedure work—especially the ReadAllText method. The error handler in the
procedure displays a message and aborts the loading process if an error occurs.

Tip  For more information about the statements and methods, highlight the keyword
you’re interested in, and then press F1 to see a discussion of it in the Visual Studio Help
documentation.

	 Chapter 13  Exploring Text Files and String Processing	 321

	 3.	 Display the CloseToolStripMenuItem_Click event procedure, which is executed when the
Close menu command is clicked.

The event procedure looks like this:

txtNote.Text = "" 'clear text box

lblNote.Text = "Load a text file with the Open command."

CloseToolStripMenuItem.Enabled = False 'disable Close command

OpenToolStripMenuItem.Enabled = True 'enable Open command

The procedure clears the text box, updates the lblNote label, disables the Close
command, and enables the Open command.

Now you can use this simple program as a template for more advanced programs that
process text files. In the next section, you’ll learn how to type your own text into a text box
and how to save the text in the text box to a file on disk.

Writing Text Files
To create and write to a new text file on disk by using Visual Basic, you can use many of the
methods and keywords used in the last example. Creating new files on disk and saving data
to them is useful if you plan to generate custom reports or logs, save important calculations
or values, or create a special-purpose word processor or text editor. Here’s an overview of the
steps you’ll need to follow in the program:

	 1.	 Get input from the user or perform mathematical calculations, or do both.

	 2.	 Assign the results of your processing to one or more variables. For example, you could
assign the contents of a text box to a string variable.

	 3.	 Prompt the user for a path by using a SaveFileDialog control. You use the ShowDialog
method to display the dialog box.

	 4.	 Use the path received in the dialog box to open the file for output.

	 5.	 Write one or more values to the open file.

	 6.	 If necessary, close the file when you’re finished.

The WriteAllText Method
In the previous example, we used the My.Computer.FileSystem object with the ReadAllText
method. Not surprisingly, this object also includes the WriteAllText method. The WriteAllText
method writes text to a file. If a file does not exist, a new one is created. Here’s the syntax
you can use if you have a text box object on your form named txtNote (as in the last sample
program) and you plan to use a save file dialog object named SaveFileDialog1 to get the
name of the text file from the user:

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

 'copy text to disk

322	 Part II  Programming Fundamentals

 My.Computer.FileSystem.WriteAllText(_

 SaveFileDialog1.FileName, txtNote.Text, False)

End If

WriteAllText takes three parameters. The first parameter specifies the file (in this case, the
user specifies the file using SaveFileDialog1). The second parameter specifies the text to write
to the file (in this case, the contents of the txtNote text box). The last parameter specifies
whether to append the text or overwrite the existing text. A value of False for the last
parameter directs Visual Basic to overwrite the existing text.

The StreamWriter Class
Similar to its companion, the StreamReader class, the StreamWriter class in the .NET
Framework library allows you to write text to files in your programs. To make it easier to use
the StreamWriter class, you add the following Imports statement to the top of your code:

Imports System.IO

Then, if your program contains a text box object, you can write the contents to a file by
using the following program code. (The text file in this example is Output.txt, and the code
assumes an object named TextBox1 has been created on your form.)

Dim StreamToWrite As StreamWriter

StreamToWrite = New StreamWriter("C:\vb10sbs\chap13\output.txt")

StreamToWrite.Write(TextBox1.Text)

StreamToWrite.Close()

In this StreamWriter example, I declare a variable named StreamToWrite of the type
StreamWriter, and then I specify a valid path for the file I want to write to. Next, I write the
contents of the text box to the file by using the Write method. The final statement closes the
StreamWriter. Closing the StreamWriter can be important because if you try to read or write
to the file again, you might get an exception that indicates the process cannot access the file.

You can also use a combination of the My namespace and the StreamWriter class. The
following example writes to a text file line by line. The OpenTextFileWriter method in the My
namespace opens a StreamWriter. The WriteLine method writes one line to the file. When you
are finished with a StreamWriter, you should close it by calling the Close method.

Dim LineOfText As String = ""

Dim StreamToWrite As StreamWriter

StreamToWrite = My.Computer.FileSystem.OpenTextFileWriter(_

 "C:\vb10sbs\chap13\output.txt", False)

'get line of text

LineOfText = InputBox("Enter line")

Do Until LineOfText = ""

 'write line to file

 StreamToWrite.WriteLine(LineOfText)

	 Chapter 13  Exploring Text Files and String Processing	 323

 LineOfText = InputBox("Enter line")

Loop

StreamToWrite.Close()

Using the WriteAllText Method
The following exercise demonstrates how you can use TextBox and SaveFileDialog controls to
create a simple note-taking utility. The program uses the WriteAllText method to write string
data in a file. You can use this program to take notes at home or at work and then to stamp
them with the current date and time.

Run the Quick Note program

	 1.	 Click the Close Project command on the File menu.

	 2.	 Open the Quick Note project in the C:\Vb10sbs\Chap13\Quick Note folder.

The project opens in the IDE.

	 3.	 If the project’s form isn’t visible, display it now.

The Quick Note form opens, as shown in the following screen shot. It looks similar
to the Text Browser form. However, I replaced the OpenFileDialog control with the
SaveFileDialog control on the form. The File menu contains the Save As, Insert Date,
and Exit commands.

324	 Part II  Programming Fundamentals

I set the following properties in the project:

Object Property Setting

txtNote Multiline

Name

ScrollBars

True

txtNote

Vertical

lblNote Text “Type your note and then save it to disk.”

Form1 Text “Quick Note”

	 4.	 Click the Start Debugging button.

	 5.	 Type the following text, or some text of your own, in the text box:

How to Detect Counterfeit Coins

	 1.	 Drop coins on a hard surface. Genuine coins have a bell-like ring; most
counterfeit coins sound dull.

	 2.	 Feel all coins. Most counterfeit coins feel greasy.

	 3.	 Cut edges of questionable coins. Genuine coins are not easily cut.

When you’re finished, your screen looks similar to this:

Tip  To paste text from the Clipboard into the text box, press CTRL+V or SHIFT+INSERT.
To copy text from the text box to the Clipboard, select the text, and then press CTRL+C.

Now try using the commands on the File menu.

	 Chapter 13  Exploring Text Files and String Processing	 325

	 6.	 On the File menu, click the Insert Date command.

The current date and time appear as the first line in the text box, as shown here:

The Insert Date command provides a handy way to include the current time stamp in
a file, which is useful if you’re creating a diary or a logbook.

	 7.	 On the File menu, click the Save As command.

The program displays a Save As dialog box with all the expected features. The default
file type is set to .txt. Your screen looks like the following:

	 8.	 In the Save As dialog box, open the C:\Vb10sbs\Chap13\Quick Note folder if it isn’t
already open. Then type Badcoins.txt in the File Name text box, and click Save.

The text of your document is saved in the new Badcoins.txt text file.

	 9.	 On the File menu, click the Exit command.

The program stops, and the development environment returns.

Now you’ll look at the event procedures in the program.

326	 Part II  Programming Fundamentals

Examine the Quick Note program code

	 1.	 On the File menu of the Quick Note form, double-click the Insert Date command.

The InsertDateToolStripMenuItem_Click event procedure appears in the Code Editor.
You see the following program code:

txtNote.Text = My.Computer.Clock.LocalTime & vbCrLf & txtNote.Text

txtNote.Select(0, 0) 'remove selection

This event procedure adds the current date and time to the text box by linking, or
concatenating, the current date (generated by the My.Computer.Clock object and the
LocalTime property), a carriage return (added by the vbCrLf constant), and the Text
property. You could use a similar technique to add just the current date (by using
DateString) or any other information to the text in the text box.

When you insert the date using the Insert Date command, sometimes the text is
selected. To remove this selection, the Select method is called. The selection is set to
the beginning of the text box by specifying 0 in the first parameter, and the length
of the selection is set to 0 in the second parameter. This removes any selections
and positions the cursor at the beginning of the text box.

	 2.	 Take a moment to see how the concatenation statements work, and then examine
the SaveAsToolStripMenuItem_Click event procedure in the Code Editor.

You see the following program code:

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

 'copy text to disk

 My.Computer.FileSystem.WriteAllText(_

 SaveFileDialog1.FileName, txtNote.Text, False)

End If

This block of statements uses a save file dialog object to display a Save As dialog
box, verifies whether the user selected a file, and writes the value in the txtNote.Text
property to disk by using the WriteAllText method. Note especially the statement:

My.Computer.FileSystem.WriteAllText(_

 SaveFileDialog1.FileName, txtNote.Text, False)

which assigns the entire contents of the text box to the file. The important point
to note here is that the entire file is stored in the txtNote.Text property.

	 3.	 Close the program by using the Close Project command on the File menu.

You’re finished with the Quick Note program.

Processing Strings with the String Class
As you learned in the preceding exercises, you can quickly open, edit, and save text files
to disk with the TextBox control and a handful of well-chosen program statements. Visual
Basic also provides a number of powerful statements and methods specifically designed for

	 Chapter 13  Exploring Text Files and String Processing	 327

processing the textual elements in your programs. In this section, you’ll learn about several
ways to process strings.

The most common task you’ve accomplished so far with strings in this book is concatenating
them by using the concatenation operator (&). For example, the following program
statement concatenates three literal string expressions and assigns the result “Bring on the
circus!” to the string variable Slogan:

Dim Slogan As String

Slogan = "Bring" & " on the " & "circus!"

You can also concatenate and manipulate strings by using methods in the String class of
the .NET Framework library. For example, the String.Concat method allows equivalent string
concatenation by using this syntax:

Dim Slogan As String

Slogan = String.Concat("Bring", " on the ", "circus!")

Visual Basic 2010 features two methods for string concatenation and many other
string-processing tasks: You can use operators and functions from earlier versions of
Visual Basic (Mid, UCase, LCase, and so on), or you can use newer methods from the .NET
Framework (Substring, ToUpper, ToLower, and so on). There’s no real penalty for using either
string-processing technique, although the older methods exist primarily for compatibility
purposes. (By supporting both methods, Microsoft hopes to welcome upgraders and their
existing code base, allowing them to learn new features at their own pace.) In the rest of this
chapter, I’ll focus on the newer string-processing functions from the .NET Framework String
class. However, you can use either string-processing method or a combination of both.

Table 13-2 lists several methods and one property in the String class that appear in
subsequent exercises and their close equivalents in the Visual Basic programming language.
The fourth column in the table provides sample code using the String class.

TABLE 13-2  Elements of the String Class and Visual Basic Equivalents

String
Method or
Property

Visual
Basic
Function Description String Example

ToUpper UCase Changes letters in a string
to uppercase.

Dim Name, NewName As String

Name = "Kim"

NewName = Name.ToUpper

'NewName = "KIM"

ToLower LCase Changes letters in a string
to lowercase.

Dim Name, NewName As String

Name = "Kim"

NewName = Name.ToLower

'NewName = "kim"

Length Len Determines the number
of characters in a string.

Dim River As String

Dim Size As Short

River = "Mississippi"

Size = River.Length

'Size = 11

328	 Part II  Programming Fundamentals

String
Method or
Property

Visual
Basic
Function Description String Example

Contains Instr Determines whether the
specified string occurs in
the current string.

Dim region As String

Dim result As Boolean

region = "Germany"

result = region.Contains("Ge")

'result = True

Substring Mid Returns a fixed number
of characters in a string
from a given starting point.
(Note: The first element in
a string has an index of 0.)

Dim Cols, Middle As String

Cols = "First Second Third"

Middle = Cols.SubString(6, 6)

'Middle = "Second"

IndexOf InStr Finds the starting point of
one string within a larger
string.

Dim Name As String

Dim Start As Short

Name = "Abraham"

Start = Name.IndexOf("h")

'Start = 4

Trim Trim Removes leading and
following spaces from a
string.

Dim Spacey, Trimmed As String

Spacey = " Hello "

Trimmed = Spacey.Trim

'Trimmed = "Hello"

Remove N/A Removes characters from
the middle of a string.

Dim RawStr, CleanStr As String

RawStr = "Hello333 there"

CleanStr = RawStr.Remove(5, 3)

'CleanStr = "Hello there"

Insert N/A Adds characters to the
middle of a string.

Dim Oldstr, Newstr As String

Oldstr = "Hi Felix"

Newstr = Oldstr.Insert(3, "there

")

'Newstr = "Hi there Felix"

Compare StrComp Compares strings and can
disregard case differences.

Dim str1 As String = "Soccer"

Dim str2 As String = "SOCCER"

Dim Match As Integer

Match = String.Compare(str1, _

 str2, True)

'Match = 0 [strings match]

CompareTo StrComp Compares a string to the
current string and checks
for case differences

Dim str1 As String = "Soccer"

Dim str2 As String = "SOCCER"

Dim Match As Integer

Match = str1.CompareTo(str2)

'Match = -1 [strings do not

match]

Replace Replace Replaces all instances of a
substring in a string with
another string.

Dim Oldstr, Newstr As String

Oldstr= "*se*ll"

Newstr = Oldstr.Replace(_

 "*", "ba")

'Newstr = "baseball"

	 Chapter 13  Exploring Text Files and String Processing	 329

String
Method or
Property

Visual
Basic
Function Description String Example

StartsWith N/A Determines whether
a string starts with a
specified string.

Dim str1 As String

Dim result As Boolean

str1 = "Hi Felix"

result = str1.StartsWith("Hi")

'result = True

EndsWith N/A Determines whether a string
ends with a specified string.

Dim str1 As String

Dim result As Boolean

str1 = "Hi Felix"

result = str1.EndsWith("Felix")

'result = True

Split Split Splits a string into substrings
based on a specified
separator and puts the
substring in an array.

Dim AllText As String = _

 "a*b*c*1*2*3"

Dim strArray() As String

strArray = AllText.Split("*")

'strArray =

' {"a", "b", "c", "1", "2", "3"}

Sorting Text
An extremely useful skill to develop when working with textual elements is the ability to sort
a list of strings. The basic concepts in sorting are simple. You draw up a list of items to sort
and then compare the items one by one until the list is sorted in ascending or descending
alphabetical order.

In Visual Basic, you compare one item with another by using the same relational operators
that you use to compare numeric values. The tricky part (which sometimes provokes
long-winded discussions among computer scientists) is the specific sorting algorithm that
you use to compare elements in a list. We won’t get into the advantages and disadvantages
of different sorting algorithms in this chapter. (The bone of contention is usually speed,
which makes a difference only when several thousand items are sorted.) Instead, we’ll explore
how the basic string comparisons are made in a sort. Along the way, you’ll learn the skills
necessary to sort your own text boxes, list boxes, files, and databases.

Before Visual Basic can compare one character with another in a sort, it must convert each
character into a number by using a translation table called the ASCII character set (also
called the ANSI character set). (The acronym ASCII stands for American Standard Code for
Information Interchange.) Each of the basic symbols that you can display on your computer
has a different ASCII code. These codes include the basic set of “typewriter” characters
(codes 32 through 127) and special “control” characters, such as tab, line feed, and carriage
return (codes 0 through 31). For example, the lowercase letter a corresponds to the ASCII
code 97, and the uppercase letter A corresponds to the ASCII code 65. As a result, Visual Basic
treats these two characters quite differently when sorting or performing other comparisons.

330	 Part II  Programming Fundamentals

In the 1980s, IBM extended ASCII with codes 128 through 255, which represent accented,
Greek, and graphic characters, as well as miscellaneous symbols. ASCII and these additional
characters and symbols are typically known as the IBM extended character set.

The ASCII character set is still the most important numeric code for beginning programmers
to learn, but it isn’t the only character set. As the market for computers and application
software has become more global, a more comprehensive standard for character
representation called Unicode has emerged. Unicode can hold up to 65,536 symbols—plenty
of space to represent the traditional symbols in the ASCII character set plus most (written)
international languages and symbols. A standards body maintains the Unicode character
set and adds symbols to it periodically. Windows XP, Windows Vista, Windows 7, and Visual
Studio have been specifically designed to manage ASCII and Unicode character sets. (For
more information about the relationship between Unicode, ASCII, and Visual Basic data
types, see the section entitled “Working with Specific Data Types” in Chapter 5.)

In the following sections, you’ll learn more about using the ASCII character set to process
strings in your programs. As your applications become more sophisticated and you start
planning for the global distribution of your software, you’ll need to learn more about
Unicode and other international settings.

Working with ASCII Codes
To determine the ASCII code of a particular letter, you can use the Visual Basic Asc function.
For example, the following program statement assigns the number 122 (the ASCII code for
the lowercase letter z) to the AscCode short integer variable:

Dim AscCode As Short

AscCode = Asc("z")

Conversely, you can convert an ASCII code to a letter with the Chr function. For example, this
program statement assigns the letter z to the letter character variable:

Dim letter As Char

letter = Chr(122)

The same result could also be achieved if you used the AscCode variable just declared, as
shown here:

letter = Chr(AscCode)

How can you compare one text string or ASCII code with another? You simply use one of the
six relational operators Visual Basic supplies for working with textual and numeric elements.
These relational operators are shown in Table 13-3.

	 Chapter 13  Exploring Text Files and String Processing	 331

TABLE 13-3  Visual Basic Relational Operators

Operator Meaning

<> Not equal to

= Equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

A character is “greater than” another character if its ASCII code is higher. For example, the
ASCII value of the letter B is greater than the ASCII value of the letter A, so the expression:

"A" < "B"

is true, and the expression:

"A" > "B"

is false.

When comparing two strings that each contain more than one character, Visual Basic begins
by comparing the first character in the first string with the first character in the second string
and then proceeds character by character through the strings until it finds a difference. For
example, the strings Mike and Michael are the same up to the third characters (k and c).
Because the ASCII value of k is greater than that of c, the expression:

"Mike" > "Michael"

is true.

If no differences are found between the strings, they are equal. If two strings are equal
through several characters but one of the strings continues and the other one ends, the
longer string is greater than the shorter string. For example, the expression:

"AAAAA" > "AAA"

is true.

Sorting Strings in a Text Box
The following exercise demonstrates how you can use relational operators, concatenation,
and several string methods to sort lines of text in a text box. The program is a revision of the
Quick Note utility and features an Open command that opens an existing file and a Close
command that closes the file. There’s also a Sort Text command on the File menu that you
can use to sort the text currently displayed in the text box.

332	 Part II  Programming Fundamentals

Because the entire contents of a text box are stored in one string, the program must first
break that long string into smaller individual strings. These strings can then be sorted
by using the ShellSort Sub procedure, a sorting routine based on an algorithm created
by Donald Shell in 1959. To simplify these tasks, I created a module for the ShellSort Sub
procedure so that I can call it from any event procedure in the project. (For more about using
modules, see Chapter 10, “Creating Modules and Procedures.”) Although you learned how
to use the powerful Array.Sort method in Chapter 11, “Using Arrays to Manage Numeric
and String Data,” the ShellSort procedure is a more flexible and customizable tool. Building
the routine from scratch also gives you a little more experience with processing textual
values—an important learning goal of this chapter.

Another interesting aspect of this program is the routine that processes the lines in the text
box object. I wanted the program to be able to sort a text box of any size. To accomplish this,
I created the code that follows. The code uses the Replace, EndsWith, and Substring methods
of the String class. The Replace method is used to replace the different newline characters
(carriage return, line feed, or carriage return and line feed) with just the carriage return
character. The EndsWith method checks for a carriage return at the very end of the text.
The Substring method is used to remove the last carriage return if it exists:

sText = txtNote.Text

'replace different new line characters with one version

sText = sText.Replace(vbCrLf, vbCr)

sText = sText.Replace(vbLf, vbCr)

'remove last carriage return if it exists

If sText.EndsWith(vbCr) Then

 sText = sText.Substring(0, sText.Length - 1)

End If

'split each line in to an array

strArray = sText.Split(vbCr)

This code also uses the very handy Split method of the String class. The Split method breaks
a string down into substrings and puts each substring into an array. The breaks are based
on a separator string that you specify (in this case, a carriage return). The resulting array of
strings then gets passed to the ShellSort Sub procedure for sorting, and ShellSort returns the
string array in alphabetical order. After the string array is sorted, I can simply copy it back to
the text box by using a For loop.

Run the Sort Text program

	 1.	 Open the Sort Text project located in the C:\Vb10sbs\Chap13\Sort Text folder.

	 2.	 Click the Start Debugging button to run the program.

	 Chapter 13  Exploring Text Files and String Processing	 333

	 3.	 Type the following text, or some text of your own, in the text box:

Zebra

Gorilla

Moon

Banana

Apple

Turtle

	 4.	 Click the Sort Text command on the File menu.

The text you typed is sorted and redisplayed in the text box as follows:

	 5.	 Click the Open command on the File menu, and then open the Abc.txt file in the
C:\Vb10sbs\Chap13 folder, as shown here:

The Abc.txt file contains 36 lines of text. Each line begins with either a letter or a
number from 1 through 10.

334	 Part II  Programming Fundamentals

	 6.	 Click the Sort Text command on the File menu to sort the contents of the Abc.txt file.

The Sort Text program sorts the file in ascending order and displays the sorted list of
lines in the text box, as shown here:

	 7.	 Scroll through the file to see the results of the alphabetical sort.

Notice that although the alphabetical portion of the sort ran perfectly, the sort
produced a strange result for one of the numeric entries—the line beginning with the
number 10 appears second in the list rather than tenth. What’s happening here is that
Visual Basic read the 1 and the 0 in the number 10 as two independent characters,
not as a number. Because we’re comparing the ASCII codes of these strings from left
to right, the program produces a purely alphabetical sort. If you want to sort only
numbers with this program, you need to prohibit textual input, modify the code so
that the numeric input is stored in numeric variables, and then compare the numeric
variables instead of strings.

Examining the Sort Text Program Code
OK—let’s take a closer look at the code for this program now.

Examine the Sort Text program

	 1.	 On the File menu of the Sort Text program, click the Exit command to stop the
program.

	 2.	 Open the Code Editor for Form1, and then display the code for the
SortTextToolStripMenuItem_Click event procedure.

We’ve already discussed the first part of this event procedure, which splits each line
into an array. The remainder of the event procedure calls a procedure to sort the array,
and displays the reordered list in the text box.

	 Chapter 13  Exploring Text Files and String Processing	 335

The entire SortTextToolStripMenuItem_Click event procedure looks like this:

Dim strArray() As String

Dim sText As String

Dim i As Short

sText = txtNote.Text

'replace different new line characters with one version

sText = sText.Replace(vbCrLf, vbCr)

sText = sText.Replace(vbLf, vbCr)

'remove last carriage return if it exists

If sText.EndsWith(vbCr) Then

 sText = sText.Substring(0, sText.Length - 1)

End If

'split each line in to an array

strArray = sText.Split(vbCr)

'sort array

ShellSort(strArray, strArray.Length)

'then display sorted array in text box

sText = ""

For i = 0 To strArray.Length - 1

 sText = sText & strArray(i) & vbCrLf

Next i

txtNote.Text = sText

txtNote.Select(0, 0) 'remove text selection

The Split method creates an array that has the same number of elements as the text
box has lines of text. After the array is full of text, I call the ShellSort procedure located
in the Module1.vb module, which I discussed earlier in this chapter. After the array is
sorted, I use a For loop (as discussed in Chapter 7) to reconstruct the lines and copy
them into the text box.

	 3.	 Display the code for the Module1.vb module in the Code Editor.

This module defines the content of the ShellSort procedure. The ShellSort procedure
uses an If statement and the <= relational operator (as discussed in Chapters 6, 8,
and this chapter) to compare array elements and swap any that are out of order.
The procedure looks like this:

Sub ShellSort(ByVal sort() As String, ByVal numOfElements As Short)

 Dim temp As String

 Dim i, j, span As Short

 'The ShellSort procedure sorts the elements of sort()

 'array in descending order and returns it to the calling

 'procedure.

 span = numOfElements \ 2

 Do While span > 0

336	 Part II  Programming Fundamentals

 For i = span To numOfElements - 1

 For j = (i - span) To 0 Step -span

 If sort(j) <= sort(j + span) Then Exit For

 'swap array elements that are out of order

 temp = sort(j)

 sort(j) = sort(j + span)

 sort(j + span) = temp

 Next j

 Next i

 span = span \ 2

 Loop

End Sub

The method of the sort is to continually divide the main list of elements into sublists
that are smaller by half. The sort then compares the tops and the bottoms of the
sublists to see whether the elements are out of order. If the top and bottom are out of
order, they’re exchanged. The result is an array named sort() that’s sorted alphabetically
in descending order. To change the direction of the sort, simply reverse the relational
operator (change <= to >=).

The remaining event procedures in Form1 (OpenToolStripMenuItem_Click,
CloseToolStripMenuItem_Click, SaveAsToolStripMenuItem_Click, InsertDateToolStripMenuItem_
Click, and ExitToolStripMenuItem_Click) are all similar to the procedures that you studied in the
Text Browser and the Quick Note programs. (See my explanations earlier in this chapter for the
details.)

Let’s move on to another variation of this program that manipulates the strings in a text box
or a file.

Protecting Text with Basic Encryption
Now that you’ve had some experience with ASCII codes, you can begin to write simple
encryption routines that shift the ASCII codes in your documents and “scramble” the text
to hide it from intruding eyes. This process, known as encryption, mathematically alters
the characters in a file, making them unreadable to the casual observer. Of course, to
use encryption successfully, you also need to be able to reverse the process—otherwise,
you’ll simply be trashing your files rather than protecting them. And you’ll want to create
an encryption scheme or key that can’t be easily recognized, a complicated process
that’s only begun by the sample programs in this chapter.

The following exercises show you how to encrypt and decrypt text strings safely. You’ll
run the Encrypt Text program now to see a simple encryption scheme in action. As I note at
the end of this chapter, these exercises are just the tip of the iceberg for using encryption,
cryptography, and file security measures—and these issues have become major areas
of interest for programmers in the last decade or so. Still, even basic encryption is fun
and a useful demonstration of text-processing techniques.

	 Chapter 13  Exploring Text Files and String Processing	 337

Encrypt text by changing ASCII codes

	 1.	 Close the Sort Text project, and then open the Encrypt Text project located in the
C:\Vb10sbs\Chap13\Encrypt Text folder.

	 2.	 Click the Start Debugging button to run the program.

	 3.	 Type the following text, or some text of your own, in the text box:

Here at last, my friend, you have the little book long since expected and
promised, a little book on vast matters, namely, “On my own ignorance and that
of many others.”

Francesco Petrarca, c. 1368

The resulting application window and text look something like this:

	 4.	 On the File menu, click the Save Encrypted File As command, and then save the file in
the C:\Vb10sbs\Chap13 folder with the name Padua.txt.

As you save the text file, the program scrambles the ASCII code and displays the results
in the text box shown here:

338	 Part II  Programming Fundamentals

If you open this file in Microsoft Word or another text editor, you’ll see the same
result—the characters in the file have been encrypted to prevent unauthorized reading.

	 5.	 To restore the file to its original form, choose the Open Encrypted File command on the
File menu, and then open the Padua.txt file in the C:\Vb10sbs\Chap13 folder.

The file appears again in its original form, as shown here:

	 6.	 On the File menu, click the Exit command to end the program.

Examine the Encrypt program code

	 1.	 Open the mnuSaveAsItem_Click event procedure in the Code Editor to see the program
code that produces the encryption that you observed when you ran the program.

Although the effect you saw might have looked mysterious, it was a very
straightforward encryption scheme. Using the Asc and Chr functions and a For loop,
I simply added one number to the ASCII code for each character in the text box and
then saved the encrypted string to the specified text file.

The entire event procedure is listed here—in particular, note the items in bold:

Dim Encrypt As String = ""

Dim letter As Char

Dim i, charsInFile As Short

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

 Try

 'save text with encryption scheme (ASCII code + 1)

 charsInFile = txtNote.Text.Length

	 Chapter 13  Exploring Text Files and String Processing	 339

 For i = 0 To charsInFile - 1

 letter = txtNote.Text.Substring(i, 1)

 'determine ASCII code and add one to it

 Encrypt = Encrypt & Chr(Asc(letter) + 1)

 Next

 'write encrypted text to file

 My.Computer.FileSystem.WriteAllText(SaveFileDialog1.FileName, Encrypt, False)

 txtNote.Text = Encrypt

 txtNote.Select(0, 0) 'remove text selection

 mnuCloseItem.Enabled = True

 Catch ex As Exception

 MsgBox("An error occurred." & vbCrLf & ex.Message)

 End Try

End If

Note especially the statement:

Encrypt = Encrypt & Chr(Asc(letter) + 1)

which determines the ASCII code of the current letter, adds 1 to it, converts the ASCII
code back to a letter, and then adds it to the Encrypt string.

	 2.	 Now display the mnuOpenItem_Click event procedure in the Code Editor to see how
the program reverses the encryption.

This program code is nearly identical to that of the Save Encrypted File As command,
but rather than adding 1 to the ASCII code for each letter, it subtracts 1. Here’s the
complete mnuOpenItem_Click event procedure, with noteworthy statements in bold:

Dim AllText As String

Dim i, charsInFile As Short

Dim letter As Char

Dim Decrypt As String = ""

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box

 If My.Computer.FileSystem.FileExists(OpenFileDialog1.FileName) Then

 Try 'open file and trap any errors using handler

 AllText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 'now, decrypt string by subtracting one from ASCII code

 charsInFile = AllText.Length 'get length of string

 For i = 0 To charsInFile - 1 'loop once for each char

 letter = AllText.Substring(i, 1) 'get character

 Decrypt = Decrypt & Chr(Asc(letter) - 1) 'subtract 1

 Next i 'and build new string

 txtNote.Text = Decrypt 'then display converted string

 lblNote.Text = OpenFileDialog1.FileName

 txtNote.Select(0, 0) 'remove text selection

 txtNote.Enabled = True 'allow text cursor

 mnuCloseItem.Enabled = True 'enable Close command

 mnuOpenItem.Enabled = False 'disable Open command

 Catch ex As Exception

 MsgBox("An error occurred." & vbCrLf & ex.Message)

 End Try

 End If

End If

340	 Part II  Programming Fundamentals

This type of simple encryption might be all you need to conceal the information in your text
files. However, files encrypted in this way can easily be decoded. By searching for possible
equivalents of common characters such as the space character, determining the ASCII shift
required to restore the common character, and running the conversion for the entire text
file, a person experienced in encryption could readily decipher the file’s content. Also, this
sort of encryption doesn’t prevent a malicious user from physically tampering with the
file—for example, simply by deleting it if it’s unprotected on your system or by modifying
it in significant ways. But if you just want to hide information quickly, this simple encryption
scheme should do the trick.

One Step Further: Using the Xor Operator
The preceding encryption scheme is quite safe for text files because it shifts the ASCII
character code value up by just 1. However, you’ll want to be careful about shifting ASCII
codes more than a few characters if you store the result as text in a text file. Keep in mind
that dramatic shifts in ASCII codes (such as adding 500 to each character code) won’t
produce actual ASCII characters that can be decrypted later. For example, adding 500 to the
ASCII code for the letter A (65) would give a result of 565. This value couldn’t be translated
into a character by the Chr function and would generate an error.

One way around this problem is to convert the letters in your file to numbers when you
encrypt the file so that you can reverse the encryption no matter how large (or small)
the numbers are. If you followed this line of thought, you could then apply mathematical
functions—multiplication, logarithms, and so on—to the numbers so long as you knew how
to reverse the results.

One tool for encrypting numeric values is already built into Visual Basic. This tool is the Xor
operator, which performs the “exclusive or” operation, a function carried out on the bits that
make up the number itself. The Xor operator can be observed by using a simple MsgBox
function. For example, the program statement:

MsgBox(Asc("A") Xor 50)

would display a numeric result of 115 in a message box when the Visual Basic compiler
executes it. Likewise, the program statement:

MsgBox(115 Xor 50)

would display a result of 65 in a message box, the ASCII code for the letter A (our original
value). In other words, the Xor operator produces a result that can be reversed—if the
original Xor code is used again on the result of the first operation. This interesting behavior
of the Xor function is used in many popular encryption algorithms. It can make your secret
files more difficult to decode.

	 Chapter 13  Exploring Text Files and String Processing	 341

Run the Xor Encryption program now to see how the Xor operator works in the note-taking
utility you’ve been building.

Encrypt text with the Xor operator

	 1.	 Close the Encrypt Text project, and then open the Xor Encryption project in the
C:\Vb10sbs\Chap13\Xor Encryption folder.

	 2.	 Click the Start Debugging button to run the program.

	 3.	 Type the following text (or some of your own) in the encrypted text file:

Rothair’s Edict (Lombard Italy, c. 643) 296.

On Stealing Grapes. He who takes more than three grapes from another man’s
vine shall pay six soldi as compensation. He who takes less than three shall bear
no guilt.

	 4.	 On the File menu, click the Save Encrypted File As command, and then save the file in
the C:\Vb10sbs\Chap13 folder with the name Oldlaws.txt.

The program prompts you for a secret encryption code (a number) that will be used to
encrypt the file and decrypt it later. (Take note—you’ll need to remember this code to
decode the file.)

	 5.	 Type 500, or another numeric code, and then press ENTER.

Visual Basic encrypts the text by using the Xor operator and then stores it on disk as a
series of numbers. You won’t see any change on your screen, but rest assured that the
program created an encrypted file on disk. (You can verify this with a word processor
or a text editor.)

	 6.	 Click the Close command on the program’s File menu to clear the text in the text box.

Now you’ll restore the encrypted file.

	 7.	 On the File menu, click the Open Encrypted File command.

	 8.	 Open the C:\Vb10sbs\Chap13 folder, and then double-click the Oldlaws.txt file.

	 9.	 Type 500 (or the encryption code that you specified, if different) in the Xor Encryption
dialog box when it appears, and then click OK.

342	 Part II  Programming Fundamentals

The program opens the file and restores the text by using the Xor operator and the
encryption code you specified.

	 10.	 On the File menu, click the Exit command to end the program.

Examining the Encryption Program Code
The Xor operator is used in both the mnuSaveAsItem_Click and the mnuOpenItem_Click event
procedures. By now, these generic menu processing routines will be fairly familiar to you. The
mnuSaveAsItem_Click event procedure consists of these program statements (noteworthy
lines in bold):

Dim letter As Char

Dim strCode As String

Dim i, charsInFile, Code As Short

Dim StreamToWrite As StreamWriter = Nothing

SaveFileDialog1.Filter = "Text files (*.txt)|*.txt"

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

 Try

 strCode = InputBox("Enter Encryption Code")

 If strCode = "" Then Exit Sub 'if cancel clicked

 'save text with encryption scheme

 Code = CShort(strCode)

 charsInFile = txtNote.Text.Length

 StreamToWrite = My.Computer.FileSystem.OpenTextFileWriter(_

 SaveFileDialog1.FileName, False)

 For i = 0 To charsInFile - 1

 letter = txtNote.Text.Substring(i, 1)

 'convert to number w/ Asc, then use Xor to encrypt

 StreamToWrite.Write(Asc(letter) Xor Code) 'and save in file

 'separate numbers with a space

 StreamToWrite.Write(" ")

 Next

 mnuCloseItem.Enabled = True

 Catch ex As Exception

	 Chapter 13  Exploring Text Files and String Processing	 343

 MsgBox("An error occurred." & vbCrLf & ex.Message)

 Finally

 If StreamToWrite IsNot Nothing Then

 StreamToWrite.Close()

 End If

 End Try

End If

In the Write method the Xor operator is used to convert each letter in the text box
to a numeric code, which is then saved to disk one number at time. The numbers are
separated with spaces.

The final result of this encryption is no longer textual, but numeric—guaranteed to bewilder
even the nosiest snooper. For example, the following screen shot shows the encrypted file
produced by the preceding encryption routine, displayed in Notepad. (I’ve enabled Word
Wrap so that you can see all the code.)

The mnuOpenItem_Click event procedure contains the following program statements.
(Again, pay particular attention to the lines in bold.)

Dim AllText As String

Dim i As Short

Dim ch As Char

Dim strCode As String

Dim Code, Number As Short

Dim Numbers() As String

Dim Decrypt As String = ""

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then 'display Open dialog box

 Try 'open file and trap any errors using handler

 strCode = InputBox("Enter Encryption Code")

 If strCode = "" Then Exit Sub 'if cancel clicked

344	 Part II  Programming Fundamentals

 Code = CShort(strCode)

 'read encrypted numbers

 AllText = My.Computer.FileSystem.ReadAllText(OpenFileDialog1.FileName)

 AllText = AllText.Trim

 'split numbers in to an array based on space

 Numbers = AllText.Split(" ")

 'loop through array

 For i = 0 To Numbers.Length - 1

 Number = CShort(Numbers(i)) 'convert string to number

 ch = Chr(Number Xor Code) 'convert with Xor

 Decrypt = Decrypt & ch 'and build string

 Next

 txtNote.Text = Decrypt 'then display converted string

 lblNote.Text = OpenFileDialog1.FileName

 txtNote.Select(0, 0) 'remove text selection

 txtNote.Enabled = True 'allow text cursor

 mnuCloseItem.Enabled = True 'enable Close command

 mnuOpenItem.Enabled = False 'disable Open command

 Catch ex As Exception

 MsgBox("An error occurred." & vbCrLf & ex.Message)

 End Try

End If

When the user clicks the Open Encrypted File command, this event procedure opens the
encrypted file, prompts the user for an encryption code, and displays the translated file in
the text box object. The ReadAllText method reads the encrypted file. The Split method splits
the numbers as strings into an array and uses the space as a separator. The For loop reads
each string in the array, converts the string to a number, and stores it in the Number short
integer variable. The Number variable is then combined with the Code variable by using the
Xor operator, and the result is converted to a character by using the Chr function. These
characters (stored in the ch variable of type Char) are then concatenated with the Decrypt
string variable, which eventually contains the entire decrypted text file, as shown here:

ch = Chr(Number Xor Code) 'convert with Xor

Decrypt = Decrypt & ch 'and build string

Encryption techniques like this are useful, and they can also be very instructional. Because
encryption relies so much on string-processing techniques, it’s a good way to practice
a fundamental and important Visual Basic programming skill. As you become more
experienced, you can also use the encryption services provided by the .NET Framework to
add much more sophisticated security and cryptography services to your programs. For
an introduction to these topics, search for “Cryptographic Tasks” in the Visual Studio Help
documentation. Because these services rely somewhat on your understanding of classes,
containers, and Internet transactions, I recommend that you finish the chapters in Parts III
and IV of this book before you experiment with them.

Well, now—congratulations! If you’ve worked from Chapters 5 to here, you’ve completed the
programming fundamentals portion of this book, and you are now ready to focus specifically
on creating professional-quality user interfaces in your programs. You have come a long way

	 Chapter 13  Exploring Text Files and String Processing	 345

in your study of Visual Basic programming skills and in your use of the Visual Studio IDE. Take
a short break, and I’ll see you again in Part III, “Designing the User Interface”!

Chapter 13 Quick Reference

To Do This

Display an Open
dialog box

Add an OpenFileDialog control to your form, and then use the ShowDialog
method of the open file dialog object. For example:

If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

Read a text file
by using the My
namespace

Use the My.Computer.FileSystem object and the ReadAllText method.
For example (assuming that you are also using an open file dialog object
named ofd and a text box object named txtNote):

Dim AllText As String = ""

ofd.Filter = "Text files (*.txt)|*.txt"

If ofd.ShowDialog() = DialogResult.OK Then

 AllText = _

 My.Computer.FileSystem.ReadAllText(ofd.FileName)

 txtNote.Text = AllText 'display file

End If

Read a text file
by using the
StreamReader class

Add the statement Imports System.IO to your form’s declaration section,
and then use StreamReader. Use the ReadToEnd method to read the entire
file. When finished, call the Close method. For example, to display the file in
a text box object named TextBox1:

Dim StreamToDisplay As StreamReader

StreamToDisplay = New StreamReader(_

 "c:\vb10sbs\chap13\text browser\badbills.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd

StreamToDisplay.Close()

Read a text file line
by line

Use StreamReader and the ReadLine method. Use the OpenTextFileReader
method in the My namespace to open a StreamReader. To check for the
end of the file, use the EndOfStream property:

Dim AllText As String = "", LineOfText As String = ""

Dim StreamToDisplay As StreamReader

StreamToDisplay = My.Computer.FileSystem.OpenTextFileReader(_

 "C:\vb10sbs\chap13\text browser\badbills.txt")

Do Until StreamToDisplay.EndOfStream 'read lines from file

 LineOfText = StreamToDisplay.ReadLine()

 AllText = AllText & LineOfText & vbCrLf

Loop

TextBox1.Text = AllText 'display file

StreamToDisplay.Close()

Display a Save As
dialog box

Add a SaveFileDialog control to your form, and then use the ShowDialog
method of the save file dialog object. For example:

If SaveFileDialog1.ShowDialog() = DialogResult.OK Then

346	 Part II  Programming Fundamentals

To Do This

Write a text file
by using the My
namespace

Use the My.Computer.FileSystem object and the WriteAllText method. For
example (assuming that you are also using a save file dialog object named
sfd and a text box object named txtNote):

sfd.Filter = "Text files (*.txt)|*.txt"

If sfd.ShowDialog() = DialogResult.OK Then

 My.Computer.FileSystem.WriteAllText(_

 sfd.FileName, txtNote.Text, False)

End If

Write a text file
by using the
StreamWriter class

Add the statement Imports System.IO to your form’s declaration section,
and then use StreamWriter. Use the Write method to write the text. When
finished, call the Close method. For example, to write the contents of a text
box object named TextBox1 to a file:

Dim StreamToWrite As StreamWriter

StreamToWrite = New StreamWriter(_

 "c:\vb10sbs\chap13\output.txt")

StreamToWrite.Write(TextBox1.Text)

StreamToWrite.Close()

Write a text file line
by line

Use StreamWriter and the WriteLine method. Use the OpenTextFileWriter
method in the My namespace to open a StreamWriter:

Dim LineOfText As String = ""

Dim StreamToWrite As StreamWriter

StreamToWrite = My.Computer.FileSystem.OpenTextFileWriter(_

 "C:\vb10sbs\chap13\output.txt", False)

LineOfText = InputBox("Enter line")

Do Until LineOfText = ""

 StreamToWrite.WriteLine(LineOfText)

 LineOfText = InputBox("Enter line")

Loop

StreamToWrite.Close()

Process strings Use the String class. Some of the members of String include:

n	 Compare

n	 CompareTo

n	 Contains

n	 EndsWith

n	 IndexOf

n	 Insert

n	 Length

Convert a string
with separators to
an array

Use the Split method on the String class. For example:

Dim AllText As String = "a*b*c*1*2*3"

Dim strArray() As String

strArray = AllText.Split("*")

'strArray = {"a", "b", "c", "1", "2", "3"}

n	 Remove

n	 Replace

n	 StartsWith

n	 Substring

n	 ToLower

n	 ToUpper

n	 Trim

	 Chapter 13  Exploring Text Files and String Processing	 347

To Do This

Convert text
characters to ASCII
codes

Use the Asc function. For example:

Dim Code As Short

Code = Asc("A") 'Code equals 65

Convert ASCII codes
to text characters

Use the Chr function. For example:

Dim Letter As Char

Letter = Chr(65) 'Letter equals "A"

Encrypt text Use the Xor operator and a user-defined encryption code. For example,
this code block uses Xor and a user code to encrypt the text in the txtNote
text box and to save it in the encrypt.txt file as a series of numbers:

strCode = InputBox("Enter Encryption Code")

Code = CShort(strCode)

charsInFile = txtNote.Text.Length

StreamToWrite = My.Computer.FileSystem.OpenTextFileWriter(_

 SaveFileDialog1.FileName, False)

For i = 0 To charsInFile – 1

 letter = txtNote.Text.Substring(i, 1)

 StreamToWrite.Write(Asc(letter) Xor Code)

 StreamToWrite.Write(" ")

Next

StreamToWrite.Close()

Decrypt text Request the code that the user chose to encrypt the text, and use Xor to
decrypt the text. For example, this code block uses Xor and a user code to
reverse the encryption created in the preceding example:

strCode = InputBox("Enter Encryption Code")

Code = CShort(strCode)

AllText = My.Computer.FileSystem.ReadAllText(_

 OpenFileDialog1.FileName)

Numbers = AllText.Split(" ")

For i = 0 To Numbers.Length – 1

 Number = CShort(Numbers(i))

 ch = Chr(Number Xor Code)

 Decrypt = Decrypt & ch

Next

txtNote.Text = Decrypt

		 349

Part III

Designing the User Interface

In this part:

Chapter 14: Managing Windows Forms and Controls at Run Time 351

Chapter 15: Adding Graphics and Animation Effects . . 375

Chapter 16: Inheriting Forms and Creating Base Classes 393

Chapter 17: Working with Printers . 415

In Part II, you learned many of the core development skills necessary for writing Microsoft
Visual Basic applications. You learned how to use variables, operators, decision structures,
and the Microsoft .NET Framework; how to manage code flow with loops, timers, procedures,
and structured error handlers; how to debug your programs; and how to organize
information with arrays, collections, text files, and string processing techniques.

Each exercise you have worked with so far concentrated on one or more of these core skills
in a simple, stand-alone program. Real-world programs are rarely so simple. They usually
require you to combine the techniques in various ways and with various enhancements.
Your programs will quite often require multiple forms, used as dialog boxes, input and
output forms, reports, and other elements. Because Visual Basic treats each form as a
separate object, you can think of them as simple building blocks that you can combine to
create powerful programs.

In Part III, you’ll focus again on the user interface, and you’ll learn how to add multiform
projects, animation effects, visual inheritance, and printing support to your Visual Basic
applications.

Table of Contents

Designing the User Interface

Managing Windows Forms and Controls at Run Time 351
Adding New Forms to a Program . 351

How Forms Are Used . 352

Working with Multiple Forms . 352

Using the DialogResult Property in the Calling Form 358

Positioning Forms on the Windows Desktop . 359

Minimizing, Maximizing, and Restoring Windows 364

Adding Controls to a Form at Run Time . 364

Organizing Controls on a Form . 367

One Step Further: Specifying the Startup Object . 371

Chapter 14 Quick Reference . 373

		 351

Chapter 14

Managing Windows Forms
and Controls at Run Time

After completing this chapter, you will be able to:

n	 Add new forms to a program and switch between multiple forms.

n	 Change the position of a form on the Windows desktop.

n	 Add controls to a form at run time.

n	 Change the alignment of objects within a form at run time.

n	 Use the Project Designer to specify the startup form.

In this chapter, you’ll learn how to add additional forms to an application to handle input,
output, and special messages. You’ll also learn how to use the Me and My.Forms objects
to switch between forms, how to use the DesktopBounds property to resize a form, how
to add Toolbox controls to a form at run time, how to change the alignment of objects within
a form, and how to specify which form runs when a program is started.

Adding New Forms to a Program
Each program you’ve written so far has used one form and a series of general-purpose
dialog boxes for input and output. In many cases, dialog boxes and a form are sufficient for
communicating with the user. But if you need to exchange more information with the user in
a more customized manner, you can add additional forms to your program. Each new form is
considered an object that inherits its capabilities from the System.Windows.Forms.Form class.
By default, the first form in a program is named Form1.vb. Subsequent forms are named
Form2.vb, Form3.vb, and so on. (You can change the specific name for a form by using the
Add New Item dialog box or by using Solution Explorer.) Each new form has a unique name
and its own set of objects, properties, methods, and event procedures.

Table 14-1 lists several practical uses for additional forms in your programs.

TABLE 14-1  Practical Uses for Extra Forms

Form or Forms Description

Introductory form A form that displays a welcome message, artwork, or copyright information
when the program starts

Program instructions A form that displays information and tips about how the program works

Dialog boxes Custom dialog boxes that accept input and display output in the program

Document contents A form that displays the contents of one or more files and artwork used in
the program

352	 Part III  Designing the User Interface

How Forms Are Used
Microsoft Visual Basic gives you significant flexibility when using forms. You can make all
the forms in a program visible at the same time, or you can load and unload forms as the
program needs them. If you display more than one form at once, you can allow the user to
switch between the forms, or you can control the order in which the forms are used. A form
that must be addressed when it’s displayed on the screen is called a dialog box. Dialog boxes
(sometimes called modal forms) retain the focus until the user clicks OK, clicks Cancel, or
otherwise dispatches them. To display an existing form as a dialog box in Visual Basic, you
open it by using the ShowDialog method.

If you want to display a form that the user can switch away from, you use the Show method
instead of the ShowDialog method. (Forms that can lose the application focus are sometimes
also called non-modal forms or modeless forms.) Most Windows applications use regular,
non-modal forms when displaying information because they give the user more flexibility, so
this style is the default when you create a new form in Microsoft Visual Studio. Because forms
are simply members of the System.Windows.Forms.Form class, you can also create and display
forms by using program code.

Working with Multiple Forms
The following exercises demonstrate how you can use a second form to display Help
information for the Lucky Seven program that you worked with in Chapter 2, “Writing Your
First Program,” and Chapter 10, “Creating Modules and Procedures.” You’ll add a second
form by using the Add Windows Form command on the Project menu, and you’ll display the
form in your program code by using the My namespace and the ShowDialog method. The
second form will display a short Readme.txt file that I created to display help and copyright
information for the program (the type of information you typically see in an About or a Help
dialog box).

Add a second form

	 1.	 Start Visual Studio, and then open the Lucky Seven Help project in the C:\Vb10sbs\
Chap14\Lucky Seven Help folder.

The Lucky Seven Help project is the same slot machine game that you built in
Chapter 10. The program uses a module and a function to calculate the win rate as
you try to spin one or more 7s.

	 2.	 Display the primary form (LuckySeven.vb) in the Designer, if it isn’t already visible.

	 3.	 Click the Add Windows Form command on the Project menu to add a second form to
the project.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 353

You’ll see a dialog box similar to the following:

You use the Add New Item dialog box to add forms, classes, modules, and other
components to your Visual Basic project. Although you selected the Add Windows
Form command, forms aren’t the only components listed here. (The Windows Form
template is selected by default, however.) To view the available templates by category,
click the items in the left pane of the Add New Item dialog box.

Tip  I especially recommend that you experiment with the Explorer Form template in the
Windows Forms category, which allows you to add a Windows Explorer–style browser to
your application, complete with menus, toolbar, and a folder hierarchy pane.

	 4.	 Type HelpInfo.vb in the Name text box, and then click Add.

A second form named HelpInfo.vb is added to the Lucky Seven Help project, and the
form opens in Solution Explorer, as shown here:

354	 Part III  Designing the User Interface

Tip  You can rename or delete form files by using Solution Explorer. To rename a file,
right-click the file, and then click the Rename command. To remove a file from your project,
right-click the file, and then click the Exclude From Project command. (However, this
command is not available in Visual Basic 2010 Express.) To remove a file from your project
and permanently delete it from your computer, select the file, and then press DELETE.

Now you’ll add some controls to the HelpInfo.vb form.

	 5.	 Use the Label control to create a label at the top of the HelpInfo.vb form. Place the
label near the left edge of the form, but leave a small indent so that there is room for
a descriptive label.

	 6.	 Use the TextBox control to create a text box object.

	 7.	 Set the Multiline property for the text box object to True so that you can resize the
object easily.

	 8.	 Resize the text box object so that it covers most of the form.

	 9.	 Use the Button control to create a button at the bottom of the form.

	 10.	 Set the following properties for the objects on the HelpInfo.vb form:

Object Property Setting

Label1 Text “Operating Instructions for Lucky Seven Slot Machine”

TextBox1 ScrollBars Vertical

Button1 Text “OK”

HelpInfo Text “Help”

The HelpInfo.vb form looks similar to this:

Now you’ll enter a line of program code for the HelpInfo.vb form’s Button1_Click event
procedure.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 355

	 11.	 Double-click OK to display the Button1_Click event procedure in the Code Editor.

	 12.	 Type the following program statement:

Me.DialogResult = DialogResult.OK

The HelpInfo.vb form acts as a dialog box in this project because the Lucky Seven form
opens it using the ShowDialog method. After the user has read the Help information
displayed by the dialog box, he or she will click OK, which sets the DialogResult
property of the current form to DialogResult.OK. (The Me keyword is used here to refer
to the HelpInfo.vb form, and you’ll see this shorthand syntax from time to time when
a reference is being made to the current instance of a class or structure in which the
code is executing.)

DialogResult.OK is a Visual Basic constant that indicates the dialog box has been closed
and should return a value of “OK” to the calling procedure. A more sophisticated
dialog box might allow for other values to be returned by parallel button event
procedures, such as DialogResult.Cancel, DialogResult.No, and DialogResult.Yes.
When the DialogResult property is set, however, the form is automatically closed.

	 13.	 At the top of the Code Editor, type the following Imports statement above the Public
Class declaration:

Imports System.IO

This statement makes it easier to reference the StreamReader class in your code. The
StreamReader class isn’t specifically related to defining or using additional forms—I’m
just using it as a quick way to add textual information to the new form I’m creating.

	 14.	 Display the HelpInfo.vb form again, and then double-click the form background.

The HelpInfo_Load event procedure appears in the Code Editor. This is the event
procedure that runs when the form is first loaded into memory and displayed on
the screen.

	 15.	 Type the following program statements:

Dim StreamToDisplay As StreamReader

StreamToDisplay = _

 New StreamReader("c:\vb10sbs\chap14\lucky seven help\readme.txt")

TextBox1.Text = StreamToDisplay.ReadToEnd

StreamToDisplay.Close()

TextBox1.Select(0, 0)

Rather than type the contents of the Help file into the Text property of the text box
object (which would take a long time), I’ve used the StreamReader class to open, read,
and display an appropriate Readme.txt file in the text box object. This file contains
operating instructions and general contact information.

The StreamReader class was introduced in Chapter 13, “Exploring Text Files and
String Processing,” but you might not have experimented with it yet. As you learned,
StreamReader is a .NET Framework alternative to opening a text file with the
My.Computer.FileSystem object. To make it easier to use StreamReader in code, you

356	 Part III  Designing the User Interface

include the System.IO namespace at the top of the code for your form. Next, you
declare a StreamToDisplay variable of the type StreamReader to hold the contents
of the text file, and open the text file by using a specific path. Finally, you read the
contents of the text file into the StreamToDisplay variable by using the ReadToEnd
method, which reads all the text in the file from the current location (the beginning of
the text file) to the end of the text file and assigns it to the Text property of the text box
object. The StreamReader.Close statement closes the text file, and the Select method
removes the selection from the text in the text box object.

You’re finished with the HelpInfo.vb form. Now you’ll add a button object and some code to
the LuckySeven.vb form.

Display the second form by using an event procedure

	 1.	 Click LuckySeven.vb in Solution Explorer, and then click the View Designer button.

The LuckySeven.vb form opens in the Integrated Development Environment (IDE). Now
you’ll add a Help button to the user interface.

	 2.	 Use the Button control to draw a small button object in the lower-right corner of the form.

	 3.	 Use the Properties window to set the button object’s Text property to “Help.”

Your form looks something like this:

	 4.	 Double-click the Help button to display the Button3_Click event procedure in the Code
Editor.

	 5.	 Type the following program statement:

My.Forms.HelpInfo.ShowDialog()

This statement uses the My namespace (introduced in Chapter 13) to access the forms
active within the current project. As you type the statement, the Microsoft IntelliSense

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 357

feature lists the forms available in the Forms collection, as shown in the following
screen shot:

Note that you can also open and manipulate forms directly by using the following
syntax:

HelpInfo.ShowDialog()

This statement opens the HelpInfo.vb form as a dialog box by using the ShowDialog
method.

Alternatively, you can use the Show method to open the form, but in that case, Visual
Basic won’t consider HelpInfo.vb to be a dialog box; the form is a non-modal form that
the user can switch away from and return to as needed. In addition, the DialogResult
property in the HelpInfo.vb form’s Button1_Click event procedure won’t close the
HelpInfo.vb form. Instead, the program statement Me.Close is required.

Tip  Keep the differences between modal and non-modal forms in mind as you build your
own projects. There are differences between each type of form, and you’ll find that each
style provides a benefit to the user.

Now you’ll run the program to see how a multiple-form application works.

Run the program

	 1.	 Click the Start Debugging button on the Standard toolbar.

The first form, LuckySeven.vb, in the Lucky Seven project appears.

	 2.	 Click the Spin button seven or eight times to play the game.

Your screen looks similar to this:

358	 Part III  Designing the User Interface

	 3.	 Click the Help button.

Visual Basic opens the second form in the project, HelpInfo.vb, and displays the
Readme.txt file in the text box object. The form looks like this:

	 4.	 Use the vertical scroll bar to view the entire Readme file.

	 5.	 Try to click the Spin button on the LuckySeven.vb form.

Notice that you cannot activate the LuckySeven.vb form while the HelpInfo.vb form is
active. Because the HelpInfo.vb form is a dialog box (a modal form), you must address it
before you can continue with the program.

	 6.	 Click OK to close the HelpInfo.vb form.

The form closes, and the LuckySeven.vb form becomes active again.

	 7.	 Click the Spin button a few more times, and then click the Help button again.

The HelpInfo.vb form opens again and is fully functional.

	 8.	 Click OK, and then click End on the LuckySeven.vb form.

The program stops, and the development environment returns.

Using the DialogResult Property in the Calling Form
Although I didn’t demonstrate it in the sample program, you can use the DialogResult
property that you assigned to the dialog box to great effect in a Visual Basic program. As
I mentioned earlier, a more sophisticated dialog box might provide additional buttons to the

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 359

user—Cancel, Yes, No, Abort, and so on. Each dialog box button can be associated with a
different type of action in the main program. And in each of the dialog box’s button event
procedures, you can assign the DialogResult property for the form that corresponds to the
button name, such as the following program statement:

Me.DialogResult = DialogResult.Cancel 'user clicked Cancel button

In the calling event procedure—in other words, in the Button3_Click event procedure of
LuckySeven.vb—you can write additional program code to detect which button the user
clicked in the dialog box. This information is stored in the form’s DialogResult property,
which can be evaluated using a basic decision structure such as If . . . Then or Select . . . Case.
For example, the following code can be used in the Button3_Click event procedure to verify
whether the user clicked OK, Cancel, or another button in the dialog box. (The first line isn’t
new, but reminds you of the HelpInfo form name that you are using in this example.)

My.Forms.HelpInfo.ShowDialog()

If HelpInfo.DialogResult = DialogResult.OK Then

 MsgBox("The user clicked OK")

ElseIf HelpInfo.DialogResult = DialogResult.Cancel Then

 MsgBox("The user clicked Cancel")

Else

 MsgBox("Another button was clicked")

End If

By using creative event procedures that declare, open, and process dialog box choices, you
can add any number of forms to your programs, and you can create a user interface that
looks professional and feels flexible and user friendly.

Positioning Forms on the Windows Desktop
You’ve learned how to add forms to your Visual Basic project and how to open and close
forms by using program code. But which tool or setting determines the placement of
forms on the Windows desktop when your program runs? As you might have noticed, the
placement of forms on the screen at run time is different from the placement of forms within
the Visual Studio development environment at design time. In this section, you’ll learn how
to position your forms just where you want them at run time so that users see just what you
want them to see.

The tool you use isn’t a graphical layout window but a property named DesktopBounds that
is maintained for each form in your project. DesktopBounds can be read or set only at run

360	 Part III  Designing the User Interface

time, and it takes the dimensions of a rectangle as an argument—that is, two point pairs
that specify the coordinates of the upper-left corner of the window and the lower-right
corner of the window. The coordinate points are expressed in pixels, and the distances to the
upper-left and lower-right corners are measured from the upper-left corner of the screen.
(You’ll learn more about the Visual Basic coordinate system in the next chapter.) Because the
DesktopBounds property takes a rectangle structure as an argument, you can set both the
size and the location of the form on the Windows desktop.

In addition to the DesktopBounds property, you can use a simpler mechanism with fewer
capabilities to set the location of a form at design time. This mechanism, the StartPosition
property, positions a form on the Windows desktop by using one of the following property
settings: Manual, CenterScreen, WindowsDefaultLocation, WindowsDefaultBounds, or
CenterParent. The default setting for the StartPosition property, WindowsDefaultLocation,
lets Windows position the form on the desktop where it chooses—usually the upper-left
corner of the screen.

If you set StartPosition to Manual, you can manually set the location of the form by using
the Location property, in which the first number (x) is the distance from the left edge of the
screen and the second number (y) is the distance from the top edge of the screen. (You’ll
learn more about the Location property in the next chapter.) If you set StartPosition to
CenterScreen, the form opens in the middle of the Windows desktop. (This is my preferred
StartPosition setting.) If you set StartPosition to WindowsDefaultBounds, the form is resized to
fit the standard window size for a Windows application, and then the form is opened in the
default location for a new Windows form. If you set StartPosition to CenterParent, the form
is centered within the parent form. This final setting is especially useful in so-called multiple
document interface (MDI) applications in which parent and child windows have a special
relationship.

The following exercises demonstrate how you can set the StartPosition and DesktopBounds
properties to position a Visual Basic form. You can use either technique to position your
forms on the Windows desktop at run time.

Use the StartPosition property to position the form

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Desktop Bounds.

	 2.	 If the project’s form isn’t visible, display it now.

	 3.	 Click the form to display its properties in the Properties window.

	 4.	 Set the StartPosition property to CenterScreen.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 361

Changing the StartPosition property to CenterScreen directs Visual Basic to display the
form in the center of the Windows desktop when you run the program.

	 5.	 Click the Start Debugging button to run the application.

Visual Basic loads the form and displays it in the middle of the screen, as shown here:

	 6.	 Click the Close button on the form to stop the program.

The IDE returns.

	 7.	 Set the StartPosition property to Manual.

The Manual property setting directs Visual Basic to position the form based on the
values in the Location property.

	 8.	 Set the Location property to 100, 50.

The Location property specifies the position, in pixels, of the upper-left corner of
the form.

	 9.	 Click the Start Debugging button to run the application.

Visual Basic loads the form and then displays it on the Windows desktop 100 pixels from
the left and 50 pixels from the top, as shown in the screen shot on the following page.

362	 Part III  Designing the User Interface

	 10.	 Click the Close button on the form to close the program.

You’ve experimented with a few basic StartPosition settings for positioning a form at run
time. Now you’ll use the DesktopBounds property to size and position a second form window
while the program is running. You’ll also learn how to create a new form at run time without
using the Add Windows Form command on the Project menu.

Set the DesktopBounds property

	 1.	 Use the Button control to add a button object to the form, and then change the Text
property of the button object to “Create Form.”

	 2.	 Double-click the Create Form button to display the Button1_Click event procedure in
the Code Editor.

	 3.	 Type the following program code:

'Create a second form named form2

Dim form2 As New Form

'Define the Text property and border style of the form

form2.Text = "My New Form"

form2.FormBorderStyle = FormBorderStyle.FixedDialog

'Specify that the position of the form will be set manually

form2.StartPosition = FormStartPosition.Manual

'Declare a Rectangle structure to hold the form dimensions

'Upper left corner of form (200, 100)

'Width and height of form (300, 250)

Dim Form2Rect As New Rectangle(200, 100, 300, 250)

'Set the bounds of the form using the Rectangle object

form2.DesktopBounds = Form2Rect

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 363

'Display the form as a modal dialog box

form2.ShowDialog()

When the user clicks the Create Form button, this event procedure creates a new form
with the title “My New Form” and a fixed border style. To use program code to create
a new form, you use the Dim statement and specify a variable name for the form
and the Form class, which is automatically included in projects as part of the System.
Windows.Forms namespace. You can then set properties such as Text, FormBorderStyle,
StartPosition, and DesktopBounds.

The StartPosition property is set to FormStartPosition.Manual to indicate that the
position will be set manually. The DesktopBounds property sizes and positions the
form and requires an argument of type Rectangle. The Rectangle type is a structure
that defines a rectangular region and is automatically included in Visual Basic projects.
Using the Dim statement, the Form2Rect variable is declared of type Rectangle
and initialized with the form position and size values. At the bottom of the event
procedure, the new form is opened as a dialog box using the ShowDialog method.

Although I usually recommend placing your Dim statements together at the top of the
form, here I have placed one a little lower in the code to make it easier to understand
the context and use of the variable.

Tip  The complete Desktop Bounds program is located in the C:\Vb10sbs\Chap14\Desktop
Bounds folder.

	 4.	 Click the Start Debugging button to run the program.

Visual Basic displays the first form on the desktop.

	 5.	 Click the Create Form button.

Visual Basic displays the My New Form dialog box with the size and position you
specified in the program code, as shown here:

364	 Part III  Designing the User Interface

Notice that you can’t resize the second form because FormBorderStyle was set to
FixedDialog.

	 6.	 Close the second form, and then close the first form.

Your program stops running, and the IDE returns.

	 7.	 Click the Save All button, and then specify the C:\Vb10sbs\Chap14 folder as the location.

Minimizing, Maximizing, and Restoring Windows
In addition to establishing the size and location of a Visual Basic form, you can minimize
a form to the Windows taskbar, maximize a form so that it takes up the entire screen, or
restore a form to its normal shape. These settings can be changed at design time or at run
time based on current program conditions.

To allow a form to be both minimized and maximized, you must first verify that the form’s
minimize and maximize boxes are available. Using the Properties window or program code,
you specify the following settings:

form2.MaximizeBox = True

form2.MinimizeBox = True

Then, in program code or by using the Properties window, you set the WindowState
property for the form to Minimized, Maximized, or Normal. (In code, you need to add the
FormWindowState constant, as shown below.) For example, the following program statement
minimizes form2 to the Windows taskbar:

form2.WindowState = FormWindowState.Minimized

If you want to control the maximum or minimum size of a form, set the MaximumSize
or MinimumSize properties at design time by using the Properties window. To set the
MaximumSize or MinimumSize in code, you’ll need to use a Size structure (which is similar
to the Rectangle structure used in the previous exercise), as shown here:

Dim FormSize As New Size(400, 300)

form2.MaximumSize = FormSize

Adding Controls to a Form at Run Time
Throughout this book, you’ve added objects to forms by using the Toolbox and the Designer.
However, as the previous exercise demonstrated, you can also create Visual Basic objects
on forms at run time, either to save development time (if you’re copying routines you have
used before) or to respond to a current need in the program. For example, you might want
to generate a simple dialog box containing objects that process input only under certain
conditions.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 365

Creating objects is very simple because the fundamental classes that define controls in the
Toolbox are available to all programs. Objects are declared and instantiated (or brought into
being) by using the Dim and New keywords. The following program statement shows how
this process works when a new button object named button1 is created on a form:

Dim button1 As New Button

After you create an object at run time, you can also use code to customize it with property
settings. In particular, it’s useful to specify a name and location for the object because you
didn’t specify them manually by using the Designer. For example, the following program
statements configure the Text and Location properties for the new button1 object:

button1.Text = "Click Me"

button1.Location = New Point(20, 25)

Finally, your code must add the following new object to the Controls collection of the form
where it will be created. This will make the object visible and active in the program:

form2.Controls.Add(button1)

If you are adding the new button to the current form (that is, if you are adding a button to
Form1 and your code is located inside a Form1 event procedure), you can use the Me object
instead. For example,

Me.Controls.Add(button1)

adds the button1 object to the Controls collection of the current form. When you do this, be
sure that a button1 object doesn’t already exist on the form you are adding it to. (Each object
must have its own unique name.)

You can use this process to add any control in the Toolbox to a Visual Basic form. The class
name you use to declare and instantiate the control is a variation of the name that appears in
the Name property for each control.

The following exercise demonstrates how you can add a Label control and a Button control to
a new form at run time. The new form will act as a dialog box that displays the current date.

Create new Label and Button controls

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Add Controls.

	 2.	 Display the form (Form1.vb).

	 3.	 Use the Button control to add a button object to the form, and then change the Text
property of the button object to “Display Date.”

	 4.	 Double-click the Display Date button to display the Button1_Click event procedure in
the Code Editor.

366	 Part III  Designing the User Interface

	 5.	 Type the following program code:

'Declare new form and control objects

Dim form2 As New Form

Dim lblDate As New Label

Dim btnCancel As New Button

'Set label properties

lblDate.Text = "Current date is: " & DateString

lblDate.Size = New Size(150, 50)

lblDate.Location = New Point(80, 50)

'Set button properties

btnCancel.Text = "Cancel"

btnCancel.Location = New Point(110, 100)

'Set form properties

form2.Text = "Current Date"

form2.CancelButton = btnCancel

form2.StartPosition = FormStartPosition.CenterScreen

'Add new objects to Controls collection

form2.Controls.Add(lblDate)

form2.Controls.Add(btnCancel)

'Display form as a dialog box

form2.ShowDialog()

This event procedure displays a new form containing a label object and a button
object on the screen. The label object contains the current date as recorded by your
computer’s system clock (returned through DateString). The Text property of the button
object is set to “Cancel.”

As I mentioned earlier, you add controls to a form by declaring a variable to hold the
control, setting object properties, and adding the objects to the Controls collection. In
this exercise, I also demonstrate the Size and CancelButton properties for the first time.
The Size property requires a Size structure. The New keyword is used to immediately
create the Size structure. The CancelButton property allows the user to close the dialog
box by pressing ESC or clicking the Cancel button. (The two actions are equivalent.)

	 6.	 Click the Save All button, and then specify the C:\Vb10sbs\Chap14 folder as the location.

Tip  The complete Add Controls program is located in the C:\Vb10sbs\Chap14\Add
Controls folder.

	 7.	 Click the Start Debugging button to run the program.

Visual Basic displays the first form on the desktop.

	 8.	 Click the Display Date button.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 367

Visual Basic displays the second form. This form contains the label and button objects
that you defined by using program code. The label object contains the current date, as
shown here:

	 9.	 Click the Cancel button to close the new form.

	 10.	 Click the Display Date button again.

The new form opens as it did the first time.

	 11.	 Press ESC to close the form.

Because you set the CancelButton property to the btnCancel object, clicking Cancel
and pressing ESC produce the same result.

	 12.	 Click the Close button on the form to end the program.

The program stops, and the development environment returns.

Organizing Controls on a Form
When you add controls to a form programmatically, it takes a bit of trial and error to
position the new objects so that they’re aligned properly and look nice. After all, you don’t
have the Visual Studio Designer to help you—just the (x, y) coordinates of the Location
and Size properties, which are clumsy values to work with unless you have a knack for

368	 Part III  Designing the User Interface

two-dimensional thinking or have the time to run the program repeatedly to verify the
placement of your objects.

Fortunately, Visual Basic contains several property settings that you can use to organize
objects on the form at run time. These include the Anchor property, which forces an object
on the form to remain at a constant distance from the specified edges of the form, and the
Dock property, which forces an object to remain attached to one edge of the form. You can
use the Anchor and Dock properties at design time, but I find that they’re also very helpful
for programmatically aligning objects at run time. The following exercise shows how these
properties work.

Anchor and dock objects at run time

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Anchor and Dock.

	 2.	 Display the form.

	 3.	 Click the PictureBox control, and then add a picture box object in the top middle of the form.

	 4.	 Click the Image property in the Properties window, and then click the ellipsis button in
the second column.

The Select Resource dialog box appears.

	 5.	 Click the Local Resource radio button, and then click the Import button.

	 6.	 In the Open dialog box, navigate to the C:\Vb10sbs\Chap15 folder.

	 7.	 In the Files Of Type list box, select All Files.

	 8.	 Select Sun.ico, and then click Open.

	 9.	 Click OK in the Select Resource dialog box.

The Sun icon appears in the PictureBox.

	 10.	 Set the SizeMode property on the PictureBox to StretchImage.

	 11.	 Use the TextBox control to create a text box object.

	 12.	 Set the Multiline property for the text box object to True so that you can resize the
object appropriately.

	 13.	 Resize the text box object so that it covers most of the bottom half of the form.

	 14.	 Click the Button control, and then add a button object to the lower-right corner of the form.

	 15.	 Set the following properties for the button and text box objects.

Object Property Setting

Button1 Text “Align Now”

TextBox1 Text “Anchor and Dock Samples”

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 369

Your form looks similar to this:

	 16.	 Double-click the Align Now button to open the Button1_Click event procedure in the
Code Editor.

	 17.	 Type the following program code:

PictureBox1.Dock = DockStyle.Top

TextBox1.Anchor = AnchorStyles.Bottom Or _

 AnchorStyles.Left Or AnchorStyles.Right Or _

 AnchorStyles.Top

Button1.Anchor = AnchorStyles.Bottom Or _

 AnchorStyles.Right

When this event procedure is executed, the Dock property of the PictureBox1 object
is used to dock the picture box to the top of the form. This forces the top edge of the
picture box object to touch and adhere to the top edge of the form—much as the
Visual Studio docking feature works in the IDE. The only surprising behavior here is that
the picture box object is also resized so that its sides adhere to the left and right edges
of the form.

Next, the Anchor property for the TextBox1 and Button1 objects is used. The Anchor
property maintains the current distance from the specified edges of the form, even
if the form is resized. Note that the Anchor property maintains the object’s current
distance from the specified edges—it doesn’t attach the object to the specified edges
unless it’s already there. In this example, I specify that the TextBox1 object should
be anchored to all four edges of the form (bottom, left, right, and top). I use the Or
operator to combine my edge selections. I anchor the Button1 object to the bottom
and right edges of the form.

	 18.	 Save the project, and then specify the C:\Vb10sbs\Chap14 folder as the location.

370	 Part III  Designing the User Interface

Tip  The complete Anchor and Dock program is located in the C:\Vb10sbs\Chap14\Anchor
and Dock folder.

	 19.	 Click the Start Debugging button to run the program.

The form opens, just as you designed it.

	 20.	 Move the pointer to the lower-right corner of the form until it changes into a Resize
pointer, and then enlarge the form.

Notice that the size and position of the objects on the form do not change.

	 21.	 Return the form to its original size.

	 22.	 Click the Align Now button on the form.

The picture box object is now docked at the top edge of the form. The picture box
is also resized so that its sides adhere to the left and right edges of the form, as
shown here:

Notice that the Sun icon in the picture box is now distorted, which is a result of the
docking process.

	 23.	 Enlarge the form again.

As you resize the form, the picture box and text box objects are also resized. Because
the text box is anchored on all four sides, the distance between the edges of the
form and the text box remains constant. During the resizing activity, it also becomes
apparent that the button object is being repositioned. Although the distance between

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 371

the button object and the top and left edges of the form changes, the distance to
the bottom and right edges remains constant, as shown here:

	 24.	 Experiment with the Anchor and Dock properties for a while, and try a different
bitmap image if you like. When you’re finished, click the Close button on the form to
end the program.

You now have the skills necessary to add new forms to a project, position them on the
Windows desktop, populate them with new controls, and align the controls by using program
code. You’ve gained a number of useful skills for working with Windows forms in a program.

One Step Further: Specifying the Startup Object
If your project contains more than one form, which form is loaded and displayed first when
you run the application? Although Visual Basic normally loads the first form that you created
in a project (Form1.vb), you can change the form that Visual Basic loads first by adjusting
a setting in the Visual Studio Project Designer, a handy tool that I’ll introduce here.

The following exercise shows you how to change the first form, or startup form, by using the
Project Designer.

Switch the startup form from Form1 to Form2

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Startup Form.

	 2.	 Display Form1.vb, if it isn’t already visible.

	 3.	 Click the Add Windows Form command on the Project menu.

You’ll add a new form to the project to demonstrate how switching the startup form
works.

372	 Part III  Designing the User Interface

	 4.	 Click Add to add the second form (Form2.vb) to Solution Explorer.

	 5.	 Click My Startup Form Properties on the Project menu.

The Project Designer opens, as shown here:

The Project Designer lets you adjust settings that apply to the entire project in one
place. Here you’ll use the Application tab and the Startup Form list box to specify a new
startup form.

	 6.	 On the Application tab, click the Startup Form arrow, and then click Form2.

Visual Basic changes the startup form in your project from Form1 to Form2. When the
program runs, Form2 will be displayed, and Form1 will appear only if it’s opened using
the Show or ShowDialog method.

	 7.	 Click the Close button to close the Project Designer.

	 8.	 Click the Start Debugging button.

The program runs in the development environment, and Form2 opens.

	 9.	 Click the Close button on the form to end the program.

	 10.	 Close the project, and discard your changes—it is not necessary to save this simple
demonstration project, and you’re finished managing forms for now.

	 Chapter 14  Managing Windows Forms and Controls at Run Time	 373

Although this demonstration exercise was fairly simple, you can see that Visual Basic offers
you some flexibility in how you start your programs. You can specify the startup form, and
you can place code within that form’s Load event procedure to configure the program or
adjust its settings before the first form is actually loaded.

Console Applications
If you want to write a Visual Basic application that displays no graphical user interface
at all, consider writing a console application. This Visual Studio project type processes
input and output by using a command-line console (a character-based window also
known as the command prompt).

You can specify the console application type when you create your project by using
the New Project command on the File menu (select the Console Application template),
and you can convert an existing project into a console application by displaying the
Project Designer, clicking the Application tab, and then selecting Console Application
in the Application Type list box. Console applications begin execution within the Sub
Main procedure inside a code module, because there are no forms to display. You can
find out more about this topic by reviewing “Building Console Applications” in the
Visual Studio Help documentation.

Chapter 14 Quick Reference

To Do This

Add a new form to
a program

On the Project menu, click Add Windows Form, and then click Add.

Switch between forms
in your project, or
open hidden forms by
using program code

Use the Show or ShowDialog method. For example:

form2.ShowDialog()

You can also use the My.Forms object to display a form. For example:

My.Forms.HelpInfo.ShowDialog()

Hide the current form by using the Me object. For example:

Me.Visible = False

Display a form that is hidden by using the Me object. For example:

Me.ShowDialog()

Note that to use the Me object, your program code must be located
within the form you are manipulating.

374	 Part III  Designing the User Interface

To Do This

Create a new form
with program code
and set its properties

Create the form by using the Dim and New keywords and the Form
class, and then set any necessary properties. For example:

Dim form2 As New Form

form2.Text = "My New Form"

Position a startup form
on the Windows
desktop

Set the StartPosition property to one of the available options, such as
CenterScreen or CenterParent.

Size and position
a startup form on
the Windows desktop
by using code

Set the StartPosition to Manual, declare a Rectangle structure that
defines the form’s size and position, and then use the DesktopBounds
property to size and position the form on the desktop. For example:

form2.StartPosition = FormStartPosition.Manual

Dim Form2Rect As New Rectangle(200, 100, 300, 250)

form2.DesktopBounds = Form2Rect

Minimize, maximize,
or restore a form at
run time

Set the MaximizeBox and MinimizeBox properties for the form to
True in design mode to allow for maximize and minimize operations.
In the program code, set the form’s WindowState property to
FormWindowState.Minimized, FormWindowState.Maximized, or
FormWindowState.Normal when you want to change the window
state of the form.

Add controls to
a form at run time

Create a control of the desired type, set its properties, and then add it
to the form’s Controls collection. For example:

Dim button1 as New Button

button1.Text = "Click Me"

button1.Location = New Point(20, 25)

form2.Controls.Add(button1)

Anchor an object
a specific distance
from specific edges
of the form

Set the Anchor property of the object, and specify the edges you
want to remain a constant distance from. Use the Or operator when
specifying multiple edges. For example:

Button1.Anchor = AnchorStyles.Bottom Or AnchorStyles.Right

Dock an object to one
of the form’s edges

Set the Dock property of the object, and then specify the edge you want
the object to be attached to. For example:

PictureBox1.Dock = DockStyle.Top

Specify the startup
form in a project

Click the Properties command on the Project menu to open the
Project Designer. For a Windows Forms Application project, you can
specify any form in your project as the startup form by clicking the
form name in the Startup Form list box.

Create a Visual Basic
program with no
user interface (or
only a command-line
interface)

Create a console application project by clicking the New Project
command on the File menu, clicking the Console Application
template, and then clicking OK. You then add the program code to one
or more modules, not forms, and execution begins with a procedure
named Sub Main.

		 375

Chapter 15

Adding Graphics
and Animation Effects

After completing this chapter, you will be able to:

n	 Use the System.Drawing namespace to add graphics to your forms.

n	 Create animation effects on your forms.

n	 Expand or shrink objects on a form at run time.

n	 Change the transparency of a form.

For many developers, adding artwork and special effects to an application is the most
exciting—and addictive—part of programming. Fortunately, creating impressive and useful
graphical effects with Microsoft Visual Basic 2010 is both satisfying and easy.

In this chapter, you’ll learn how to add a number of visually interesting features to
your programs. You’ll learn how to create artwork on a form using the System.Drawing
namespace, how to create simple animation effects by using PictureBox and Timer
controls, and how to expand or shrink objects at run time by using the Height and Width
properties. You’ll also learn how to change the transparency of the form and change
a form’s background image and color. When you’ve finished, you’ll have many of the skills
you need to create a visually exciting user interface.

What will you be able to do on your own? This is the point when your imagination takes
over. One of my favorite results is from a reader of a previous version of this book who used
what he had learned about Visual Basic and graphics to build his own electrocardiograph
machine, complete with analog circuitry and a Windows form displaying digital data from
the homemade electrocardiogram. If this isn’t your idea of fun, you might decide on a more
modest goal: to enhance your application’s start page so that it contains custom artwork
and visual effects—perhaps in combination with one or more digital photographs loaded
into picture box objects on a form.

Even game programmers can have some serious fun using graphics in Visual Basic and
Microsoft Visual Studio. However, if you’re planning on creating the next version of Microsoft
Zoo Tycoon or Microsoft Halo, you had better plan for much more than visual output.
Modern video games contain huge libraries of objects and complex formulas for rendering
graphical images that go well beyond the scope of this book. But that still leaves a lot of
room for experimentation and fun!

Table of Contents

Adding Graphics
and Animation Effects . 375

Adding Artwork by Using
the System.Drawing Namespace . 376

Using a Form’s Coordinate System . 376

The System.Drawing.Graphics Class . . 376

Using the Form’s Paint Event . 378

Adding Animation to Your Programs . 380

Moving Objects on the Form . 380

The Location Property . 381

Creating Animation by Using a Timer Object . 382

Expanding and Shrinking Objects While a Program Is Running 386

One Step Further: Changing Form Transparency . 388

Chapter 15 Quick Reference . 390

376	 Part III  Designing the User Interface

Adding Artwork by Using
the System.Drawing Namespace

Adding ready-made artwork to your programs is easy in Visual Basic. Throughout this book,
you’ve experimented with adding bitmaps and icons to a form by using picture box objects.
Now you’ll learn how to create original artwork on your forms by using the GDI+ functions
in the System.Drawing namespace, an application programming interface (API) provided
by the Microsoft .NET Framework for creating two-dimensional vector graphics, imaging,
and typography within the Windows operating system. The effects that you create can add
color, shape, and texture to your forms.

Using a Form’s Coordinate System
The first thing to learn about creating graphics is the layout of the form’s predefined
coordinate system. In Visual Basic, each form has its own coordinate system. The coordinate
system’s starting point, or origin, is the upper-left corner of a form. The default coordinate
system is made up of rows and columns of device-independent picture elements, or pixels,
which represent the smallest points that you can locate, or address, on a Visual Basic form.

In the Visual Basic coordinate system, rows of pixels are aligned to the x-axis (horizontal
axis), and columns of pixels are aligned to the y-axis (vertical axis). You define locations
in the coordinate system by identifying the intersection of a row and a column with the
notation (x, y). For example, if you decide to place a picture box object on a form in your
project, the (x, y) coordinates for the object will indicate where the upper-left corner
of the picture box is located on the form. Also keep in mind that the (x, y) coordinates
of the upper-left corner of a form are always (0, 0)—that is the origin that everything is
measured from.

Visual Basic works in collaboration with your computer’s video display driver software to
determine how pixels are displayed on the form and how shapes such as lines, rectangles,
curves, and circles are displayed. Occasionally, more than one neighboring pixel is turned
on to display a particular shape, such as a diagonal line that appears on a form. The logic
that handles this type of rendering isn’t your responsibility—it’s handled by your display
adapter and the drawing routines in the GDI+ graphics library. Occasionally, this will produce
a distorted or jagged result, but it is rarely anything more than a slight visual glitch.

The System.Drawing.Graphics Class
The System.Drawing namespace includes numerous classes for creating artwork and special
effects in your programs. In this section, you’ll learn a little about the System.Drawing.
Graphics class, which provides methods and properties for drawing shapes on your forms.
You can learn about the other classes by referring to the Visual Studio Help documentation.

	 Chapter 15  Adding Graphics and Animation Effects	 377

Whether you’re creating simple screen shots or building complex drawings, it’s important to
be able to render many of the standard geometric shapes in your programs. Table 15-1 lists
several of the fundamental drawing shapes and the methods you use in the System.Drawing.
Graphics class to create them.

TABLE 15-1  Useful Shapes and Methods in the System.Drawing.Graphics Class

Shape Method Description

Line DrawLine Simple line connecting two points.

Rectangle DrawRectangle Rectangle or square connecting four points.

Arc DrawArc Curved line connecting two points (a portion of an ellipse).

Circle/Ellipse DrawEllipse Elliptical shape that is “bounded” by a rectangle.

Polygon DrawPolygon Complex shape with a variable number of points and sides
(stored in an array).

Curve DrawCurve A curved line that passes through a variable number of
points (stored in an array); complex curves called cardinal
splines can also be drawn with this method.

Bézier splines DrawBezier A curve drawn by using four points. (Points two and three
are “control” points.)

In addition to the preceding methods, which create empty or “non-filled” shapes, there are
several methods for drawing shapes that are filled with color. These methods usually have
a “Fill” prefix, such as FillRectangle, FillEllipse, and FillPolygon.

When you use a graphics method in the System.Drawing.Graphics class, you need to create
a Graphics object in your code to represent the class and either a Pen or Brush object to
indicate the attributes of the shape you want to draw, such as line width and fill color. The
Pen object is passed as one of the arguments to the methods that aren’t filled with color.
The Brush object is passed as an argument when a fill color is desired. For example, the
following call to the DrawLine method uses a Pen object and four integer values to draw
a red line that starts at pixel (20, 30) and ends at pixel (100, 80). The Graphics object is
declared by using the name GraphicsFun, and the Pen object is declared by using the name
PenColor.

Dim GraphicsFun As Graphics

Dim PenColor As New Pen(Color.Red)

GraphicsFun = Me.CreateGraphics

GraphicsFun.DrawLine(PenColor, 20, 30, 100, 80)

The syntax for the DrawLine method is important, but also note the three lines above it,
which are required to use a method in the System.Drawing.Graphics class. You must create
variables to represent both the Graphics and Pen objects, and the Graphics variable needs
to be instantiated by using the CreateGraphics method for the Windows form. Note that the
System.Drawing.Graphics namespace is included in your project automatically—you don’t
need to include an Imports statement in your code to reference the class.

378	 Part III  Designing the User Interface

Using the Form’s Paint Event
If you test the previous DrawLine method in a program, you’ll notice that the line you created
lasts, or persists, on the form only so long as nothing else covers it up. If a dialog box opens
on the form momentarily and covers the line, the line is no longer visible when the entire
form is visible again. The line also disappears if you minimize the form window and then
maximize it again. To address this shortcoming, you need to place your graphics code in
the form’s Paint event procedure so that each time the form is refreshed, the graphics are
repainted, too.

In the following exercise, you’ll create three shapes on a form by using the form’s Paint
event procedure. The shapes you draw will continue to persist even if the form is covered or
minimized.

Create line, rectangle, and ellipse shapes

	 1.	 Start Visual Studio, and create a new Windows Forms Application project named
My Draw Shapes.

	 2.	 Resize the form so that it’s longer and wider than the default form size.

You’ll need a little extra space to create the graphics shapes. You won’t be using any
Toolbox controls, however. You’ll create the shapes by placing program code in the
form’s Form1_Paint event procedure.

	 3.	 Set the Text property of Form1 to “Draw Shapes.”

	 4.	 Click the View Code button in Solution Explorer to display the Code Editor.

	 5.	 At the top of the Code Editor, just below the Form1.vb tab, click the Class Name arrow,
and then click Form1 Events.

Form1 Events is the list of events in your project associated with the Form1 object.

	 6.	 Click the Method Name arrow, and then click the Paint event.

	 7.	 The Form1_Paint event procedure appears in the Code Editor.

This event procedure is where you place code that should be executed when Visual
Basic refreshes the form.

	 8.	 Within the Form1_Paint event procedure, type the following program code:

'Prepare GraphicsFun variable for graphics calls

Dim GraphicsFun As Graphics

GraphicsFun = Me.CreateGraphics

'Use a red pen color to draw a line and an ellipse

Dim PenColor As New Pen(Color.Red)

GraphicsFun.DrawLine(PenColor, 20, 30, 100, 80)

GraphicsFun.DrawEllipse(PenColor, 10, 120, 200, 160)

	 Chapter 15  Adding Graphics and Animation Effects	 379

'Use a green brush color to create a filled rectangle

Dim BrushColor As New SolidBrush(Color.Green)

GraphicsFun.FillRectangle(BrushColor, 150, 10, 250, 100)

'Create a blue cardinal spline curve with four points

Dim Points() As Point = {New Point(358, 280), _

 New Point(300, 320), New Point(275, 155), New Point(350, 180)}

For tension As Single = 0 To 2.5 Step 0.5

 GraphicsFun.DrawCurve(Pens.DodgerBlue, Points, tension)

Next

This sample event procedure draws four graphic shapes on your form: a red line, a red
ellipse, a green-filled rectangle, and a blue cardinal spline (a complex curve made up
of five lines). To enable graphics programming, the routine declares a variable named
GraphicsFun in the code and uses the CreateGraphics method to activate or instantiate
the variable. The PenColor variable of type Pen is used to set the drawing color in the
line and ellipse, and the BrushColor variable of type SolidBrush is used to set the fill
color in the rectangle. These examples are obviously just the tip of the graphics library
iceberg—there are many more shapes, colors, and variations that you can create by
using the methods in the System.Drawing.Graphics class.

Tip  The complete Draw Shapes program is located in the C:\Vb10sbs\Chap15\Draw
Shapes folder.

	 9.	 Click the Start Debugging button on the Standard toolbar to run the program.

Visual Basic loads the form and executes the form’s Paint event. Your form looks
like this:

	 10.	 Minimize the form, and then restore it again.

The form’s Paint event is executed again, and the graphics shapes are refreshed on
the form.

380	 Part III  Designing the User Interface

	 11.	 Click the Close button to end the program.

	 12.	 Click the Save All button on the Standard toolbar to save the project, and then specify
the C:\Vb10sbs\Chap15 folder as the location.

Now you’re ready to move on to some simple animation effects.

Adding Animation to Your Programs
Displaying bitmaps and drawing shapes adds visual interest to a program, but for
programmers, the king of graphical effects has always been animation. Animation is the
simulation of movement produced by rapidly displaying a series of related images on the
screen. Real animation involves moving objects programmatically, and it often involves
changing the size or shape of the images along the way.

In this section, you’ll learn how to add simple animation to your programs. You’ll learn how
to update the Top and Left properties of a picture box, control the rate of animation by using
a timer object, and sense the edge of your form’s window.

Moving Objects on the Form
In Visual Studio 2010, a group of special properties named Left, Top, and Location, and the
SetBounds method allow you to move objects in the coordinate system. Table 15-2 offers
a description of these keywords and how they support basic animation effects.

TABLE 15-2  Useful Properties and Methods for Moving Objects on a Form

Keyword Description

Left This property can be used to move an object horizontally (left or right).

Top This property can be used to move an object vertically (up or down).

Location This property can be used to move an object to the specified location.

SetBounds This method sets the boundaries of an object to the specified location and size.

In the following sections, you’ll experiment with using the Left, Top, and Location properties
to move objects.

To move an object in a horizontal direction, use the Left property, which uses the syntax:

object.Left = horizontal

where object is the name of the object on the form that you want to move, and horizontal is
the new horizontal, or x-axis, coordinate of the left edge of the object, measured in pixels.
For example, the following program statement moves a picture box object to a location
300 pixels to the right of the left window edge:

PictureBox1.Left = 300

	 Chapter 15  Adding Graphics and Animation Effects	 381

To move a relative distance to the right or left, you would add or subtract pixels from the
current Left property setting. For example, to move an object 50 pixels to the right, you add
50 to the Left property, as follows:

PictureBox1.Left = PictureBox1.Left + 50

In a similar way, you can change the vertical location of an object on a form by setting the
Top property, which takes the syntax:

object.Top = vertical

where object is the name of the object on the form that you want to move, and vertical is
the new vertical, or y-axis, coordinate of the top edge of the object, measured in pixels.
For example, the following program statement moves a picture box object to a location
150 pixels below the window’s title bar:

PictureBox1.Top = 150

Relative movements down or up are easily made by adding or subtracting pixels from the
current Top property setting. For example, to move 30 pixels in a downward direction, you
add 30 to the current Top property, as follows:

PictureBox1.Top = PictureBox1.Top + 30

The Location Property
To move an object in both vertical and horizontal directions, you can use a combination of
the Left and Top property settings. For example, to relocate the upper-left corner of a picture
box object to the (x, y) coordinates (300, 200), you enter the following program code:

PictureBox1.Left = 300

PictureBox1.Top = 200

However, the designers of Visual Studio don’t recommend using two program statements
to relocate an object if you plan to make numerous object movements in a program (for
example, if you plan to move an object hundreds or thousands of times during an elaborate
animation effect). Instead, you should use the Location property with the syntax:

object.Location = New Point(horizontal, vertical)

where object is the name of the object, horizontal is the horizontal x-axis coordinate, vertical
is the vertical y-axis coordinate, and Point is a structure identifying the pixel location for
the upper-left corner of the object. For example, the following program statement moves
a picture box object to an (x, y) coordinate of (300, 200):

PictureBox1.Location = New Point(300, 200)

382	 Part III  Designing the User Interface

To perform a relative movement using the Location property, the Location.X and Location.Y
properties are needed. For example, the program statement:

PictureBox1.Location = New Point(PictureBox1.Location.X - 50, _

 PictureBox1.Location.Y - 40)

moves the picture box object 50 pixels left and 40 pixels up on the form. Although this
construction seems a bit unwieldy, it’s the recommended way to relocate objects in relative
movements on your form at run time.

Creating Animation by Using a Timer Object
The trick to creating animation in a program is placing one or more Location property
updates in a timer event procedure so that at set intervals the timer causes one or more
objects to drift across the screen. In Chapter 7, “Using Loops and Timers,” you learned how
to use a timer object to update a simple clock utility every second so that it displayed the
correct time. When you create animation, you set the Interval property of the timer to
a much faster rate—1/5 second (200 milliseconds), 1/10 second (100 milliseconds), or less.
The exact rate that you choose depends on how fast you want the animation to run.

Another trick is to use the Top and Left properties and the size of the form to “sense” the
edges of the form. By using these values in an event procedure, you can stop the animation
(disable the timer) when an object reaches the edge of the form. And by using the Top
property, the Left property, form size properties, and an If . . . Then or Select . . . Case decision
structure, you can make an object appear to bounce off one or more edges of the form.

The following exercise demonstrates how you can animate a picture box containing a Sun
icon (Sun.ico) by using the Location property and a timer object. In this exercise, you’ll use
the Top property to detect the top edge of the form, and you’ll use the Size.Height property
to detect the bottom edge. The Sun icon will move back and forth between these extremes
each time you click a button.

Animate a Sun icon on your form

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Moving Icon.

	 2.	 Using the Button control, draw two button objects in the lower-left corner of the form.

	 3.	 Using the PictureBox control, draw a small rectangular picture box object in the
lower-right corner of the form.

This is the object that you’ll animate in the program.

	 4.	 Click the Image property in the Properties window, and then click the ellipsis button in
the second column.

The Select Resource dialog box appears.

	 5.	 Click the Local Resource radio button, and then click the Import button.

	 Chapter 15  Adding Graphics and Animation Effects	 383

	 6.	 In the Open dialog box, navigate to the C:\Vb10sbs\Chap15 folder.

	 7.	 In the Files Of Type list box, select All Files.

	 8.	 Select Sun.ico, and then click Open.

	 9.	 Click OK in the Select Resource dialog box.

The Sun icon appears in the PictureBox.

	 10.	 Set the SizeMode property on the PictureBox to StretchImage.

	 11.	 Double-click the Timer control on the Components tab of the Toolbox to add it to the
component tray below the form.

The timer object is the mechanism that controls the pace of the animation. Recall
that the timer object itself isn’t visible on the form, so it’s shown below the form in the
component tray reserved for objects that are not visible.

	 12.	 Set the following properties for the button, timer, and form objects.

Object Property Setting

Button1 Text “Move Up”

Button2 Text “Move Down”

Timer1 Interval 75

Form1 Text “Basic Animation”

After you set these properties, your form looks similar to this:

384	 Part III  Designing the User Interface

	 13.	 Double-click the Move Up button to edit its event procedure.

The Button1_Click event procedure appears in the Code Editor.

	 14.	 Type the following program code:

GoingUp = True

Timer1.Enabled = True

This simple event procedure sets the GoingUp variable to True and enables the timer
object. The actual program code to move the picture box object and sense the correct
direction is stored in the Timer1_Tick event procedure. The GoingUp variable has
a jagged underline now because you have not declared it yet.

	 15.	 Near the top of the form’s program code (below the statement Public Class Form1),
type the following variable declaration:

Dim GoingUp As Boolean 'GoingUp stores current direction

This variable declaration makes GoingUp available to all the event procedures in the
form, so the jagged underline in the Button1_Click event procedure is removed. I’ve
used a Boolean variable because there are only two possible directions for movement
in this program—up and down.

	 16.	 Display the form again, double-click the Move Down button, and then enter the
following program code in the Button2_Click event procedure:

GoingUp = False

Timer1.Enabled = True

This routine is very similar to the Button1_Click event procedure, except that it changes
the direction from up to down.

	 17.	 Display the form again, double-click the Timer1 object, and then enter the following
program code in the Timer1_Tick event procedure:

If GoingUp = True Then

 'move picture box toward the top

 If PictureBox1.Top > 10 Then

 PictureBox1.Location = New Point _

 (PictureBox1.Location.X - 10, _

 PictureBox1.Location.Y - 10)

 End If

Else

 'move picture box toward the bottom

 If PictureBox1.Top < (Me.Size.Height - 75) Then

 PictureBox1.Location = New Point _

 (PictureBox1.Location.X + 10, _

 PictureBox1.Location.Y + 10)

 End If

End If

	 Chapter 15  Adding Graphics and Animation Effects	 385

So long as the timer is enabled, this If . . . Then decision structure is executed every
75 milliseconds. The first line in the procedure checks whether the GoingUp Boolean
variable is set to True, indicating that the icon is moving toward the top of the form.
If it’s set to True, the procedure moves the picture box object to a relative position
10 pixels closer to both the top and left edges of the form.

If the GoingUp variable is currently set to False, the decision structure moves the icon
down instead. In this case, the picture box object moves until the edge of the form
is detected. The height of the form can be determined by using the Me.Size.Height
property. (I subtract 75 from the form height so that the icon is still displayed on the
form.) The Me object in this example represents the form (Form1).

As you’ll see when you run the program, this movement gives the icon animation
a steady drifting quality. To make the icon move faster, you decrease the Interval setting
for the timer object. To make the icon move slower, you increase the Interval setting.

Run the Moving Icon program

Tip  The complete Moving Icon program is located in the C:\Vb10sbs\Chap15\Moving Icon
folder.

	 1.	 Click the Start Debugging button to run the program.

The Moving Icon program runs in the IDE.

	 2.	 Click the Move Up button.

The picture box object moves up the form on a diagonal path, as indicated here:

After a few moments, the button comes to rest at the upper edge of the form.

386	 Part III  Designing the User Interface

Note  If you placed the picture box object in the lower-right corner of the form, as
instructed in step 3 of the previous exercise, you see something similar to this screen shot.
However, if you placed the picture box object in another location, or created a smaller
form, the image might drift off the screen when you click Move Up or Move Down. Can
you tell why?

	 3.	 Click the Move Down button.

The picture box moves back down again to the lower-right corner of the screen.

	 4.	 Click both buttons again several times, and ponder the animation effects.

Note that you don’t need to wait for one animation effect to end before you click the
next button. The Timer1_Tick event procedure uses the GoingUp variable immediately
to manage your direction requests, so it doesn’t matter whether the picture box has
finished going in one direction. Consider this effect for a moment, and imagine how
you could use a similar type of logic to build your own Visual Basic video games. You
could increase or decrease the animation rates according to specific conditions or
“collisions” on screen, and you could force the animated objects to move in different
directions. You could also change the picture displayed by the picture box object based
on where the icon is on the screen or what conditions it encounters.

	 5.	 When you’re finished running the program, click the Close button on the form to stop
the demonstration.

	 6.	 Click the Save All button to save the project, and then specify the C:\Vb10sbs\Chap15
folder as the location.

Expanding and Shrinking Objects While a Program
Is Running

In addition to maintaining a Top property and a Left property, Visual Basic maintains a Height
property and a Width property for most objects on a form. You can use these properties in
clever ways to expand and shrink objects while a program is running. The following exercise
shows you how to do it.

Expand a picture box at run time

	 1.	 On the File menu, click the Close Project command.

	 2.	 Create a new Windows Forms Application project named My Zoom In.

	 3.	 Display the form, click the PictureBox control in the Toolbox, and then draw a small
picture box object near the upper-left corner of the form.

	 4.	 Set the following properties for the picture box and the form.

	 Chapter 15  Adding Graphics and Animation Effects	 387

When you set the properties for the picture box, note the current values in the Height
and Width properties within the Size property. (You can set these at design time,
too.) Since this is an image from space, we’re using a black background for the form,
and a JPEG image of stars in the background. These two form properties, BackColor
and BackgroundImage, are being introduced for the first time in this chapter.

Object Property Setting

PictureBox1 Image

SizeMode

“C:\Vb10sbs\Chap15\Earth.jpg”

StretchImage

Form1 Text

BackColor

BackgroundImage

“Approaching Earth”

Black

“C:\Vb10sbs\Chap15\Space.jpg”

Your form looks like this:

	 5.	 Double-click the PictureBox1 object on the form.

The PictureBox1_Click event procedure appears in the Code Editor.

	 6.	 Type the following program code in the PictureBox1_Click event procedure:

PictureBox1.Height = PictureBox1.Height + 15

PictureBox1.Width = PictureBox1.Width + 15

	 7.	 These two lines increase the height and width of the Earth icon by 15 pixels each time
the user clicks the picture box. If you stretch your imagination a little, watching the
effect makes you feel like you’re approaching Earth in a spaceship.

	 8.	 Click the Save All button, and then save the project in the C:\Vb10sbs\Chap15 folder.

388	 Part III  Designing the User Interface

Tip  The complete Zoom In program is located in the C:\Vb10sbs\Chap15\Zoom In folder.

	 9.	 Click the Start Debugging button to run the program.

The Earth image appears alone on the form.

Stars appear in the background because you have loaded the Space.jpg file onto the
form with the BackImage property. Any area not covered by the BackImage property
on the form will be black because you’ve used the BackColor property to simulate the
quiet melancholy of outer space.

	 10.	 Click the Earth image several times to expand it on the screen.

After 10 or 11 clicks, your screen looks similar to this:

Because the image has a relatively low resolution, it will eventually become somewhat
blurry if you magnify it much more. You can address this limitation by saving smaller
images at a higher resolution. The wispy clouds on Earth mitigate the blurring problem
in this example, however. (In print, this will not look that great, so be sure to try it out
on your computer and see the image in color!)

	 11.	 When you get close enough to establish a standard orbit, click the Close button to quit
the program.

The program stops, and the development environment returns.

One Step Further: Changing Form Transparency
Interested in one last special effect? With GDI+, you can do things that are difficult or even
impossible in earlier versions of Visual Basic. For example, you can make a form partially
transparent so that you can see through it. Let’s say you’re designing a photo-display

	 Chapter 15  Adding Graphics and Animation Effects	 389

program that includes a separate form with various options to manipulate the photos. You
can make the option form partially transparent so that the user can see any photos beneath
it while still having access to the options.

In the following exercise, you’ll change the transparency of a form by changing the value of
the Opacity property.

Set the Opacity property

	 1.	 On the File menu, click the Close Project command.

	 2.	 Create a new Windows Forms Application project named My Transparent Form.

	 3.	 Display the form, click the Button control in the Toolbox, and then draw two buttons
on the form.

	 4.	 Set the following properties for the two buttons and the form:

Object Property Setting

Button1 Text “Set Opacity”

Button2 Text “Restore”

Form1 Text “Transparent Form”

	 5.	 Double-click the Set Opacity button on the form.

	 6.	 Type the following program code in the Button1_Click event procedure:

Me.Opacity = 0.75

Opacity is specified as a percentage, so it has a range of 0 to 1. This line sets the
Opacity of Form1 (Me) to 75 percent.

	 7.	 Display the form again, double-click the Restore button, and then enter the following
program code in the Button2_Click event procedure:

Me.Opacity = 1

This line restores the opacity to 100 percent.

	 8.	 Click the Save All button, and then save the project in the C:\Vb10sbs\Chap15 folder.

Tip  The complete Transparent Form program is located in the C:\Vb10sbs\Chap15\
Transparent Form folder.

	 9.	 Click the Start Debugging button to run the program.

390	 Part III  Designing the User Interface

	 10.	 Click the Set Opacity button.

Notice how you can see through the form, as shown here:

	 11.	 Click the Restore button.

The transparency effect is removed.

	 12.	 When you’re done testing the transparency effect, click the Close button to quit the
program.

The program stops, and the development environment returns.

Chapter 15 Quick Reference

To Do This

Create lines or shapes
on a form

Use methods in the System.Drawing.Graphics namespace. For example,
the following program statements draw a red ellipse on the form:

Dim GraphicsFun As Graphics

GraphicsFun = Me.CreateGraphics

Dim PenColor As New Pen(System.Drawing.Color.Red)

GraphicsFun.DrawEllipse(PenColor, 10, 120, 200, 160)

Create lines or shapes
that persist on the form
during window redraws

Place the graphics methods in the Paint event procedure for the form.

	 Chapter 15  Adding Graphics and Animation Effects	 391

To Do This

Move an object on
a form

Relocate the object by using the Location property, the New keyword,
and the Point structure. For example:

PictureBox1.Location = New Point(300, 200)

Animate an object Use a timer event procedure to modify the Left, Top, or Location
property for an object on the form. The timer’s Interval property
controls animation speed.

Expand or shrink
an object at run time

Change the object’s Height property or Width property.

Set the background
color on a form

Change the form’s BackColor property.

Set the background
image on a form

Change the form’s BackgroundImage property.

Change the
transparency of a form

Change the form’s Opacity property.

		 393

Chapter 16

Inheriting Forms and Creating
Base Classes

After completing this chapter, you will be able to:

n	 Use the Inheritance Picker to incorporate existing forms in your projects.

n	 Create your own base classes with custom properties and methods.

n	 Derive new classes from base classes by using the Inherits statement.

An important skill for virtually all professional software developers today is the ability
to understand and utilize object-oriented programming (OOP) techniques. The changes
associated with OOP have been gaining momentum in recent versions of Microsoft Visual
Basic, including features that support inheritance, a mechanism that allows one class to
acquire the interface and behavior characteristics of another class.

Inheritance in Visual Basic 2010 is facilitated by both the Visual Basic language and tools within
the Integrated Development Environment (IDE). What this means is that you can build one
form in the development environment and pass on its characteristics and functionality to other
forms. In addition, you can build your own classes and inherit properties, methods, and events
from them.

In this chapter, you’ll experiment with both types of inheritance. You’ll learn how to integrate
existing forms into your projects by using the Inheritance Picker dialog box that is part of
Microsoft Visual Studio 2010, and you’ll learn how to create your own classes and derive new
ones from them by using the Inherits statement. With these skills, you’ll be able to utilize many
of the forms and coding routines you’ve already developed, making Visual Basic programming
a faster and more flexible endeavor. These improvements will help you design compelling user
interfaces rapidly and will extend the work that you have done in other programming projects.

Inheriting a Form by Using the Inheritance Picker
In OOP syntax, inheritance means having one class receive the objects, properties,
methods, and other attributes of another class. As I mentioned in the section “Adding
New Forms to a Program” in Chapter 14, “Managing Windows Forms and Controls
at Run Time,” Visual Basic goes through this process routinely when it creates a new
form in the development environment. The first form in a project (Form1) relies on the

Table of Contents

Inheriting Forms and Creating Base Classes 393
Inheriting a Form by Using the Inheritance Picker . 393

Creating Your Own Base Classes . . 399

Adding a New Class to Your Project . 401

One Step Further: Inheriting a Base Class . 408

Chapter 16 Quick Reference . 412

394	 Part III  Designing the User Interface

System.Windows.Forms.Form class for its definition and default values. In fact, this class is
identified in the Properties window when you select a form in the Designer, as shown in
the following screen shot:

Although you haven’t realized it, you’ve been using inheritance all along to define the
Windows forms that you’ve been using to build Visual Basic applications. Although existing
forms can be inherited by using program code as well, the designers of Visual Studio
considered the task to be so important that they designed a special dialog box in the
development environment to facilitate the process. This dialog box is called the Inheritance
Picker, and it’s accessed through the Add New Item command on the Project menu. In the
following exercise, you’ll use the Inheritance Picker to create a second copy of a dialog box
in a project.

Inherit a simple dialog box

	 1.	 Start Visual Studio, and create a new Visual Basic Windows Forms Application project
named My Form Inheritance.

	 2.	 Display the form in the project, and then use the Button control to add two button
objects at the bottom of the form, positioned side by side.

	 3.	 Change the Text properties of the Button1 and Button2 buttons to “OK” and “Cancel,”
respectively.

	 4.	 Double-click OK to display the Button1_Click event procedure in the Code Editor.

	 5.	 Type the following program statement:

MsgBox("You clicked OK")

	 6.	 Display the form again, double-click the Cancel button, and then type the following
program statement in the Button2_Click event procedure:

MsgBox("You clicked Cancel")

	 7.	 Display the form again, and set the Text property of the form to “Dialog Box.”

You now have a simple form that can be used as the basis of a dialog box in a program.
With some customization, you can use this basic form to process several tasks—you
just need to add the controls that are specific to your individual application.

	 8.	 Click the Save All button to save your project, and then specify the C:\Vb10sbs\Chap16
folder as the location.

	 Chapter 16  Inheriting Forms and Creating Base Classes	 395

Now you’ll practice inheriting the form. The first step in this process is building, or
compiling, the project because you can inherit only from forms that are compiled into
.exe or .dll files. Each time the base form is recompiled, changes made to the base form
are passed to the derived (inherited) form.

	 9.	 Click the Build My Form Inheritance command on the Build menu.

Visual Basic compiles your project and creates an .exe file.

	 10.	 Click the Add New Item command on the Project menu, and then click the Windows
Forms category on the left side of the dialog box and the Inherited Form template in
the middle of the dialog box.

The Add New Item dialog box looks as shown in the following screen shot:

Note  Visual Basic 2010 Express does not include the Inherited Form template. If you are
looking for justification to upgrade to Visual Studio Professional, this may provide some.
(In general, Professional and the other full versions of Visual Studio provide a number
of additional templates that are useful.) At this point, you may want to simply review
the sample project that I have included on the Practice Files CD and examine the code.
However there is a work-around that you can attempt to create an inherited form manually.
To try it, add a Windows Form named Form2.vb to your project instead of Inherited Form.
At the top of Solution Explorer, click the Show All Files toggle button. Expand Form2.vb and
then open Form2.Designer.vb. Change “Inherits System.Windows.Forms.Form” to “Inherits
My_Form_Inheritance.Form1.” Click Save All, close Form2.Designer.vb, and then click Show
All Files again to hide the advanced files. Since you performed the steps manually, you can
now skip to the next section, “Customize the Inherited Form.”

396	 Part III  Designing the User Interface

As usual, Visual Studio lists all the possible templates you could include in your projects,
not just those related to inheritance. The Inherited Form template gives you access to
the Inheritance Picker dialog box.

You can also use the Name text box at the bottom of the dialog box to assign a name
to your inherited form, although it is not necessary for this example. This name will
appear in Solution Explorer and in the file name of the form on disk.

	 11.	 Click Add to accept the default settings for the new, inherited form.

Visual Studio displays the Inheritance Picker dialog box, as shown here:

This dialog box lists all the inheritable forms in the current project. If you want to
browse for another compiled form, click the Browse button and locate the .dll file on
your system.

Note  If you want to inherit a form that isn’t a component of the current project, the form
must be compiled as a .dll file.

	 12.	 Click Form1 in the Inheritance Picker dialog box, and then click OK.

Visual Studio creates the Form2.vb entry in Solution Explorer and displays the inherited
form in the Designer. Notice in the screen shot at the top of the following page that
the form looks identical to the Form1 window you created earlier except that the two
buttons contain tiny icons, which indicate that the objects come from an inherited
source.

It can be difficult to tell an inherited form from a base form (the tiny inheritance
icons aren’t that obvious), but you can also use Solution Explorer and the IDE tabs to
distinguish between the forms.

	 Chapter 16  Inheriting Forms and Creating Base Classes	 397

Now you’ll add a few new elements to the inherited form.

Customize the inherited form

	 1.	 Use the Button control to add a third button object near the middle of Form2 (the
inherited form).

	 2.	 Set the Text property for the button object to “Click Me!”

	 3.	 Double-click the Click Me! button.

	 4.	 In the Button3_Click event procedure, type the following program statement:

MsgBox("This is the inherited form!")

	 5.	 Display Form2 again, and then try double-clicking the OK and Cancel buttons on
the form.

Notice that you can’t display or edit the event procedures or properties for these
inherited objects without taking additional steps that are beyond the scope of this
chapter. (Tiny “lock” icons indicate that the inherited objects are read-only.) However,
you can add new objects to the form or customize it in other ways.

398	 Part III  Designing the User Interface

	 6.	 Enlarge the form.

This works just fine. And in addition to modifying the size, you can change the location
and other display or operational characteristics of the form. Notice that if you use the
Properties window to customize a form, the Object list box in the Properties window
displays the form from which the current form is derived. Here’s what the Properties
window looks like in your project when Form2 is selected:

Now set the startup object in your project to Form2.

	 7.	 Click the My Form Inheritance Properties command on the Project menu.

The Project Designer, introduced in Chapter 14, appears.

	 8.	 On the Application tab, click the Startup Form list box, click Form2, and then close the
Project Designer by clicking the Close button on the tab.

There is no Save button in the Project Designer because Visual Studio saves your
changes as you make them in the dialog box. Now run the new project.

Tip  The complete Form Inheritance program is located in the C:\Vb10sbs\Chap16\Form
Inheritance folder.

	 9.	 Click the Start Debugging button.

The inherited form opens, as shown here. (My version is shown slightly enlarged after
following step 6 earlier in this exercise.)

	 Chapter 16  Inheriting Forms and Creating Base Classes	 399

	 10.	 Click OK.

The inherited form runs the event procedure that it inherited from Form1, and the
event procedure displays the following message:

	 11.	 Click OK, and then click the Click Me! button.

Form2 displays the inherited form message.

What this demonstrates is that Form2 (the inherited form) has its own characteristics
(a new Click Me! button and an enlarged size). Form2 also uses two buttons (OK
and Cancel) that were inherited from Form1 and contain the code from Form1, as well
as the exact visual representation of the buttons. This means that you can redeploy
the user interface and code features that you have previously created without
cumbersome cutting and pasting. In other words, you’ve encountered one of the main
benefits of OOP—reusing and extending the functionality of existing forms, program
code, and projects. You’ve also learned to use the Visual Studio Inheritance Picker
dialog box, which offers a handy way to select objects you want to reuse.

	 12.	 Click OK to close the message box, and then click Close on the form to end the
program.

The program stops, and the IDE returns.

Creating Your Own Base Classes
The Inheritance Picker managed the inheritance process in the previous exercise by creating
a new class in your project named Form2. To build the Form2 class, the Inheritance Picker
established a link between the Form1 class in the My Form Inheritance project and the new
form. Here’s what the new Form2 class looks like in the Code Editor:

400	 Part III  Designing the User Interface

The Button3_Click event procedure that you added is also a member of the new class.
But recall for a moment that the Form1 class itself relied on the System.Windows.Forms.Form
class for its fundamental behavior and characteristics. So the last exercise demonstrates
that one derived class (Form2) can inherit its functionality from another derived class
(Form1), which in turn inherited its core functionality from an original base class (Form),
which is a member of the System.Windows.Forms namespace in the Microsoft .NET
Framework.

In addition to the Inheritance Picker, Visual Studio offers the Inherits statement, which
causes the current class to inherit the properties, procedures, and variables of another
class. To use the Inherits statement to inherit a form, you must place the Inherits statement
at the top of the form as the first statement in the class. Although you might choose to use
the Inheritance Picker for this sort of work with forms, it is useful to know about Inherits
because it can be used for classes and interfaces other than forms, and you will probably
run into it now and then in your colleagues’ program code. You’ll see an example of the
Inherits statement near the end of this chapter.

Recognizing that classes are such a fundamental building block in Visual Basic programs,
you might very well ask how new classes are created and how these new classes might
be inherited down the road by subsequently derived classes. To ponder these possibilities,
I’ll devote the remainder of this chapter to discussing the syntax for creating classes in
Visual Basic 2010 and introducing how these user-defined classes might be inherited later
by still more classes. Along the way, you’ll learn how very useful creating your own classes
can be.

Nerd Alert
There’s a potential danger for terminology overload when discussing class creation
and inheritance. A number of very smart computer scientists have been thinking about
these OOP concepts for several years, and there are numerous terms and definitions
in use for the concepts that I plan to cover. However, if you stick with me, you’ll find
that creating classes and inheriting them is quite simple in Visual Basic 2010 and that
you can accomplish a lot of useful work by adding just a few lines of program code to
your projects. Understanding OOP terminology will also help you make sense of some
of the advanced features of Visual Basic 2010, such as covariance and contravariance,
Language Integrated Query (LINQ), anonymous types, extension methods, and
lambda expressions, which facilitate the use of classes, objects, and methods, and are
sometimes emphasized in marketing announcements and new feature lists.

	 Chapter 16  Inheriting Forms and Creating Base Classes	 401

Adding a New Class to Your Project
Simply stated, a class in Visual Basic is a representation or blueprint that defines the
structure of one or more objects. Creating a class allows you to define your own objects in
a program—objects that have properties, methods, fields, and events, just like the objects
that the Toolbox controls create on Windows forms. To add a new class to your project, you
click the Add Class command on the Project menu, and then you define the class by using
program code and a few Visual Basic keywords.

In the following exercise, you’ll create a program that prompts a new employee for his or
her first name, last name, and date of birth. You’ll store this information in the properties of
a new class named Person, and you’ll create a method in the class to compute the current
age of the new employee. This project will teach you how to create your own classes and also
how to use the classes in the event procedures of your program.

Build the Person Class project

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Person Class.

	 2.	 Use the Label control to add a label object to the top of Form1.

	 3.	 Use the TextBox control to draw two wide text box objects below the label object.

	 4.	 Use the DateTimePicker control to draw a date time picker object below the text box
objects.

You last used the DateTimePicker control to enter dates in Chapter 3, “Working with
Toolbox Controls.” Go to that chapter if you want to review this control’s basic methods
and properties.

	 5.	 Use the Button control to draw a button object below the date/time picker object.

	 6.	 Set the following properties for the objects on the form:

Object Property Setting

Label1 Text “Enter employee first name, last name, and date of birth.”

TextBox1 Text “First name”

TextBox2 Text “Last name”

Button1 Text “Display record”

Form1 Text “Person Class”

402	 Part III  Designing the User Interface

Your form looks something like this:

This is the basic user interface for a form that defines a new employee record for
a business application. The form isn’t connected to a database, however, so only
one record can be stored at a time. You’ll learn to make database connections in
Chapter 18, “Getting Started with ADO.NET.”

Now you’ll add a class to the project to store the information in the record.

	 7.	 Click the Add Class command on the Project menu.

Visual Studio displays the Add New Item dialog box, with the Class template selected,
as shown here:

	 Chapter 16  Inheriting Forms and Creating Base Classes	 403

The Add New Item dialog box gives you the opportunity to name your class. Because
you can store more than one class in a new class module, you might want to specify
a name that is somewhat general.

	 8.	 Type Person.vb in the Name box, and then click Add.

Visual Studio opens a blank class module in the Code Editor and lists a file named
Person.vb in Solution Explorer for your project, as shown here:

Now you’ll type the definition of your class in the class module and learn a few new Visual
Basic keywords. You’ll follow four steps: declare class variables, create properties, create
a method, and finally, create an object based on the new class.

Step 1: Declare class variables

n	 Below the Public Class Person program statement, type the following variable
declarations:

Private Name1 As String

Private Name2 As String

Here, you declare two variables that will be used exclusively within the class module to
store the values for two string property settings. I’ve declared the variables by using the
Private keyword because, by convention, Visual Basic programmers keep their internal

404	 Part III  Designing the User Interface

class variables private—in other words, not available for inspection outside the class
module itself. These variables are sometimes call fields or backing fields because they
provide storage for properties.

Step 2: Create properties

	 1.	 Below the variable declarations, type the following program statement, and then press
ENTER:

Public Property FirstName() As String

This statement creates a property named FirstName, which is of type String, in your
class. This is all you need to do to implement a simple property. (A backing field is not
required.)

In Visual Studio 2008, what happens next is that Visual Basic creates a code template
for the remaining elements in the property declaration. These elements include a Get
block, which determines what other programmers see when they check the FirstName
property; a Set block, which determines what happens when the FirstName property is
set or changed; and an End Property statement, which marks the end of the property
procedure. However, in Visual Studio 2010, these elements are created automatically
when you use the Property statement. The process happens internally (you don’t
see it in the Code Editor), and in the documentation, it is referred to as the new
auto-implemented properties feature. This enables you to quickly specify a property
of a class without having to write Get and Set code blocks on your own.

Auto-implemented properties are very handy for those of us who create or
manipulate classes and properties often. However, there are situations in which you
cannot use auto-implemented properties but must instead use standard, or expanded,
property syntax (that is, the syntax that we used routinely in Visual Basic 2008). These
situations include the following scenarios:

o	 You need to add code to the Get or Set procedure of a property (for example,
when you are validating values in a Set code block).

o	 You want to make a Set procedure Private or a Get procedure Public.

o	 You want to create properties that are WriteOnly or ReadOnly.

o	 You want to add special parameterized properties.

o	 You want to place an attribute or Extensible Markup Language (XML) comment in
a hidden, private field.

Although these uses may seem advanced or esoteric at this point, they are important
enough that I want to teach you what the standard syntax for Get and Set code blocks
is. You may not need to use it at first, but as you create more advanced classes and
properties of your own, you may need to use it. (In addition, the Visual Studio Help

	 Chapter 16  Inheriting Forms and Creating Base Classes	 405

documentation often shows these Get and Set code blocks when discussing classes, so
you should learn the standard syntax now.)

	 2.	 Type in the following FirstName property procedure structure that uses the Get and Set
keywords. You’ll notice that much of the structure is added automatically after you type
the first Get statement:

 Get

 Return Name1

 End Get

 Set(ByVal value As String)

 Name1 = value

 End Set

End Property

In this structure, the Return keyword specifies that the Name1 string variable will be
returned when the FirstName property is referenced. The Set block assigns a string
value to the Name1 variable when the property is set. Notice here especially the value
variable, which is used in property procedures to stand for the value that’s assigned
to the class when a property is set. Although this syntax might look strange, trust
me for now—this is the formal way to create property settings in controls, and more
sophisticated properties would even add additional program logic here to test values
or make computations.

	 3.	 Below the End Property statement, type a second property procedure for the LastName
property in your class. Again, after you type the Get keyword, much of the structure for
the property procedure will be added automatically:

Public Property LastName() As String

 Get

 Return Name2

 End Get

 Set(ByVal value As String)

 Name2 = value

 End Set

End Property

This property procedure is similar to the first one except that it uses the second string
variable (Name2) that you declared at the top of the class.

You’re finished defining the two properties in your class. Now let’s move on to a
method named Age that will determine the new employee’s current age based on his
or her birth date.

Step 3: Create a method

n	 Below the LastName property procedure, type the following function definition:

Public Function Age(ByVal Birthday As Date) As Integer

 Return Int(Now.Subtract(Birthday).Days / 365.25)

End Function

406	 Part III  Designing the User Interface

To create a method in the class that performs a specific action, you add a function
or a Sub procedure to your class. Although many methods don’t require arguments
to accomplish their work, the Age method I’m defining requires a Birthday argument
of type Date to complete its calculation. The method uses the Subtract method to
subtract the new employee’s birth date from the current system time, and it returns
the value expressed in days divided by 365.25—the approximate length in days of
a single year. The Int function returns the integer portion of a number, and this value
is returned to the calling procedure via the Return statement—just like a typical
function. (For more information about function definitions, see Chapter 10, “Creating
Modules and Procedures.”)

Your class definition is finished, and in the Code Editor, the Person class now looks like
the following:

Now you’ll return to Form1 and use the new class in an event procedure.

Tip  Although you didn’t do it for this example, it’s usually wise to add some type-checking
logic to class modules in actual projects so that properties or methods that are improperly
used don’t trigger run-time errors that halt the program.

	 Chapter 16  Inheriting Forms and Creating Base Classes	 407

Step 4: Create an object based on the new class

	 1.	 Click the Form1.vb icon in Solution Explorer, and then click View Designer.

The Form1 user interface appears.

	 2.	 Double-click the Display Record button to open the Button1_Click event procedure in
the Code Editor.

	 3.	 Type the following program statements:

Dim Employee As New Person

Dim DOB As Date

Employee.FirstName = TextBox1.Text

Employee.LastName = TextBox2.Text

DOB = DateTimePicker1.Value.Date

MsgBox(Employee.FirstName & " " & Employee.LastName _

 & " is " & Employee.Age(DOB) & " years old.")

This routine stores the values entered by the user in an object named Employee that’s
declared as type Person. The New keyword indicates that you want to immediately
create a new instance of the Employee object. You’ve declared variables often in this
book—now you get to declare one based on a class you created yourself! The routine
then declares a Date variable named DOB to store the date entered by the user, and the
FirstName and LastName properties of the Employee object are set to the first and last
names returned by the two text box objects on the form. The value returned by the
date/time picker object is stored in the DOB variable, and the final program statement
displays a message box containing the FirstName and LastName properties plus the age
of the new employee as determined by the Age method, which returns an integer value
when the DOB variable is passed to it. After you define a class in a class module, it’s
a simple matter to use it in an event procedure, as this routine demonstrates.

	 4.	 Click the Save All button to save your changes, and then specify the
C:\Vb10sbs\Chap16 folder as the location.

	 5.	 Click the Start Debugging button to run the program.

The user interface appears in the IDE, ready for your input.

	 6.	 Type a first name in the First Name text box and a last name in the Last Name text box.

	 7.	 Click the date/time picker object’s arrow, and then scroll in the list box to a sample
birth date (the date I’m selecting is July 12, 1970).

Tip  You can scroll faster into the past by clicking the Year field when the date/time picker
dialog box is open. Scroll arrows appear, and you can move one year at a time backward
or forward. You can also move quickly to the month you want by clicking the Month field
and then clicking the month name.

408	 Part III  Designing the User Interface

Your form looks similar to this:

	 8.	 Click the Display Record button.

Your program stores the first name and last name values in property settings and uses
the Age method to calculate the new employee’s current age. A message box displays the
result, as shown here:

	 9.	 Click OK to close the message box, and then experiment with a few different date
values, clicking Display Record each time you change the Birth Date field.

	 10.	 When you’re finished experimenting with your new class, click the Close button on
the form.

The development environment returns.

One Step Further: Inheriting a Base Class
As promised at the beginning of this chapter, I have one more trick to show you regarding
user-defined classes and inheritance. Just as forms can inherit form classes, they can also
inherit classes that you’ve defined by using the Add Class command and a class module.
The mechanism for inheriting a base (parent) class is to use the Inherits statement to
include the previously defined class in a new class. You can then add additional properties

	 Chapter 16  Inheriting Forms and Creating Base Classes	 409

or methods to the derived (child) class to distinguish it from the base class. I realize that
this may be sounding a bit abstract, so let’s try an example.

In the following exercise, you’ll modify the My Person Class project so that it stores information
about new teachers and the grades they teach. First, you’ll add a second user-defined class,
named Teacher, to the Person class module. This new class will inherit the FirstName property,
the LastName property, and the Age method from the Person class and will add an additional
property named Grade to store the grade in which the new teacher teaches.

Use the Inherits keyword

	 1.	 Click the Person.vb class in Solution Explorer, and then click the View Code button.

	 2.	 Scroll to the bottom of the Code Editor so that the insertion point is below the End
Class statement.

As I mentioned earlier, you can include more than one class in a class module, so long
as each class is delimited by Public Class and End Class statements. You’ll create a class
named Teacher in this class module, and you’ll use the Inherits keyword to incorporate
the method and properties you defined in the Person class.

	 3.	 Type the following class definition in the Code Editor. As before, after you type the Get
keyword and press ENTER, some of the Property structure will be provided for you:

Public Class Teacher

 Inherits Person

 Private Level As Short

 Public Property Grade() As Short

 Get

 Return Level

 End Get

 Set(ByVal value As Short)

 Level = value

 End Set

 End Property

End Class

The Inherits statement links the Person class to this new class, incorporating all of its
variables, properties, and methods. If the Person class were located in a separate module
or project, you could identify its location by using a namespace designation, just as you
identify classes when you use the Imports statement at the top of a program that uses
classes in the .NET Framework class libraries. Basically, I’ve defined the Teacher class as
a special type of Person class—in addition to the FirstName and LastName properties, the
Teacher class has a Grade property that records the level at which the teacher teaches.

Now you’ll use the new class in the Button1_Click event procedure.

	 4.	 Display the Button1_Click event procedure in Form1.

Rather than create a new variable to hold the Teacher class, I’ll just use the Employee
variable as is—the only difference will be that I can now set a Grade property for the
new employee.

410	 Part III  Designing the User Interface

	 5.	 Modify the Button1_Click event procedure as follows. (The shaded lines are the ones
that you need to change.)

Dim Employee As New Teacher

Dim DOB As Date

Employee.FirstName = TextBox1.Text

Employee.LastName = TextBox2.Text

DOB = DateTimePicker1.Value.Date

Employee.Grade = InputBox("What grade do you teach?")

MsgBox(Employee.FirstName & " " & Employee.LastName _

 & " teaches grade " & Employee.Grade)

In this example, I’ve removed the current age calculation—the Age method isn’t
used—but I did this only to keep information to a minimum in the message box.
When you define properties and methods in a class, you aren’t required to use them
in the program code.

Now you’ll run the program.

Tip  The revised Person Class program is located in the C:\Vb10sbs\Chap16\Person Class
folder.

	 6.	 Click the Start Debugging button to run the program.

The new employee form opens on the screen:

	 7.	 Type your first name in the First Name text box and your last name in the Last Name
text box.

	 8.	 Click the date/time picker object, and then scroll to your birth date.

	 Chapter 16  Inheriting Forms and Creating Base Classes	 411

	 9.	 Click Display Record.

Your program stores the first name and last name values in property settings and then
displays the following input box, which prompts the new teacher for the grade he or
she teaches:

	 10.	 Type 3, and then click OK to close the input box.

The application stores the number 3 in the new Grade property and uses the
FirstName, LastName, and Grade properties to display the new employee information
in a confirming message box. You see this message:

	 11.	 Experiment with a few more values if you like, and then click the Close button on the form.

The program stops, and the development environment returns. You’re finished working
with classes and inheritance in this chapter. Nice job!

Further Experiments with OOP
If you’ve enjoyed this foray into object-oriented coding techniques, more fun awaits
you in Visual Basic 2010, a truly OOP language. In particular, you might want to add
events to your class definitions, create default property values, declare and use named
and anonymous types, and experiment with a polymorphic feature called method
overloading. These and other OOP features can be explored by using the Visual Studio
Help documentation or by perusing an advanced book on Visual Basic programming.
(See the Appendix, “Where to Go for More Information,” for a reading list.) You’ll also
find that a thorough knowledge of classes and how they are created will serve you
well as you move more deeply into the .NET Framework and advanced topics like
database programming. For the relationship between OOP and databases in Visual
Basic, see Part IV, “Database and Web Programming.”

412	 Part III  Designing the User Interface

Chapter 16 Quick Reference

To Do This

Inherit an existing
form’s interface
and functionality

Click the Add New Item command on the Project menu, click the Inherited
Form template, specify a name for the inherited form, and then click Add.
Use the Inheritance Picker to select the form you want to inherit, and then
click OK.

Note that to be eligible for inheritance, base forms must be compiled as
.exe or .dll files. If you want to inherit a form that isn’t a component in the
current project, the form must be compiled as a .dll file.

Customize an
inherited form

Add Toolbox controls to the form, and set property settings. Note that
you won’t be able to set the properties of inherited objects on the form.
These objects are identified by small icons and are inactive.

Create your own
base classes

Click the Add Class command on the Project menu, specify the class name,
and then click Add. Define the class in a class module by using program code.

Hide declared
variables in a class

Use the Private keyword to hide class variables from other programmers
who examine your class. For example:

Private Name1 As String

Create a new
property in the class

Define a public property procedure in the class. For example:

Public Property FirstName() As String

 Get

 Return Name1

 End Get

 Set(ByVal value As String)

 Name1 = value

 End Set

End Property

Note that the first line shown in this example (containing the Property
statement) is all that you may need to enter if you are creating a new property
with few custom settings. In other words, Visual Studio 2010 automatically
recognizes the Property keyword when you enter it and uses the new
auto-implemented properties feature to create a basic property definition for
you. However, in this chapter, I have shown the complete Get and Set syntax
because it is useful in many real-world coding scenarios.

Create a new method
in the class

Define a Sub or Function procedure in the class. For example:

Public Function Age(ByVal Birthday As Date) As Integer

 Return Int(Now.Subtract(Birthday).Days / 365.25)

End Function

Declare an object
variable to use the
class

Use the Dim and New keywords, a variable name, and the user-defined class
in a program statement. For example:

Dim Employee As New Person

	 Chapter 16  Inheriting Forms and Creating Base Classes	 413

To Do This

Set properties for an
object variable

Use the regular syntax for setting object properties. For example:

Employee.FirstName = TextBox1.Text

Inherit a base class
in a new class

Create a new class, and use the Inherits keyword to incorporate the base
class’s class definitions. For example:

Public Class Teacher

 Inherits Person

 Private Level As Short

 Public Property Grade() As Short

 Get

 Return Level

 End Get

 Set(ByVal value As Short)

 Level = value

 End Set

 End Property

End Class

		 415

Chapter 17

Working with Printers
After completing this chapter, you will be able to:

n	 Print graphics from a Visual Basic program.

n	 Print text from a Visual Basic program.

n	 Print multipage documents.

n	 Create Print, Page Setup, and Print Preview dialog boxes in your programs.

In the following sections, you’ll complete your survey of user interface design and
components by learning how to add printer support to your Windows applications. Microsoft
Visual Basic 2010 supports printing with the PrintDocument class. The PrintDocument class
and its many methods, properties, and supporting classes handle sending text and graphics
to printers.

In this chapter, you’ll learn how to print graphics and text from Visual Basic programs,
manage multipage printing tasks, and add printing dialog boxes to your user interface. In my
opinion, this chapter is one of the most useful in the book, with lots of practical code that
you can immediately incorporate into real-world programming projects. Printing support
doesn’t come automatically in Visual Basic 2010, but the routines in this chapter will help
you print longer text documents and display helpful dialog boxes such as Page Setup, Print,
and Print Preview from within your programs. I’ll start the chapter with two very simple
printing routines to show you the basics, and then I’ll get considerably more sophisticated.

Using the PrintDocument Class
Most Windows applications allow users to print documents after they create them, and by
now you might be wondering just how printing works in Visual Basic programs. This is one
area where Visual Basic 2010 has lots of power and flexibility, but this impressive technical
sophistication comes at a little cost. Producing printed output from Visual Basic programs
isn’t a trivial process, and the technique you use depends on the type and amount of
printed output you want to generate. In all cases, however, the fundamental mechanism
that regulates printing in Visual Basic 2010 is the PrintDocument class, which you can create
in a project in two ways:

n	 By adding the PrintDocument control to a form

n	 By defining it programmatically with a few lines of Visual Basic code

Table of Contents

Working with Printers . 415
Using the PrintDocument Class . 415

Printing Text from a Text Box Object . 420

Printing Multipage Text Files . . 424

One Step Further: Adding Print Preview and Page Setup Dialog Boxes 430

Chapter 17 Quick Reference . 437

416	 Part III  Designing the User Interface

The PrintDocument class is located in the System.Drawing.Printing namespace. The
System.Drawing.Printing namespace provides several useful classes for printing text and
graphics, including the PrinterSettings class, which contains the default print settings for
a printer; the PageSettings class, which contains print settings for a particular page; and the
PrintPageEventArgs class, which contains event information about the page that’s about to
be printed. The System.Drawing.Printing namespace is automatically incorporated into your
project. To make it easier to reference the printing classes and other important values in this
namespace, add the following Imports statement to the top of your form:

Imports System.Drawing.Printing

To learn how to use the PrintDocument class in a program, complete the following exercise,
which teaches you how to add a PrintDocument control to your project and use it to print
a graphics file on your system.

Use the PrintDocument control

	 1.	 Start Microsoft Visual Studio, and then create a new Visual Basic Windows Forms
Application project named My Print Graphics.

A blank form opens in the Visual Studio Integrated Development Environment (IDE).

	 2.	 Use the Label control to draw a label object near the top of the form.

	 3.	 Use the TextBox control to draw a text box object below the label object.

The text box object will be used to type the name of the artwork file that you want to
open. A single-line text box will be sufficient.

	 4.	 Use the Button control to draw a button object below the text box.

This button object will print the graphics file. Now you’ll add a PrintDocument control.

	 5.	 Scroll down until you see the Printing tab of the Toolbox, and then double-click the
PrintDocument control.

Like the Timer control, the PrintDocument control is invisible at run time, so it’s placed
in the component tray beneath the form when you create it. Your project now has
access to the PrintDocument class and its useful printing functionality.

	 6.	 Set the following properties for the objects on your form:

Object Property Setting

Label1 Text “Type the name of a graphic file to print.”

TextBox1 Text “C:\Vb10sbs\Chap15\Sun.ico”

Button1 Text “Print Graphics”

Form1 Text “Print Graphics”

	 Chapter 17  Working with Printers	 417

Your form looks similar to this:

Now add the program code necessary to print a graphic file (bitmap, icon, metafile,
JPEG file, and so on).

	 7.	 Double-click the Print Graphics button.

The Button1_Click event procedure appears in the Code Editor.

	 8.	 Move the insertion point to the top of the form’s code, and then type the following
program statement:

Imports System.Drawing.Printing

This Imports statement declares the System.Drawing.Printing namespace, which makes
it easier to reference the printing classes.

	 9.	 Now move the insertion point down to the Button1_Click event procedure, and enter
the following program code:

' Print using an error handler to catch problems

Try

 AddHandler PrintDocument1.PrintPage, AddressOf Me.PrintGraphic

 PrintDocument1.Print() 'print graphic

Catch ex As Exception 'catch printing exception

 MessageBox.Show("Sorry--there is a problem printing", ex.ToString())

End Try

Note  After you enter this code, you’ll see a jagged line under Me.PrintGraphic indicating
an error. Don’t worry, you’ll be adding the PrintGraphic procedure in the next step.

This code uses the AddHandler statement, which specifies that the PrintGraphic event
procedure (also called an event handler) should be called when the PrintPage event
of the PrintDocument1 object fires. An event procedure is a mechanism that handles

418	 Part III  Designing the User Interface

events that represent crucial actions in the life cycle of an object. You have been
working with event procedures several times already. For example, you just created the
Click event procedure for the Button1 object. The AddHandler statement is a way to
manually “wire up” an event procedure.

In this case, the event procedure being specified is related to printing services, and
the request comes with specific information about the page to be printed, the current
printer settings, and other attributes of the PrintDocument class. Technically, the
AddressOf operator is used to identify the PrintGraphic event procedure by determining
its internal address and storing it. The AddressOf operator implicitly creates an object
known as a delegate that forwards calls to the appropriate event procedure when an
event occurs.

The third line of the code you just entered uses the Print method of the
PrintDocument1 object to send a print request to the PrintGraphic event procedure.
This print request is located inside a Try code block to catch any printing problems that
might occur during the printing activity. I introduced the Try . . . Catch error handler in
Chapter 9, “Trapping Errors by Using Structured Error Handling.” Here the ex variable is
being declared of type Exception to get a detailed message about any errors that occur.

	 10.	 Scroll above the Button1_Click event procedure in the Code Editor to the general
declaration space below the Public Class Form1 statement. Then type the following
PrintGraphic event procedure:

'Sub for printing graphic

Private Sub PrintGraphic(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)

 ' Create the graphic using DrawImage

 ev.Graphics.DrawImage(Image.FromFile(TextBox1.Text), _

 ev.Graphics.VisibleClipBounds)

 ' Specify that this is the last page to print

 ev.HasMorePages = False

End Sub

This routine handles the printing event generated by the PrintDocument1.Print method.
I’ve declared the Sub procedure within the form’s code, but you can also declare the
Sub as a general-purpose procedure in a module. Note the ev variable in the argument
list for the PrintGraphic procedure. This variable is the crucial carrier of information
about the current print page, and it’s declared of type PrintPageEventArgs, a class in the
System.Drawing.Printing namespace.

To actually print the graphic, the procedure uses the Graphics.DrawImage method
associated with the current print page to load a graphics file by using the file name
stored in the Text property of the TextBox1 object. (By default, I set this property to
C:\Vb10sbs\Chap15\Sun.ico—the same Sun icon used in Chapter 15, “Adding Graphics
and Animation Effects”—but you can change this value at run time and print any
artwork files that you like.) Finally, I set the ev.HasMorePages property to False so that
Visual Basic understands that the print job doesn’t have multiple pages.

	 11.	 Click the Save All button on the Standard toolbar to save your changes, and then
specify the C:\Vb10sbs\Chap17 folder as the location.

	 Chapter 17  Working with Printers	 419

Now you’re ready to run the program. Before you do so, you might want to locate a few
graphics files on your system that you can print. (Just jot down the paths for now and type
them in when you test the project.)

Run the Print Graphics program

Tip  The complete Print Graphics program is located in the C:\Vb10sbs\Chap17\Print
Graphics folder.

	 1.	 Click the Start Debugging button on the Standard toolbar.

Your program runs in the IDE. You see this form:

	 2.	 Turn on your printer, and then verify that it is online and has paper.

	 3.	 If you installed your sample files in the default C:\Vb10sbs folder, click the Print
Graphics button now to print the Sun.ico icon graphic.

If you didn’t use the default sample file location, or if you want to print a different
artwork file, modify the text box path accordingly, and then click the Print Graphics
button.

The DrawImage method expands the graphic to the maximum size your printer can
produce on one page and then sends the graphic to the printer. (This “expansion
feature” fills up the page and gives you a closer look at the image.) Admittedly, this
might not be that interesting for you, but we’ll get more sophisticated in a moment.
(If you want to modify the location or size of your output, search the Visual Studio
Help documentation for the “Graphics.DrawImage Method” topic, study the different
argument variations available, and then modify your program code.)

420	 Part III  Designing the User Interface

If you look closely, you see the following dialog box appear when Visual Basic sends
your print job to the printer:

This status box is also a product of the PrintDocument class, and it provides users
with a professional-looking print interface, including the page number for each
printed page.

	 4.	 Type additional paths if you like, and then click the Print Graphics button for more
printouts.

	 5.	 When you’re finished experimenting with the program, click the Close button on the
form.

The program stops. Not bad for your first attempt at printing from a Visual Basic program!

Printing Text from a Text Box Object
You’ve had a quick introduction to the PrintDocument control and printing graphics. Now
try using a similar technique to print the contents of a text box on a Visual Basic form. In the
following exercise, you’ll build a simple project that prints text by using the PrintDocument
class, but this time you’ll define the class by using program code without adding the
PrintDocument control to your form. In addition, you’ll use the Graphics.DrawString method
to send the entire contents of a text box object to the default printer.

Note  The following program is designed to print one page or less of text. To print multiple
pages, you need to add additional program code, which will be explored later in the chapter.
My goal is to introduce one new printing feature at a time.

Use the Graphics.DrawString method to print text

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Print Text.

A blank form opens.

	 2.	 Use the Label control to draw a label object near the top of the form.

This label will display a line of instructions for the user.

	 Chapter 17  Working with Printers	 421

	 3.	 Use the TextBox control to draw a text box object below the label object.

The text box object will contain the text you want to print.

	 4.	 Set the Multiline property of the text box object to True, and then expand the text box
so that it’s large enough to enter several lines of text.

	 5.	 Use the Button control to draw a button object below the text box.

This button object will print the text file.

	 6.	 Set the following properties for the objects on your form:

Object Property Setting

Label1 Text “Type some text in this text box object, then click Print Text.”

TextBox1 ScrollBars Vertical

Button1 Text “Print Text”

Form1 Text “Print Text”

Your form looks similar to this:

Now add the program code necessary to print the contents of the text box.

	 7.	 Double-click the Print Text button.

The Button1_Click event procedure appears in the Code Editor.

	 8.	 Scroll to the very top of the form’s code, and then type the following Imports
declaration:

Imports System.Drawing.Printing

This makes it easier to reference the classes in the System.Drawing.Printing namespace,
which includes the PrintDocument class.

422	 Part III  Designing the User Interface

	 9.	 Now scroll back down to the Button1_Click event procedure, and then enter the
following program code:

' Print using an error handler to catch problems

Try

 ' Declare PrintDoc variable of type PrintDocument

 Dim PrintDoc As New PrintDocument

 AddHandler PrintDoc.PrintPage, AddressOf Me.PrintText

 PrintDoc.Print() 'print text

Catch ex As Exception 'catch printing exception

 MessageBox.Show("Sorry--there is a problem printing", ex.ToString())

End Try

The lines that are new or changed from the Print Graphics program are shaded. Rather
than add a PrintDocument control to your form, this time you simply created the
PrintDocument programmatically by using the Dim keyword and the PrintDocument
type, which is defined in the System.Drawing.Printing namespace. From this point on,
the PrintDoc variable represents the PrintDocument object, and it is used to declare the
error handler and to print the text document. Note that for clarity, I renamed the Sub
procedure that will handle the print event PrintText (rather than PrintGraphic).

	 10.	 Scroll above the Button1_Click event procedure in the Code Editor to the general
declaration area. Type the following PrintText event procedure:

'Sub for printing text

Private Sub PrintText(ByVal sender As Object, _

 ByVal ev As PrintPageEventArgs)

 'Use DrawString to create text in a Graphics object

 ev.Graphics.DrawString(TextBox1.Text, New Font("Arial", _

 11, FontStyle.Regular), Brushes.Black, 120, 120)

 ' Specify that this is the last page to print

 ev.HasMorePages = False

End Sub

This routine handles the printing event generated by the PrintDoc.Print method. The
changes from the PrintGraphic procedure in the previous exercises are also shaded. As
you can see, when you print text, you need to use a new method.

Rather than use Graphics.DrawImage, which renders a graphics image, you must
use Graphics.DrawString, which prints a text string. I’ve specified the text in the Text
property of the text box object to print some basic font formatting (Arial, 11 point,
regular style, black color), and (x, y) coordinates (120, 120) on the page to start
drawing. These specifications will give the printed output a default look that’s similar
to the text box on the screen. Like last time, I’ve also set the ev.HasMorePages
property to False to indicate that the print job doesn’t have multiple pages.

	 11.	 Click the Save All button on the toolbar to save your changes, and then specify
C:\Vb10sbs\Chap17 as the folder location.

	 Chapter 17  Working with Printers	 423

Now you’ll run the program to see how a text box object prints.

Run the Print Text program

Tip  The complete Print Text program is located in the C:\Vb10sbs\Chap17\Print Text folder.

	 1.	 Click the Start Debugging button on the toolbar.

Your program runs in the IDE.

	 2.	 Verify that your printer is on.

	 3.	 Type some sample text in the text box. If you type multiple lines, be sure to include
a carriage return at the end of each line.

Wrapping isn’t supported in this demonstration program—very long lines will
potentially extend past the right margin. (Again, we’ll solve this problem soon.) Your
form looks something like this:

	 4.	 Click the Print Text button.

The program displays a printing dialog box and prints the contents of your text box.

	 5.	 Modify the text box, and try additional printouts, if you like.

	 6.	 When you’re finished, click the Close button on the form to stop the program.

Now you know how to print both text and graphics from a program.

424	 Part III  Designing the User Interface

Printing Multipage Text Files
The printing techniques that you’ve just learned are useful for simple text documents, but
they have a few important limitations. First, the method I used doesn’t allow for long lines—
in other words, text that extends beyond the right margin. Unlike the text box object, the
PrintDocument object doesn’t automatically wrap lines when they reach the edge of the
paper. If you have files that don’t contain carriage returns at the end of lines, you’ll need to
write the code that handles these long lines.

The second limitation is that the Print Text program can’t print more than one page of text.
Indeed, it doesn’t even understand what a page of text is—the printing procedure simply
sends the text to the default printer. If the text block is too long to fit on a single page, the
additional text won’t be printed. To handle multipage printouts, you need to create a virtual
page of text called the PrintPage and then add text to it until the page is full. When the page
is full, it is sent to the printer, and this process continues until there is no more text to print.
At that point, the print job ends.

If fixing these two limitations sounds complicated, don’t despair yet—there are a few
handy mechanisms that help you create virtual text pages in Visual Basic and help you print
text files with long lines and several pages of text. The first mechanism is the PrintPage
event, which occurs when a page is printed. PrintPage receives an argument of the type
PrintPageEventArgs, which provides you with the dimensions and characteristics of the
current printer page. Another mechanism is the Graphics.MeasureString method. The
MeasureString method can be used to determine how many characters and lines can fit
in a rectangular area of the page. By using these mechanisms and others, it’s relatively
straightforward to construct procedures that process multipage print jobs.

Complete the following steps to build a program named Print File that opens text files
of any length and prints them. The Print File program also demonstrates how to use the
RichTextBox, PrintDialog, and OpenFileDialog controls. The RichTextBox control is a more
robust version of the TextBox control you just used to display text. The PrintDialog control
displays a standard Print dialog box so that you can specify various print settings. The
OpenFileDialog control lets you select a text file for printing. (You used OpenFileDialog
in Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes.”)

Manage print requests with RichTextBox, OpenFileDialog, and PrintDialog controls

	 1.	 Click the Close Project command on the File menu, and then create a new Windows
Forms Application project named My Print File.

A blank form opens.

	 2.	 Use the Button control in the Toolbox to draw two buttons in the upper-left corner of
the form.

This program has a simple user interface, but the printing techniques you’ll learn are
easily adaptable to much more complex solutions.

	 Chapter 17  Working with Printers	 425

	 3.	 Click the RichTextBox control in the Toolbox, and then draw a rich text box object that
covers the bottom half of the form.

	 4.	 Double-click the OpenFileDialog control on the Dialogs tab to add an open file dialog
object to the component tray below your form.

You’ll use the open file dialog object to browse for text files on your system.

	 5.	 Double-click the PrintDocument control on the Printing tab to add a print document
object to the component tray.

You’ll use the print document object to support printing in your application.

	 6.	 Double-click the PrintDialog control on the Printing tab to add a print dialog object to
the component tray.

You’ll use the print dialog object to open a Print dialog box in your program.

	 7.	 Now set the following properties for the objects on your form:

Object Property Setting

Button1 Name

Text

btnOpen

“Open”

Button2 Name

Enabled

Text

btnPrint

False

“Print”

Form1 Text “Print File”

Your form looks something like this:

Now add the program code necessary to open the text file and print it.

	 8.	 Double-click the Open button.

The btnOpen_Click event procedure appears in the Code Editor.

426	 Part III  Designing the User Interface

	 9.	 Scroll to the top of the form, and then enter the following code:

Imports System.IO 'for FileStream class

Imports System.Drawing.Printing

These statements make it easier to reference the FileStream class and the classes for
printing.

	 10.	 Move the cursor below the Public Class Form1 statement, and then enter the following
variable declarations:

Private PrintPageSettings As New PageSettings

Private StringToPrint As String

Private PrintFont As New Font("Arial", 10)

These statements define important information about the pages that will be printed.

	 11.	 Scroll to the btnOpen_Click event procedure, and then type the following program
code:

Dim FilePath As String

'Display Open dialog box and select text file

OpenFileDialog1.Filter = "Text files (*.txt)|*.txt"

OpenFileDialog1.ShowDialog()

'If Cancel button not selected, load FilePath variable

If OpenFileDialog1.FileName <> "" Then

 FilePath = OpenFileDialog1.FileName

 Try

 'Read text file and load into RichTextBox1

 Dim MyFileStream As New FileStream(FilePath, FileMode.Open)

 RichTextBox1.LoadFile(MyFileStream, _

 RichTextBoxStreamType.PlainText)

 MyFileStream.Close()

 'Initialize string to print

 StringToPrint = RichTextBox1.Text

 'Enable Print button

 btnPrint.Enabled = True

 Catch ex As Exception

 'display error messages if they appear

 MessageBox.Show(ex.Message)

 End Try

End If

When the user clicks the Open button, this event procedure displays an Open dialog
box using a filter that displays only text files. When the user selects a file, the file name
is assigned to a public string variable named FilePath, which is declared at the top of
the event procedure. The procedure then uses a Try . . . Catch error handler to load the
text file into the RichTextBox1 object. To facilitate the loading process, I’ve used the
FileStream class and the Open file mode, which places the complete contents of the
text file into the MyFileStream variable. Finally, the event procedure enables the Print
button (btnPrint) so that the user can print the file. In short, this routine opens the file
and enables the print button on the form but doesn’t do any printing itself.

Now you’ll add the necessary program code to display the Print dialog box and print the file
by using logic that monitors the dimensions of the current text page.

	 Chapter 17  Working with Printers	 427

Add code for the btnPrint and PrintDocument1 objects

	 1.	 Display the form again, and then double-click the Print button (btnPrint) to display its
event procedure in the Code Editor.

	 2.	 Type the following program code:

Try

 'Specify current page settings

 PrintDocument1.DefaultPageSettings = PrintPageSettings

 'Specify document for print dialog box and show

 StringToPrint = RichTextBox1.Text

 PrintDialog1.Document = PrintDocument1

 Dim result As DialogResult = PrintDialog1.ShowDialog()

 'If click OK, print document to printer

 If result = DialogResult.OK Then

 PrintDocument1.Print()

 End If

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

This event procedure sets the default print settings for the document and assigns the
contents of the RichTextBox1 object to the StringToPrint string variable (defined at the
top of the form) in case the user changes the text in the rich text box. It then opens
the Print dialog box and allows the user to adjust any print settings (printer, number of
copies, the print-to-file option, and so on). If the user clicks OK, the event procedure
sends this print job to the printer by issuing the following statement:

PrintDocument1.Print()

	 3.	 Display the form again, and then double-click the PrintDocument1 object in the
component tray.

Visual Studio adds the PrintPage event procedure for the PrintDocument1 object.

	 4.	 Type the following program code in the PrintDocument1_PrintPage event procedure:

Dim numChars As Integer

Dim numLines As Integer

Dim stringForPage As String

Dim strFormat As New StringFormat

'Based on page setup, define drawable rectangle on page

Dim rectDraw As New RectangleF(_

 e.MarginBounds.Left, e.MarginBounds.Top, _

 e.MarginBounds.Width, e.MarginBounds.Height)

'Define area to determine how much text can fit on a page

'Make height one line shorter to ensure text doesn't clip

Dim sizeMeasure As New SizeF(e.MarginBounds.Width, _

 e.MarginBounds.Height - PrintFont.GetHeight(e.Graphics))

'When drawing long strings, break between words

strFormat.Trimming = StringTrimming.Word

428	 Part III  Designing the User Interface

'Compute how many chars and lines can fit based on sizeMeasure

e.Graphics.MeasureString(StringToPrint, PrintFont, _

 sizeMeasure, strFormat, numChars, numLines)

'Compute string that will fit on a page

stringForPage = StringToPrint.Substring(0, numChars)

'Print string on current page

e.Graphics.DrawString(stringForPage, PrintFont, _

 Brushes.Black, rectDraw, strFormat)

'If there is more text, indicate there are more pages

If numChars < StringToPrint.Length Then

 'Subtract text from string that has been printed

 StringToPrint = StringToPrint.Substring(numChars)

 e.HasMorePages = True

Else

 e.HasMorePages = False

 'All text has been printed, so restore string

 StringToPrint = RichTextBox1.Text

End If

This event procedure handles the actual printing of the text document, and it does so
by carefully defining a printing area (or printing rectangle) based on the settings in the
Page Setup dialog box. Any text that fits within this area can be printed normally; text
that’s outside this area needs to be wrapped to the following lines, or pages, as you’d
expect to happen in a standard Windows application.

The printing area is defined by the rectDraw variable, which is based on the RectangleF
class. The strFormat variable and the Trimming method are used to trim strings that
extend beyond the edge of the right margin. The actual text strings are printed by
the DrawString method, which you’ve already used in this chapter. The HasMorePages
property is used to specify whether there are additional pages to be printed. If no
additional pages remain, the HasMorePage property is set to False, and the contents
of the StringToPrint variable are restored to the contents of the RichTextBox1 object.

	 5.	 Click the Save All button on the toolbar to save your changes, and then specify the
C:\Vb10sbs\Chap17 folder as the location.

That’s a lot of typing! But now you’re ready to run the program and see how printing text
files on multiple pages works.

Run the Print File program

Tip  The complete Print File program is located in the C:\Vb10sbs\Chap17\Print File folder.

	 1.	 Click the Start Debugging button on the toolbar.

Your program runs in the IDE. Notice that the Print button is currently disabled because
you haven’t selected a file yet.

	 2.	 Click the Open button.

The program displays an Open dialog box.

	 Chapter 17  Working with Printers	 429

	 3.	 Browse to the C:\Vb10sbs\Chap17 folder, and then click the Longfile.txt file.

In Windows 7, your Open dialog box looks like this:

	 4.	 Click Open to select the file.

Your program loads the text file into the rich text box object on the form and then
enables the Print button. This file is long and has a few lines that wrap so that you can
test the wide margin and multipage printing options. Your form looks like this:

430	 Part III  Designing the User Interface

	 5.	 Verify that your printer is on, and then click the Print button.

Visual Basic displays the Print dialog box, customized with the name and settings for
your printer, as shown in the following screen shot:

Many of the options in the Print dialog box are active, and you can experiment with
them as you would a regular Windows application.

	 6.	 Click Print to print the document.

Your program submits the four-page print job to the Windows print queue. After a
moment (and if your printer is ready), the printer begins printing the document. As in
previous exercises, a dialog box automatically opens to show you the printing status
and gives you an indication of how many pages your printed document will be.

	 7.	 Click the Close button on the form to stop the program.

You’ve just created a set of very versatile printing routines that can be added to any Visual
Basic application that needs to print multiple pages of text!

One Step Further: Adding Print Preview
and Page Setup Dialog Boxes

The Print File application is ready to handle several printing tasks, but its interface isn’t
as visually compelling as that of a commercial Windows application. You can make your
program more flexible and interesting by adding a few extra dialog box options to
supplement the Print dialog box that you experimented with in the previous exercise.

	 Chapter 17  Working with Printers	 431

Two additional printing controls are available on the Printing tab of the Toolbox, and they
work much like the familiar PrintDialog and OpenFileDialog controls that you’ve used in this
book:

n	 The PrintPreviewDialog control displays a custom Print Preview dialog box.

n	 The PageSetupDialog control displays a custom Page Setup dialog box.

As with other dialog boxes, you can add these printing controls to your form by using the
Toolbox, or you can create them programmatically.

In the following exercise, you’ll add Print Preview and Page Setup dialog boxes to the Print
File program you’ve been working with. In the completed practice files, I’ve named this
project Print Dialogs so that you can distinguish the code of the two projects, but you can
add the dialog box features directly to the Print File project if you want.

Add PrintPreviewDialog and PageSetupDialog controls

	 1.	 If you didn’t complete the previous exercise, open the Print File project from the
C:\Vb10sbs\Chap17\Print File folder.

The Print File project is the starting point for this project.

	 2.	 Display the form, and then use the Button control to add two additional buttons to the
top of the form.

	 3.	 Double-click the PrintPreviewDialog control on the Printing tab of the Toolbox.

A print preview dialog object is added to the component tray.

	 4.	 Double-click the PageSetupDialog control on the Printing tab of the Toolbox.

A page setup dialog object is added to the component tray. If the objects in the
component tray obscure one another, you can drag them to a better (more visible)
location, or you can right-click the component tray and select Line Up Icons.

	 5.	 Set the following properties for the button objects on the form:

Object Property Setting

Button1 Name

Enabled

Text

btnSetup

False

“Page Setup”

Button2 Name

Enabled

Text

btnPreview

False

“Print Preview”

432	 Part III  Designing the User Interface

Your form looks like this:

	 6.	 Double-click the Page Setup button (btnSetup) to display the btnSetup_Click event
procedure in the Code Editor.

	 7.	 Type the following program code:

Try

 'Load page settings and display page setup dialog box

 PageSetupDialog1.PageSettings = PrintPageSettings

 PageSetupDialog1.ShowDialog()

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

The code for creating a Page Setup dialog box in this program is quite simple because
the PrintPageSettings variable has already been defined at the top of the form. This
variable holds the current page definition information, and when it’s assigned to
the PageSettings property of the PageSetupDialog1 object, the ShowDialog method
automatically loads a dialog box that allows the user to modify what the program has
selected as the default page orientation, margins, and so on. The Try . . . Catch error
handler simply handles any errors that might occur when the ShowDialog method is used.

	 8.	 Display the form again, and then double-click the Print Preview button (btnPreview)
to display the btnPreview_Click event procedure.

	 Chapter 17  Working with Printers	 433

	 9.	 Type the following program code:

Try

 'Specify current page settings

 PrintDocument1.DefaultPageSettings = PrintPageSettings

 'Specify document for print preview dialog box and show

 StringToPrint = RichTextBox1.Text

 PrintPreviewDialog1.Document = PrintDocument1

 PrintPreviewDialog1.ShowDialog()

Catch ex As Exception

 'Display error message

 MessageBox.Show(ex.Message)

End Try

In a similar way, the btnPreview_Click event procedure assigns the PrintPageSettings
variable to the DefaultPageSettings property of the PrintDocument1 object, and then
it copies the text in the rich text box object to the StringToPrint variable and opens the
Print Preview dialog box. Print Preview automatically uses the page settings data to
display a visual representation of the document as it will be printed—you don’t need to
display this information manually.

Now you’ll make a slight modification to the program code in the btnOpen_Click event
procedure.

	 10.	 Scroll up to the btnOpen_Click event procedure in the Code Editor.

This is the procedure that displays the Open dialog box, opens a text file, and enables
the printing buttons. Because you just added the Page Setup and Print Preview
buttons, you have to add program code to enable those two printing buttons as well.

	 11.	 Scroll to the bottom of the event procedure, just before the final Catch code block,
and then locate the following program statement:

btnPrint.Enabled = True

	 12.	 Below that statement, add the following lines of code:

btnSetup.Enabled = True

btnPreview.Enabled = True

Now your program will enable the print buttons when there’s a document available
to print.

	 13.	 Click the Save All button on the toolbar to save your changes.

Test the Page Setup and Print Preview features

Tip  The complete Print Dialogs program is located in the C:\Vb10sbs\Chap17\Print
Dialogs folder.

434	 Part III  Designing the User Interface

	 1.	 Click the Start Debugging button on the toolbar.

The program opens, with only the first button object enabled.

	 2.	 Click the Open button, and then open the Longfile.txt file in the C:\Vb10sbs\Chap17
folder.

The remaining three button objects are now enabled, as shown here:

	 3.	 Click the Page Setup button.

Your program displays the Page Setup dialog box, as shown here:

	 Chapter 17  Working with Printers	 435

Page Setup provides numerous useful options, including the ability to change the
paper size and source, the orientation of the printing (Portrait or Landscape), and the
page margins (Left, Right, Top, and Bottom).

	 4.	 Change the Left margin to 2, and then click OK.

The left margin will now be 2 inches.

	 5.	 Click the Print Preview button.

Your program displays the Print Preview dialog box, as shown in the following
screen shot:

If you’ve used the Print Preview command in Microsoft Word or Microsoft Excel,
you will recognize several of the buttons and preview features in this Print Preview
dialog box. For example, the helpful toolbar contains (from left to right) the Print
and Zoom buttons; the One Page, Two Pages, Three Pages, Four Pages, and Six
Pages buttons (to adjust how many pages are visible at one time); the Close button;
and the Page Select control. No program code is required to make these helpful
features operate.

	 6.	 Click the Four Pages button to display your document four pages at a time.

	 7.	 Click the Maximize button on the Print Preview title bar to make the window full size.

436	 Part III  Designing the User Interface

	 8.	 Click the Zoom arrow, and then click 150%.

Your screen looks like this:

	 9.	 Click the Zoom arrow and return the view to Auto.

	 10.	 Click the Three Pages button, and then click the Up arrow in the Page Select box to
view pages 2 through 4.

As you can see, this Print Preview window is quite impressive—and you incorporated it
into your program with just a few lines of code!

	 11.	 If you want to test printing the entire document again, click the Print button.

	 12.	 When you’re finished experimenting, click the Close button to close the Print Preview
dialog box, and then click the Close button to close the program.

You’re done working with printers for now.

	 Chapter 17  Working with Printers	 437

Chapter 17 Quick Reference

To Do This

Make it easier to
reference the printing
classes in your projects

Add the following Imports statement to the top of your form:

Imports System.Drawing.Printing

Create a printing event
procedure

Double-click the PrintDocument1 object in the component tray
or
Use the AddHandler statement and the AddressOf operator. For example:

AddHandler PrintDocument1.PrintPage, _

 AddressOf Me.PrintGraphic

Create a PrintDocument
object in your project

Double-click the PrintDocument control on the Printing tab of the Toolbox.
or
Include the following variable declaration in your program code:

Dim PrintDoc As New PrintDocument

Print graphics from
a printing event
procedure

Use the Graphics.DrawImage method. For example:

ev.Graphics.DrawImage(Image.FromFile _

 (TextBox1.Text), ev.Graphics.VisibleClipBounds)

Print text from
a printing event
procedure

Use the Graphics.DrawString method in an event procedure. For example:

ev.Graphics.DrawString(TextBox1.Text, _

 New Font("Arial", 11, FontStyle.Regular), _

 Brushes.Black, 120, 120)

Call a printing event
procedure

Use the Print method of an object of type PrintDocument. For example:

PrintDoc.Print()

Print multipage text
documents

Write a handler for the PrintPage event, which receives an argument of
the type PrintPageEventArgs. Compute the rectangular area on the page
for the text, use the MeasureString method to determine how much text
will fit on the current page, and use the DrawString method to print the
text on the page. If additional pages are needed, set the HasMorePages
property to True. When all text has been printed, set HasMorePages
to False.

Open a text file by
using the FileStream
class, and then load
it into a RichTextBox
object

Create a variable of type FileStream, specifying the path and file mode,
load the stream into a RichTextBox, and then close the stream. For
example:

Imports System.IO 'at the top of the form

...

Dim MyFileStream As New FileStream(_

 FilePath, FileMode.Open)

RichTextBox1.LoadFile(MyFileStream, _

 RichTextBoxStreamType.PlainText)

MyFileStream.Close()

Display printing dialog
boxes in your programs

Use the PrintDialog, PrintPreviewDialog, and PageSetupDialog controls
on the Printing tab of the Toolbox.

		 439

Part IV

Database and Web
Programming

In this part:

Chapter 18: Getting Started with ADO.NET . . 441

Chapter 19: Data Presentation Using the DataGridView Control 467

Chapter 20: Creating Web Sites and Web Pages by Using Visual
  Web Developer and ASP.NET . 491

In Part IV, you’ll learn how to work with information stored in databases and Web sites. First,
you’ll learn about Microsoft ADO.NET, an important paradigm for working with database
information, and you’ll learn how to display, modify, and search for database content
by using a combination of program code and Windows Forms controls. Microsoft Visual
Studio 2010 was specifically designed to create applications that provide access to a rich
variety of data sources. These custom interfaces have traditionally been called database
front ends, meaning that through your Microsoft Visual Basic application, the user is given
a more useful window into database information than simply manipulating raw database
records. However, a more appropriate description in Visual Studio 2010 is that you can build
datacentric applications, meaning that through your application, the user is invited to explore
the full potential of any number of rich data source connections, whether to local or remote
locations, and that the application places this data at the center of the user‘s computing
experience.

Table of Contents

Database and Web

Programming

Getting Started with ADO.NET . 441
Database Programming with ADO.NET . 441

Database Terminology . 442

Working with an Access Database . 444

The Data Sources Window . 452

Using Bound Controls to Display
Database Information . . 458

One Step Further: SQL Statements, LINQ,
and Filtering Data . 461

Chapter 18 Quick Reference . 466

		 441

Chapter 18

Getting Started with ADO.NET
After completing this chapter, you will be able to:

n	 Use the Data Source Configuration Wizard to establish a connection to a database
and build a dataset.

n	 Use the Dataset Designer and the Data Sources window to examine dataset members
and create bound objects on forms.

n	 Create datacentric applications by using dataset and data navigator objects.

n	 Use bound TextBox and MaskedTextBox controls to display database information on
a Windows form.

n	 Write SQL statements to filter and sort dataset information by using the Visual Studio
Query Builder tool.

In this chapter, you’ll take your first steps with ADO.NET and with datacentric applications.
You’ll use the Data Source Configuration Wizard to establish a connection to a Microsoft
Access database on your system, you’ll create a dataset that represents a subset of useful fields
and records from a database table, and you’ll use the Dataset Designer and Data Sources
window to examine dataset members and create bound objects on your forms. You’ll also
learn how to use TextBox and MaskedTextBox controls to present database information to your
user, and you’ll learn to write Structured Query Language (SQL) SELECT statements that filter
datasets (and therefore what your user sees and uses) in interesting ways.

Database Programming with ADO.NET
A database is an organized collection of information stored in a file. You can create powerful
databases by using any of a variety of database products, including Access, Microsoft SQL
Server, and Oracle. You can also store and transmit database information by using Extensible
Markup Language (XML), a file format designed for exchanging structured data over the
Internet and in other settings.

Creating and maintaining databases has become an essential task for all major corporations,
government institutions, nonprofit agencies, and most small businesses. Rich data resources—
for example, customer addresses, manufacturing inventories, account balances, employee
records, donor lists, and order histories—have become the lifeblood of the business world.

442	 Part IV  Database and Web Programming

You can use Microsoft Visual Studio 2010 to create new databases, but Visual Studio 2010
is primarily designed for displaying, analyzing, and manipulating the information in existing
databases. ADO.NET, first introduced in Microsoft Visual Studio .NET 2002, is still the
standard data model for database programming in Visual Studio 2010. ADO.NET has been
improved over the years to work with a large number of data access scenarios, and it has
been carefully optimized for Internet use. For example, it uses the same basic method for
accessing local, client-server, and Internet-based data sources, and the internal data format
of ADO.NET is XML.

Fortunately, most of the database applications that programmers created using Microsoft
Visual Basic 2008 and ADO.NET still function very well, and the basic techniques for accessing
a database are mostly the same in Visual Basic 2010. However, there are two new database
technologies in Visual Studio 2010 that will be of considerable use to experienced database
programmers. These technologies are Language-Integrated Query (LINQ) and the ADO.NET
Entity Framework.

LINQ is included with Visual Studio 2010 and offers the capability to write object-oriented
database queries directly within Visual Basic code. The ADO.NET Entity Framework introduces
a new object model, powerful new features, and tools that will make database applications
even freer from hard-coded dependencies on a particular data engine or logical model.
As database technology and the Internet continue to advance, ADO.NET will continue to
evolve, and Visual Basic programmers should be well-positioned to benefit.

Database Terminology
An underlying theme in the preceding section is that database programmers are often faced
with new technologies to decode and master, a reorientation often initiated by the terms
new paradigm or new database model. Although continually learning new techniques can be
a source of frustration, the rapid pace of change can be explained partially by the relative
newness of distributed and multiple-tier database application programming in Windows,
as well as technical innovations, security needs, and Web programming challenges that are
beyond the control of the Visual Studio development team. In this chapter, however, we’ll
be starting at the beginning, and with database programming more than almost any other
subject, you really need to be exposed to topics step by step. Let’s start by understanding
some basic database terminology.

A field (also called a column) is a category of information stored in a database. Typical
fields in a faculty member database might contain ID numbers, the names of faculty
members, e-mail names, business phone numbers, and department names. All the
information about a particular faculty member is called a record (less commonly called
a row). When a database is created, information is entered in a table of fields and records.

	 Chapter 18  Getting Started with ADO.NET	 443

Records correspond to rows in the table, and fields correspond to columns, as shown in the
following faculty database (Faculty2010) in Access 2007:

A relational database can consist of multiple linked tables. In general, most of the databases
that you connect to from Visual Studio will probably be relational databases that contain
multiple tables of data organized around a particular theme.

In ADO.NET, various objects are used to retrieve and modify information in a database.
First, a connection is made, which specifies connection information about the database
and creates something for other controls and components to bind to. Next, the Data
Sources Configuration Wizard creates a dataset, which is a representation of one or more
database tables you plan to work with in your program. (You don’t manipulate the actual
data, but rather a copy of it.) The Data Sources Configuration Wizard also adds an XML
schema file to your project and associates a table adapter and data navigator with the
dataset to handle retrieving data from the database, posting changes, and moving from one
record to the next in the dataset. You can then bind information in the dataset to controls
on a form by using the Data Sources window or DataBindings property settings.

444	 Part IV  Database and Web Programming

Although in this chapter we will be experimenting with this process in a Windows Forms
application, in Visual Basic 2010, you can also bind dataset information to Windows
Presentation Foundation (WPF) client applications and Web applications (ASP.NET or
Silverlight). You’ll learn about databases and ASP.NET in Chapter 20, “Creating Web Sites
and Web Pages by Using Visual Web Developer and ASP.NET.”

Working with an Access Database
In the following sections, you’ll learn how to use the ADO.NET data access technology
in Visual Basic 2010. You’ll get started by using the Data Source Configuration Wizard to
establish a connection to a database named Faculty2010.accdb that I created in Access 2007
format. (It will also work in Access 2010, the newest version of Access.) Faculty2010.accdb
contains various tables of academic information that would be useful for an administrator or
teacher who is organizing faculty schedules or workloads, or important contact information
for the employees at a college or school. You’ll learn how to create a dataset based on a table
of information in the Faculty2010 database, and you’ll display this information on a Windows
form. When you’ve finished, you’ll be able to put these skills to work in your own database
projects.

Tip  Although the sample in this chapter uses an Access database, you don’t have to have Access
installed. However, a few Microsoft connectivity components may be required on your computer
to work with Access files, depending on how your system has been configured. If you try to
complete the exercises below and receive an error message indicating that Microsoft.Jet.OLEDB
is not registered on your computer or the Access database format is not recognized, you should
complete Step 1 below to install the necessary connectivity components before you work with
ADO.NET. Also, note that Faculty2010.accdb is in Access 2007 format. If you want to open the
file in Access and work with it, you’ll need to have Access 2007 or Access 2010 installed on your
system.

Establish a connection by using the Data Source Configuration Wizard

	 1.	 Make sure that you have Access 2007 or later installed. If you don’t have Access 2007
installed, download and install the 2007 System Driver: Data Connectivity Components
from Microsoft.com.

	 2.	 Start Visual Studio, and then create a new Visual Basic Windows Forms Application
project named My ADO Faculty Form.

A new project opens in the Integrated Development Environment (IDE).

	 Chapter 18  Getting Started with ADO.NET	 445

	 3.	 On the Data menu, click the Add New Data Source command.

The Data Source Configuration Wizard starts in the development environment,
as shown in the following screen shot:

The Data Source Connection Wizard is a feature within the Visual Studio 2010 IDE that
automatically prepares your Visual Basic program to receive database information. The
wizard prompts you for the type of database that you will be connecting to (a local or
remote database, Web service, custom data object that you have created, or Microsoft
SharePoint site), establishes a connection to the data, and then creates a dataset or
data entity within the program to hold specific database tables and fields. The result is
that the wizard opens the Data Sources window and fills it with a visual representation
of each database object that you can use in your program.

	 4.	 Click the Database icon (if it is not already selected) in the Data Source Configuration
Wizard, and then click Next.

The wizard displays a screen prompting you to choose a database model for your
application and the connection that your program will make to the database
information. This is a new screen in Visual Studio 2010; your options are now to choose
a dataset to make the connection or an entity data model. We will be using the dataset
option here, but the entity data model can also be useful because it allows developers
to work with data in the form of domain-specific objects and properties without

446	 Part IV  Database and Web Programming

concerning themselves with the format of underlying database tables and columns.
The entity data model option is made possible by the ADO.NET Entity Framework,
which is a subset of the ADO.NET database technology.

	 5.	 Click Dataset, and then click Next to select the dataset model.

The wizard now displays a screen that helps you establish a connection to your
database by building a statement called a connection string. A connection string
contains the information that Visual Studio needs to open and extract information
from a database file. This includes a path name and file name, but also potentially
sensitive data such as a user name and password. For this reason, the connection string
is treated carefully within the Data Source Connection Wizard, and you should take
care to protect it from unauthorized access as you copy your source files from place
to place.

	 6.	 Click the New Connection button.

The first time that you click the New Connection button, the Choose Data Source
dialog box opens, prompting you to select the database format that you plan to use.
If you see the Add Connection dialog box instead of the Choose Data Source dialog
box, it simply means that your copy of Visual Studio has already been configured to
favor a particular database format. No problem; simply click the Change button in the
Add Connection dialog box, and you’ll see the same thing that first-time wizard users
see, except that the title bar reads Change Data Source. In this example, however, I’ll
assume that you haven’t selected a data source format; in that case, your screen looks
like the following screen shot:

The Change/Choose Data Source dialog box is the place where you select your
preferred database format, which Visual Studio uses as the default format. In this
chapter, you’ll select the Access format, but note that you can change the database
format to one of the other choices at any time. You can also establish more than one
database connection—each to a different type of database—within a single project.

	 Chapter 18  Getting Started with ADO.NET	 447

	 7.	 Click Microsoft Access Database File, and then click Continue (or OK).

The Add Connection dialog box opens, as shown in the following screen shot:

Now you’ll specify the location and connection settings for your database, so that
Visual Studio can build a valid connection string.

	 8.	 Click Browse.

The Select Microsoft Access Database File dialog box opens, which functions like
an Open dialog box.

	 9.	 Browse to the C:\Vb10sbs\Chap18 folder, click the Faculty2010.accdb database,
and then click Open.

You have selected the Access database in 2007 format that I built to demonstrate
how database fields and records are displayed within a Visual Basic program. The Add
Connection dialog box opens again with the path name recorded. I don’t restrict access
to this file in any way, so a user name and password are not necessary with Faculty2010
.accdb. However, if your database requires a user name, a password, or both for use,
you can specify it now in the User Name and Password boxes. These values are then
included in the connection string.

	 10.	 Click the Test Connection button.

Visual Studio attempts to open the specified database file with the connection string
that the wizard has built for you. If the database is in a recognized format and the
user name and password entries (if any) are correct, you see the message shown in the
illustration on the next page.

448	 Part IV  Database and Web Programming

Note  If you get a message that says “Unrecognized database format”, you might not have
Access 2007 or later installed. If you don’t have Access 2007 or later installed, you will need
to download and install the 2007 Office System Driver: Data Connectivity Components
from Microsoft.com. (See Step 1 above.)

	 11.	 Click OK to close the message box, and then click OK to close the Add Connection
dialog box.

Visual Studio displays the Data Source Configuration Wizard again.

	 12.	 Click the plus sign (+) next to the Connection String item in the dialog box to display
your completed connection string.

Your wizard page looks similar to the following:

The connection string identifies a provider (also called a managed provider)
named Microsoft.ACE.OLEDB.12.0, which is an underlying database component
that understands how to connect to a database and extract data from it. The two
most popular providers offered by Visual Studio are Microsoft OLE DB and SQL Server, but
third-party providers are available for many of the other popular database formats.

	 Chapter 18  Getting Started with ADO.NET	 449

	 13.	 Click the Next button.

The wizard displays an alert message indicating that a new local database (or local
data file) has been selected that is not in the current project, and you are asked if the
database should be copied to your project folders. (This message appears only the
first time that you make a connection to a local database file. If you are repeating this
exercise, you probably won’t see the message.) In a commercial application that uses
a database, you might want to control how this works a little more carefully. (To learn
more about your options, you would click the Help button or press F1.)

	 14.	 Click No to avoid making an extra copy of the database at this time.

You are not commercially distributing this project; it is only a sample program, and an
extra copy is not needed.

The Data Source Configuration Wizard now asks you the following question: “Do you
want to save the connection string to the application configuration file?” Saving the
connection string is the default selection, and in this example, the recommended string
name is Faculty2010ConnectionString. You usually want to save this string within your
application’s default configuration file, because then if the location of your database
changes, you can edit the string in your configuration file (which is listed in Solution
Explorer), as opposed to tracking down the connection string within your program
code and recompiling the application.

	 15.	 Click Next to save the default connection string.

You are now prompted to select the subset of database objects that you want to use
for this particular project, as shown in the following dialog box:

450	 Part IV  Database and Web Programming

Note  Visual Studio allows you to use just part of a database or to combine different
databases—a useful feature when you’re working to build datacentric applications.

The items you select in this dialog box are referred to within the project as database
objects. Database objects can include tables of fields and records, database views, stored
procedures, functions, and other items unique to your database. The collective term for all
the database objects that you select is a dataset. In this project, the dataset is assigned the
default name Faculty2010DataSet, which you can adjust in the DataSet Name box.

Tip  Note that the dataset you create now only represents the data in your database—if
you add, delete, or modify database records in the dataset, you don’t actually modify the
underlying database tables until you issue a command that writes your changes back to
the original database. Database programmers call this kind of arrangement a disconnected
data source, meaning that there is a layer of abstraction between the actual database and
your dataset.

	 16.	 Click the arrow next to the Tables node to expand the list of the tables included in the
Faculty2010.accdb database.

In this case, there is only one table listed, named Faculty, which we’ll use in our sample
program.

	 17.	 Click the arrow next to the Faculty node, and then select the check boxes for the Last
Name and Business Phone fields.

You’ll add these two fields to the Faculty2010DataSet dataset. The wizard page looks
like the following screen shot:

	 Chapter 18  Getting Started with ADO.NET	 451

	 18.	 Click the Finish button to complete and close the Data Source Configuration Wizard.

Visual Studio finishes the tasks of adding a database connection to your project
and configuring the dataset with the selected database objects. (Depending on how
the Visual Studio IDE has been used and configured, you might see a Data Sources tab
or window now.)

	 19.	 Click the Save All button on the Standard toolbar to save your changes. Specify the
C:\Vb10sbs\Chap18 folder as the location.

	 20.	 If Solution Explorer is not currently visible, open it now to display the major files and
components contained in the ADO Faculty Form project.

Your screen looks like this:

In addition to the standard Solution Explorer entries for a project, you see a new file
named Faculty2010DataSet.xsd. This file is an XML schema that describes the tables,
fields, data types, and other elements in the dataset that you have just created.
The presence of the schema file means that you have added a typed dataset to your
project. (Typed datasets have a schema file associated with them, but untyped
datasets don’t.) Typed datasets are advantageous because they enable the Microsoft
IntelliSense feature of the Visual Studio Code Editor, and they give you specific
information about the fields and tables you’re using.

	 21.	 Click the Faculty2010DataSet.xsd schema file in Solution Explorer, and then click the
View Designer button.

You see a visual representation of the tables, fields, and data adapter commands
related to your new dataset in a visual tool called the Dataset Designer. The Dataset
Designer contains tools for creating components that communicate between your
database and your application—what database programmers call data access layer
components. You can create and modify table adapters, table adapter queries, data
tables, data columns, and data relationships with the Dataset Designer. You can also
use the Dataset Designer to review and set important properties related to objects

452	 Part IV  Database and Web Programming

in a dataset, such as the length of database fields and the data types associated with
fields.

	 22.	 Click the Last Name field, and then press F4 to highlight the Properties window.

	 23.	 Click the MaxLength property. Your screen looks similar to the following screen shot:

Here the Dataset Designer is shown with an active dataset named Faculty2010DataSet,
and the Properties window shows that the MaxLength property is set to allow for
a maximum of 50 characters in the Last Name field. Although this length seems
sufficient, you can adjust this property (and others, too) if you find that the underlying
database settings are inadequate for your application.

Setting the Dataset Designer aside for a moment, let’s continue building the sample database
application in the Data Sources window.

The Data Sources Window
The Data Sources window is a useful and timesaving feature of the Visual Studio 2010 IDE.
Its purpose is to display a visual representation of the datasets that have been configured
for use within your project, and to help you bind these datasets to controls on the form.
Remember that a dataset is just a temporary representation of database information in your

	 Chapter 18  Getting Started with ADO.NET	 453

program, and that each dataset contains only a subset of the tables and fields within your
entire database file; that is, only the items that you selected while using the Data Source
Configuration Wizard. The dataset is displayed in a hierarchical (tree) view in the Data
Sources window, with a root node for each of the objects that you selected in the wizard.
Each time you run the wizard to create a new dataset, a new dataset tree is added to the
Data Sources window, giving you potential access to a wide range of data sources and views
within a single program.

If you have been following the instructions for selecting fields in the Faculty table of the
Faculty2010 database, you have something interesting to display in the Data Sources window
now. To prepare for the following exercises and display the Data Sources window, display the
form again (click the Form1.vb [Design] tab), and then click the Show Data Sources command
on the Data menu. (You can also click the Data Sources tab if it is visible.) When the Data
Sources window is open, expand the Faculty table so that you can see the two fields that we
selected. Your Data Sources window looks like this:

Across the top of the window are four helpful tools that allow you to work with datasets.
From left to right, these toolbar buttons allow you to add a new dataset to your project, edit
the selected dataset in the Dataset Designer, add or remove dataset fields, and refresh the
dataset.

The easiest way to display the information in a dataset on a form (and therefore for your
users) is to drag objects from the Data Sources window to the Windows Forms Designer.
(This is the Designer you used in earlier chapters, but I am calling it the Windows Forms
Designer here to distinguish it from the Dataset Designer.)

Chapter 19, “Data Presentation Using the DataGridView Control,” describes how you can
display entire tables of data on a form. In the remainder of this chapter, however, you’ll
experiment with dragging individual fields of data to the Windows Forms Designer to bind
controls to select fields in the Faculty2010 database. Give it a try now.

454	 Part IV  Database and Web Programming

Use the Data Sources window to create database objects on a form

	 1.	 In the Data Sources window, click the arrow next to the Faculty node to display the
available fields in Faculty2010DataSet (if you have not already done so).

Your Data Sources window looks like the previous screen shot. In Visual Studio 2010,
you can display individual fields or an entire table of data by simply dragging the
desired database objects onto your form.

	 2.	 Click the Last Name field, which contains the name of each instructor in the Faculty2010
database. An arrow appears to the right of the Last Name field in the Data Sources
window. If the arrow does not appear, make sure that the Form1.vb [Design] tab is
active in the Designer window, and then click Last Name again.

	 3.	 Click the Last Name arrow.

Clicking this arrow displays a list of options related to how a database field is displayed
on the form when you drag it, as shown in the following screen shot:

Although I haven’t discussed it yet, most of the controls on the Common Controls tab
of the Toolbox have the built-in ability to display database information. In Visual Studio
terminology, these controls are called bound controls when they are connected to
data-ready fields in a dataset. The list of controls you see now is a group of popular
options for displaying string information from a database, but you can add additional
controls to the list (or remove items) by clicking the Customize command. In this case,
however, you’ll simply use the TextBox control, the default bound control for string data.

	 4.	 Click TextBox in the list, and then drag the Last Name field to the middle of the form in
the Windows Forms Designer.

As you drag the field over the form, a plus sign (+) below the pointer indicates
that adding this database object to a form is a valid operation. When you release
the mouse button, Visual Studio creates a data-ready text box object and places

	 Chapter 18  Getting Started with ADO.NET	 455

a professional-looking navigation bar at the top of the form. The form looks something
like this (your Data Sources window might be in a different location):

Visual Studio has actually created two objects for this Last Name field: a descriptive
label object containing the name of the field, and a bound text box object that will
display the contents of the field when you run the program. Below the form in the
component tray, Visual Studio has also created several objects to manage internal
aspects of the data access process. These objects include:

o	 Faculty2010DataSet, the dataset that you created with the Data Source
Configuration Wizard to represent fields in the Faculty2010 database

o	 FacultyBindingSource, an intermediary component that acts as a conduit
between the Faculty table and bound objects on the form

o	 FacultyTableAdapter and TableAdapterManager, intermediary components that
move data between Faculty2010DataSet and tables in the underlying Faculty2010
database

o	 FacultyBindingNavigator, which provides navigation services and properties
related to the navigation toolbar and the Faculty table

Now you’ll run the program to see how all these objects work.

456	 Part IV  Database and Web Programming

	 5.	 Click the Start Debugging button on the Standard toolbar.

The ADO Faculty Form program runs in the IDE. The text box object is loaded with the
first Last Name record in the database (Abercrombie), and a navigation toolbar with
several buttons and controls appears at the top of the form, as shown in the following
screen shot:

The navigation toolbar is a helpful feature in the Visual Studio 2010 database programming
tools. From left to right, it contains Move First and Move Previous buttons; a current
position indicator; and Move Next, Move Last, Add New, Delete, and Save Data buttons.
You can change or delete these toolbar buttons by setting the Items property for the
binding navigator object in the Properties window, which displays a visual tool called the
Items Collection Editor. You can also enable or disable individual toolbar buttons.

	 6.	 Click the Move Next button to scroll to the second faculty name in the dataset.

The Pais record appears.

	 7.	 Continue scrolling through the dataset one record at a time. As you scroll through the
list of names, notice that the position indicator keeps track of where you are in the list
of records.

	 8.	 Click the Move First and Move Last buttons to move to the first and last records of the
dataset, respectively.

	 9.	 Delete the last record from the dataset (Skinner) by clicking the Delete button when
the record is visible.

	 Chapter 18  Getting Started with ADO.NET	 457

The record is deleted from the dataset, and the position indicator shows that there
are now 19 records remaining. (Lan has become the last and current record.) Your form
looks like this:

As I mentioned earlier, the dataset represents only the subset of tables from
the Faculty2010 database that have been used in this project—the dataset is
a disconnected image of the database, not the database itself. Accordingly, the record
that you deleted has been deleted only from the dataset that is loaded in memory
while the program is running. However, to verify that the program is actually working
with disconnected data and is not modifying the original database, you’ll stop
and restart the program now.

	 10.	 Click the Close button on the form to end the program.

The program terminates, and the IDE returns.

	 11.	 Click Start Debugging to run the program again.

When the program restarts and the form loads, the navigation toolbar shows that the
dataset contains 20 records, as it did originally. In other words, it works as expected.

	 12.	 Click the Move Last button to view the last record in the dataset.

The record for Skinner appears again. This final faculty name was deleted only from
memory and has reappeared because the underlying database still contains the name.

	 13.	 Click the Close button again to close the program.

Congratulations! Without writing any program code, you have built a functioning database
application that displays specific information from a database. Setting up a dataset has taken
many steps, but the dataset is now ready to be used in many useful ways in the program.
Although I selected only one table and two fields from the Faculty2010 database to reduce
screen clutter and focus our attention, you will probably want to select a much wider range

458	 Part IV  Database and Web Programming

of objects from your databases when you build datasets using the Data Source Configuration
Wizard. As you can see, it is not necessary to create bound objects for each dataset item on
a form—you can decide which database records you want to use and display.

Using Bound Controls to Display
Database Information

As I mentioned earlier, Visual Studio can use a variety of the controls in the Visual Studio
Toolbox to display database information. You can bind controls to datasets by dragging fields
from the Data Sources window (the easiest method), and you can create controls separately
on your forms and bind them to dataset objects at a later time. This second option is an
important feature, because occasionally you will be adding data sources to a project after the
basic user interface has been created. The procedure I’ll demonstrate in this section handles
that situation, while giving you additional practice with binding data objects to controls within
a Visual Basic application. You’ll create a masked text box object on your form, configure the
object to format database information in a useful way, and then bind the Business Phone field
in Faculty2010DataSet to the object.

Bind a masked text box control to a dataset object

	 1.	 Display the form in the Windows Forms Designer, and then open the Toolbox, if it is
not already visible.

	 2.	 Click the MaskedTextBox control on the Common Controls tab, and then create
a masked text box object on the form below the Last Name label and text box.

As you might recall from Chapter 6, “Using Decision Structures,” the MaskedTextBox
control is similar to the TextBox control, but it gives you more ability to regulate or
limit the information entered by the user into a program. The input format for the
MaskedTextBox control is adjusted by setting the Mask property. In this exercise, you’ll
use Mask to prepare the masked text box object to display formatted phone numbers
from the Business Phone field. (By default, phone numbers in the Faculty2010 database
are stored without the spacing, parentheses, or dashes of North American phone
numbers, but you want to see this formatting in your program.)

	 3.	 Click the smart tag in the upper-right corner of the masked text box object, and then
click the Set Mask command.

Visual Studio displays the Input Mask dialog box, which lists a number of pre-defined
formatting masks. Visual Studio uses these masks to format output in the masked text
box object, as well as input received from users.

	 4.	 Click the Phone Number input mask, and then click OK.

The masked text box object now appears with input formatting guidelines for the
country and language settings stored within Windows. (These settings might vary from

	 Chapter 18  Getting Started with ADO.NET	 459

country to country, but for me it looks like a North American telephone number with
area code.)

	 5.	 Add a label object in front of the new masked text box object, and set its Text property
to “Phone:” (including the colon).

The first descriptive label was added automatically by the Data Sources window, but we
need to add this one manually.

	 6.	 Adjust the spacing between the two labels and text boxes so that they are aligned
consistently. When you’re finished, your form looks similar to the following:

Now you’ll bind the Business Phone field in Faculty2010DataSet to the new masked text
box object. The process is easy—you simply drag the Business Phone field from the
Data Sources window onto the object that you want to bind to the data—in this case,
the MaskedTextBox1 object.

	 7.	 Display the Data Sources window if it is not visible, and then drag the Business Phone
field onto the MaskedTextBox1 object.

When you drag a dataset object onto an object that already exists on the form
(what we might call the target object), a new bound object is not created. Instead,
the DataBindings properties for the target object are set to match the dragged
dataset object in the Data Sources window.

After this drag-and-drop operation, the masked text box object is bound to the
Business Phone field, and the masked text box object’s Text property contains a small
database icon in the Properties window (a sign that the object is bound to a dataset).

	 8.	 Verify that the MaskedTextBox1 object is selected on the form, and then press F4 to
highlight the Properties window.

	 9.	 Scroll to the DataBindings category within the Properties window, and then click the
arrow to expand it.

460	 Part IV  Database and Web Programming

Visual Studio displays the properties typically associated with data access for a masked
text box object. Your Properties window looks similar to the following:

The noteworthy bound property here is the Text property, which has been set to
FacultyBindingSource – Business Phone as a result of the drag-and-drop operation.
(Note that the tiny database icon does not appear here; it appears only in the Text
property at the bottom of the alphabetical list of properties.) In addition, if you click
the arrow in the Text property now, you’ll see a representation of the masked text box
object. (This useful visual display allows you to quickly change the data source that the
control is bound to, but don’t adjust that setting now.)

	 10.	 Click the form to close any open Properties window panels.

	 11.	 Click the Start Debugging button to run the program.

Visual Studio runs the program in the IDE. After a moment, the two database fields
are loaded into the text box and masked text box objects, as shown in the following
screen shot:

	 Chapter 18  Getting Started with ADO.NET	 461

Importantly, the masked text box object correctly formats the phone number
information so that it is in the expected format for North American phone numbers.

	 12.	 Click the Move Next button a few times.

Another important feature is also demonstrated here: The two dataset fields scroll
together, and the displayed faculty names match the corresponding business phone
numbers recorded in the Faculty2010 database. This synchronization is handled by
the FacultyBindingNavigator object, which keeps track of the current record for each
bound object on the form.

	 13.	 Click the Close button to stop the program, and then click the Save All button to save
your changes.

You’ve learned to display multiple database fields on a form, use the navigation toolbar to
browse through a dataset, and format database information with a mask. Before you leave
this chapter and move on to the useful DataGridView control discussed in Chapter 19, take
a moment to see how you can further customize your dataset by using a few SQL statements.

One Step Further: SQL Statements, LINQ,
and Filtering Data

You have used the Data Source Configuration Wizard to extract just the table and
fields you wanted from the Faculty2010 database by creating a custom dataset named
Faculty2010DataSet. In addition to this filtering, however, you can further organize
and fine-tune the data displayed by bound controls by using SQL statements and the Visual
Studio Query Builder. This section introduces these tools.

For Visual Basic users who are familiar with Access or SQL Server, filtering data with
SQL statements is nothing new. But the rest of us need to learn that SQL statements
are commands that extract, or filter, information from one or more structured tables
in a database. The reason for this filtering is simple: Just as Web users are routinely
confronted with a bewildering amount of data on the Internet (and use clever search
keywords in their browsers to locate just the information they need), database
programmers are routinely confronted with tables containing tens of thousands of records
that need refinement and organization to accomplish a particular task. The SQL SELECT
statement is one traditional mechanism for organizing database information. By chaining
together a group of these statements, programmers can create complex search directives,
or queries, that extract just the data that is needed from a database.

Realizing the industry-wide acceptance of SQL statements, previous versions of the Visual
Studio and Visual Basic IDEs have included mechanisms for using SQL statements. In addition,
Visual Studio 2008 and 2010 offer a powerful technology called Language-Integrated Query
(LINQ), which allows experienced programmers to write SQL-styled database queries directly

462	 Part IV  Database and Web Programming

within Visual Basic code. Although LINQ is a leading database technology in Visual Studio,
it is not a feature that you can easily master until you have had a little more experience
with SQL statements. In the following exercise, I’ll provide some of this background using
a powerful Visual Studio feature called Query Builder. Query Builder is a visual tool that helps
programmers construct database queries, and it is especially useful for programmers who
have had relatively little exposure to SQL code. In the following example, you’ll use Query
Builder to further organize your Faculty2010DataSet dataset by sorting it alphabetically.

Create SQL statements with Query Builder

	 1.	 On the form, click the Last_NameTextBox object (the first bound object that you
created to display the last names of faculty members in the Faculty2010 database).

	 2.	 Click the Add Query command on the Data menu.

The Add Query command is available when a bound object, such as Last_NameTextBox,
is selected in the Designer. The Search Criteria Builder dialog box opens, as shown in
the following screen shot:

This dialog box helps you organize and view your queries, which are created by the
Query Builder and consist of SQL statements. The table that your query will filter and
organize by default (Faculty2010DataSet.Faculty) is selected in the Select Data Source

	 Chapter 18  Getting Started with ADO.NET	 463

Table box, near the top of the dialog box. You’ll recognize the object hierarchy format
used by the table name, which is read as “the Faculty table within the Faculty2010DataSet
dataset.” If you had other tables to choose among, they would be in the list box displayed
when you click the Select Data Source Table arrow.

	 3.	 Type SortLastNames in the New Query Name box.

This text box assigns a name to your query, and forms the basis of toolbar buttons
added to the form. (For easy access, the default arrangement is that new queries are
assigned to toolbar buttons within the application you are building.)

	 4.	 Click the Query Builder button in the dialog box to open the Query Builder tool.

The Query Builder allows you to create SQL statements by typing them directly into
a large SQL statement text box or by clicking list boxes and other visual tools.

	 5.	 In the Last Name row representing the Last Name field in your dataset, click the cell
under Sort Type, and then click the arrow to display the Sort Type list box.

Your screen looks like this:

	 6.	 In the Sort Type list box, click Ascending.

You’ll sort records in the Last Name field in ascending order.

464	 Part IV  Database and Web Programming

	 7.	 Click the SQL statement text box below the grid pane to update the Query Builder
window.

A new clause (ORDER BY [Last Name]) is added to the SQL statement box, and your
screen looks like this:

This is the strength of the Query Builder tool—it automatically builds the SQL
statements for you in the SQL statement box.

	 8.	 Click OK to complete your query.

Visual Studio closes the Query Builder and displays your new query in the Search
Criteria Builder dialog box. The name of the query (SortLastNames) is listed, as well as
the SQL statements that make up the sort.

	 9.	 Click OK to close the Search Criteria Builder dialog box, and then configure the
Last_NameTextBox object to list names in ascending alphabetical order.

The process has also created a SortLastNamesToolStrip object in the component tray
below the form. The Designer and component tray now look like the screen shot shown
on the following page.

	 Chapter 18  Getting Started with ADO.NET	 465

	 10.	 Click the Start Debugging button to run the program.

Visual Studio loads the form and displays the first record for two dataset objects.

	 11.	 Click the SortLastNames button on the new toolbar.

Your new SQL statement sorts the Last Name records in the dataset and displays the
records in their new order. The first record is still Abercrombie, but now the second
and third names are Atlas and Bankov, respectively.

	 12.	 Click the Move Last button on the toolbar.

Now Zimprich appears, as shown in the following screen shot:

466	 Part IV  Database and Web Programming

Since the names are listed alphabetically from A to Z, Zimprich is now last in the list of
faculty members.

	 13.	 Scroll through the remainder of the records, and then verify that it is now in ascending
alphabetical order.

	 14.	 Click the Close button to end the program.

You’re on your way with building custom queries by using SQL statements and Query Builder.
Database programming is a complex topic, but you have already learned much that will help
you build datacentric applications—highly personalized collections of data that benefit the
user and his or her computing needs—in Visual Basic. You will continue exploring the theme
of rich data access in Chapter 19. And in Chapter 20, your final project will be displaying
database records on a Web site.

Chapter 18 Quick Reference

To Do This

Establish a connection
to a database

Click the Add New Data Source command on the Data menu, and then
use the Data Source Configuration Wizard to browse to the database you
want to provide access for by building a connection string.

Create a dataset Using the Data Source Configuration Wizard, specify a name for the
dataset in the DataSet Name box, expand the Tables node in the tree
view of your database presented by the wizard, and then specify the
tables and fields that you want to include in your dataset. (A dataset
need not include all database tables and fields.)

Create bound objects
capable of displaying
data from a dataset
on a Windows form

After running the Data Source Configuration Wizard, open the Data
Sources window, and drag tables, fields, or both to the Windows form.
To control the type of bound control created by Visual Studio for a
table or field, click its arrow and select a control from the list box before
dragging it. If you placed a control on the form before adding data sources
to the project, bind a database object to the control by dragging the
database objects from the Data Sources window onto the control on the
form. Alternatively, set an object’s DataBinding properties to a valid field
(column) in the dataset. (One of the most useful DataBinding properties
is Text.)

Add navigation controls
to a Windows form

When a valid database object is dragged from the Data Sources window
to a Windows form in the Designer, a navigation toolbar is added
automatically to the form. To customize the buttons on this toolbar,
right-click the BindingNavigator object in the component tray, and then
click Edit Items.

Format database
information on a form

Use a MaskedTextBox control to format the content of string data in
the dataset. The MaskedTextBox control offers many useful input masks
and the ability to create custom string formats.

Filter or sort database
information stored
in a dataset

Use SQL statements to create custom queries in the Visual Studio Query
Builder, and then add these queries to a toolbar on a Windows form.
After you master Query Builder, you’ll be ready to experiment with LINQ.

		 467

Chapter 19

Data Presentation Using
the DataGridView Control

After completing this chapter, you will be able to:

n	 Create a data grid view object on a Windows form, and use it to display a database
table.

n	 Sort database tables by column.

n	 Change the format and color of cells in a data grid view object.

n	 Add and remove columns and column headings.

n	 Display multiple data grid view objects on a form.

n	 Permit changes in data grid view cells, and write updates to the underlying database.

In Chapter 18, “Getting Started with ADO.NET,” you learned how to use Microsoft ADO.NET
database programming techniques to establish a connection to a Microsoft Access database
and display columns from the database in a Windows form. You also learned how to add
a navigation bar to a form and how to organize database information using Structured
Query Language (SQL) statements and the Query Builder tool.

In this chapter, you’ll continue working with the database programming features of Microsoft
Visual Studio 2010 and the useful classes, objects, and design tools in ADO.NET. In particular,
you’ll learn how to use the DataGridView control, which allows you to present an entire table
of database information to the user.

Using DataGridView to Display Database Records
The DataGridView control presents information by establishing a grid of rows and columns
on a form to display data as you might see it in a program such as Microsoft Excel or Access.
A DataGridView control can be used to display any type of tabular data: text, numbers, dates,
or the contents of an array. In programming terms, DataGridView is also quite convenient
because the underlying data adapter and dataset objects associated with DataGridView
handle all the data access functionality automatically.

Table of Contents

Data Presentation Using the DataGridView Control 467
Using DataGridView to Display Database Records . 467

Formatting DataGridView Cells . 479

Adding a Second Data Grid View Object . 482

One Step Further: Updating the Original Database . 485

Chapter 19 Quick Reference . 488

468	 Part IV  Database and Web Programming

In this chapter, you’ll focus on the ability of the DataGridView control to display the columns
(fields) and rows (records) of the Faculty2010.accdb database, the file of structured employee
information that you started working with in Chapter 18. You’ll start by filling a simple
data grid view object with text records from the Access 2007 database, and then you’ll set
a few formatting options. Next you’ll move on to sorting records in data grid view objects
and learning how to add multiple data grid view objects to a form. Finally, you’ll learn
how to adjust DataGridView properties, including the ReadOnly property, which allows or
prevents a user from saving changes back to the original database.

The DataGridView control is connected, or bound, to underlying data access components
through its BindingSource property. This property contains useful information only after
your program has established a connection to a valid data source by using the Data Source
Configuration Wizard and the Data Sources window. (The steps involved in establishing this
connection will be reviewed quickly here but are described in greater detail in Chapter 18;
if you want more information, read the section “Working with an Access Database” in that
chapter.) After a data grid view object is bound to a valid data source, Visual Studio fills, or
populates, the data grid view object automatically by using the Fill method when the form is
loaded into memory.

Establish a connection to a database table

	 1.	 Start Visual Studio, and then create a new Microsoft Visual Basic Windows Forms
Application project named My DataGridView Sample.

A new project appears in the Integrated Development Environment (IDE).

	 2.	 Click the Add New Data Source command on the Data menu.

The Data Source Configuration Wizard opens in the development environment.
You used this tool in Chapter 18 to link the Faculty2010.accdb database to your project
and fill the Data Sources window with tables and columns from the database. This time,
you’ll select a broader range of information from the sample Access database.

	 3.	 Click the Database icon, and then click Next.

	 4.	 Click the Dataset icon, and then click Next.

The wizard prompts you to build a connection string, but if you completed the
exercises in Chapter 18, the Faculty2010.accdb database is offered to you automatically,
as shown in the screen shot on the following page:

	 Chapter 19  Data Presentation Using the DataGridView Control	 469

If you don’t see the Faculty2010 database connection, click the New Connection
button, and then browse to the Faculty2010.accdb file, located in the C:\Vb10sbs\
Chap18 folder. (Detailed steps for establishing this connection are given in Chapter 18,
if you’d like additional information.)

	 5.	 With the Faculty2010.accdb connection selected, click Next.

The wizard asks whether you want to save your connection string.

	 6.	 Click Next to save the string in the default location (your project’s configuration file).

You are now prompted to select the database objects that you want to use for this
particular project. Remember that the Data Source Configuration Wizard allows you
to pick and choose database tables and columns at this point—you can select all the
objects in the database or just a subset.

	 7.	 Expand the Tables node and the Faculty table to see the lengthy list of fields in the
database that contain faculty employee information.

	 8.	 Select the ID, Last Name, First Name, E-mail Address, Faculty ID, Department, Faculty
Type, and Business Phone fields.

Although this Access database has been designed to contain all sorts of information
about school employees, you only want to extract these specific fields for the exercise
you’re completing.

470	 Part IV  Database and Web Programming

Tip  It is important that you include the ID field because it is the primary key of the Access
database that you are using. The primary key does not need to be displayed on your
form, but it needs to be included in the dataset so that information from the table can be
written back to the original database if you choose to give the user this option. (I discuss
save operations at the end of this chapter.) If you don’t include the primary key, you may
receive an error message when you try to write data back to the original database.

Your wizard page looks as shown in the following screen shot:

	 9.	 Click Finish to close the Data Source Configuration Wizard.

Visual Studio creates a dataset named Faculty2010DataSet to represent the eight
database objects that you selected. Visual Studio also adds an Extensible Markup
Language (XML) schema file named Faculty2010DataSet.xsd to your project and the
Solution Explorer window. You have now established a connection to the Faculty2010
.accdb database that you can use for the remainder of this chapter.

	 10.	 Click the Save All button on the Standard toolbar to save the project. Specify the
C:\Vb10sbs\Chap19 folder as the location.

	 11.	 Click the Data Source tab to open the Data Sources window, and then expand the
Faculty node. (If the Data Sources tab is not visible, click the Show Data Sources
command on the Data menu.)

	 Chapter 19  Data Presentation Using the DataGridView Control	 471

The Data Sources window displays the objects in Faculty2010DataSet, as shown in the
following screen shot:

In Chapter 18, you dragged individual fields from the Data Sources window to a Windows
form to bind data objects to controls in the user interface. In the next exercise, you’ll follow
a similar procedure, but this time you’ll drag an entire table to the form, and you’ll bind the
table to a DataGridView control so that the fields that you have selected can be displayed
at once.

Create a data grid view object

	 1.	 Resize the form so that it covers most of the screen.

Before this chapter is complete, you’ll place two data grid view objects side by side
on the form, each with several columns and about 20 rows of data. Remember that
the form can be larger than the room allotted for it within the IDE, and you can close
programming tools or use the scroll bars to see portions of the form that are hidden.
(However, you’ll want to keep the Data Sources window open for the next step.)

	 2.	 In the Data Sources window, click the Faculty table, and then click the arrow to its right
to display the list of controls that can be bound to the Faculty table on the form.

The Data Sources window looks like this:

472	 Part IV  Database and Web Programming

Because you have selected an entire table, you do not see individual bound controls in
this list box. Instead you see the following options:

o	 DataGridView, the default selection, which displays a grid of columns and rows
representing the fields and records in the Faculty table.

o	 Details, which configures Visual Basic to create individual controls (with associated
labels) automatically for each field in a table that you drag to the form. Although
I won’t demonstrate Details now, it is a useful option if you want to present
tabular data in a slightly more approachable format.

o	 None, which removes any association between the table and a user interface
element or control. (If you select None for a table, you will not be able to drag
the table from the Data Sources window to the form, and a Null icon will appear
next to the table name.)

o	 Customize, which lets you select a different control that might be suitable for
displaying multiple database fields (such as the ListBox control).

	 3.	 Click the DataGridView option, and then drag the Faculty table to the left side of
your form.

Visual Studio creates a navigation bar at the top of the form, adds dataset, binding
source, table adapter, table adapter manager, and binding navigator components to
the component tray, and creates a data grid view object named FacultyDataGridView
on the form. Your screen looks similar to the following screen shot:

	 Chapter 19  Data Presentation Using the DataGridView Control	 473

As you can see, the data grid view object does not contain any information at this
point, and it is probably not the right size either. (My data grid view object is not wide
enough to display all eight columns, for example.) However, you can clearly see that
Visual Studio has organized the Faculty table in the data grid view so that its fields
appear as columns and its rows represent individual records. A blank row is reserved for
the first record in the table, and additional rows will be added as soon as the program
is run and the data grid view is filled with data.

	 4.	 Move and resize the data grid view object so that you can see as many columns as
possible and there is ample room for at least 10 rows of data.

Depending on how your screen resolution is set, you may need to hide some of the
programming tools in the IDE to accomplish this, or use the Visual Studio IDE scroll bars
that appear when you work with large application windows.

	 5.	 Use the Properties window to set the form’s Text property to “The Faculty Table.”

Your form looks similar to the following:

474	 Part IV  Database and Web Programming

You have completed the basic steps necessary to create a data grid view object on a form
and size it appropriately. Next, you’ll preview the data and customize your table. The ability
to preview data and adjust basic settings is made easy by the smart tag feature.

Preview the data bound to a data grid view object

	 1.	 Select the data grid view object on the form, and then click the smart tag in the
upper-right corner of the object.

Visual Studio displays DataGridView Tasks, a list of common property settings and
commands related to the data grid view object. The DataGridView Tasks list looks
like this:

You can use the settings and commands in this list to change the table that is bound
to the data grid view object and to enable or disable editing within the data grid view.
(The default setting is to give the user limited abilities to edit information in the table,
although you can still control whether the changes he or she makes are written to the
underlying database.) You can also adjust the columns shown, dock (attach) the data
grid view to the parent container (in this case, the form), filter records with a query
(SQL statement), and preview the data in the table.

	 2.	 Click Preview Data to open the Preview Data dialog box.

You display this dialog box when you want to examine the data in a table before you
actually run the program—a handy feature.

	 Chapter 19  Data Presentation Using the DataGridView Control	 475

	 3.	 Click the Preview button.

Visual Studio loads the Faculty table from Faculty2010DataSet, as shown in the
following screen shot:

You should be familiar with some of this data already from Chapter 18, but you now
may be able to see eight columns that you have selected, all in one place. Seeing all the
columns at once is interesting, but it also could amount to information overload—it is
up to you to decide how much database information your users should see, and how it
should be formatted. In fact, you might not even be able to see all eight columns right
now, as is the case in the screen shot. In Visual Studio, it is easy to tailor the data grid
view’s output so that the proper information is visible.

	 4.	 Click the Close button to close the Preview Data dialog box.

Now you’ll remove the ID and Faculty ID columns from the data grid view to show only the
information that a typical “directory lookup” feature would display on the screen. Recall that
you only included the ID field so that your dataset would have a primary key, which is useful
when data is written back to the original database.

476	 Part IV  Database and Web Programming

Remove columns from a data grid view object

	 1.	 Open the DataGridView Tasks list again, and then click the Edit Columns command.

You see the following Edit Columns dialog box:

You can use the Edit Columns dialog box to add or remove columns from those
displayed by the data grid view object. (As you’ll learn later in the chapter, you also use
this dialog box to change the properties of the FacultyDataGridView object.) Right now,
you want to remove the ID and Faculty ID columns.

Note  Although you are removing the ID and Faculty ID columns from the data grid view
object, they still exist in the underlying Faculty2010.accdb database.

	 2.	 Click the ID column in the Selected Columns list box, and then click the Remove button.

	 3.	 Click the Faculty ID column, and then click the Remove button.

Visual Studio removes both columns from the list.

	 4.	 Click OK to confirm your change, and then press the ESC key to close the DataGridView
Tasks list.

The FacultyDataGridView object appears again, but without the ID and FacultyID
columns. You now have more room on the form to display database information.

	 Chapter 19  Data Presentation Using the DataGridView Control	 477

	 5.	 Resize the FacultyDataGridView object so that it takes up less space.

Your form looks similar to the following screen shot:

	 6.	 Click the Save All button to save your changes.

You’ve previewed and customized your table using database tools. Now you’ll run the
program to see what the data grid view looks like at run time. You’ll also learn how to sort
records in a data grid view object.

Manage a data grid view object at run time

	 1.	 Click the Start Debugging button.

Visual Studio runs your project in the IDE. The Faculty database table appears within
the data grid view object, just as you configured it. Your form looks something like this:

478	 Part IV  Database and Web Programming

The program statement in the Form1_Load event procedure that populated the data
grid view with information from the Faculty table looks like this:

Me.FacultyTableAdapter.Fill(Me.Faculty2010DataSet.Faculty)

This line was added to your program by Visual Studio when you dragged the Faculty
table to the form from the Data Sources window.

Each row in the data grid view represents a record of data from the Faculty table in the
database. Scroll bars are provided so that you can view any records or columns that
aren’t immediately visible. This is a handy ease-of-use feature that comes automatically
with the DataGridView control.

	 2.	 Scroll down the list of records to view all 20 rows, which represent faculty employee
data for a university.

	 3.	 Reduce the size of the First Name column by placing the pointer between the First
Name and E-mail Address column headings and dragging the column border to the left.

When you place the pointer between the column headings, it changes to a resizing
handle. You can resize columns at run time because the data grid view object’s
AllowUserToResizeColumns property is by default set to True. If you want to prevent
resizing, you can set this property to False.

	 4.	 Widen the E-mail Address column to see more of the e-mail name for each faculty
member.

When a data grid view object is filled with data, you can also take advantage of the
DataGridView control’s sorting feature.

	 5.	 Click the Last Name column heading.

The data grid view is sorted alphabetically by the last names of the faculty members.
Your form looks something like the following screen shot:

	 Chapter 19  Data Presentation Using the DataGridView Control	 479

When database records are sorted, a sorting column, or key, is required—you establish
this key by clicking the heading of the column on which you want to base the sort. The
DataGridView control provides visual identification for the current sort key—a tiny arrow
to the right of the column header. If the sort order is currently an ascending alphabetical
(A–Z) list, the arrow points up. Clicking the column heading will reverse the sort order
to create a descending alphabetical (Z–A) list. The arrow acts like a toggle, so you can
switch back and forth between sorting directions.

	 6.	 Click the Last Name column several times to see how the sort order can be switched
back and forth.

	 7.	 Click other column headings, such as Department and Faculty Type, to sort the
database based on those keys.

	 8.	 When you’re finished experimenting with the scrolling, resizing, and sorting features of
the DataGridView control, click the Close button on the form to stop the program.

The program closes, and the development environment returns.

Formatting DataGridView Cells
To customize the appearance of your dataset on a form, you can control the look and
orientation of several DataGridView characteristics by setting properties at design time.
For example, you can change the default width of cells in the data grid view, add or remove
column headers, change the data grid view or header background colors, and change
the color of the gridlines. The following exercise guides you through some of these useful
property settings.

Set data grid view properties at design time

	 1.	 Display the form, and then click the data grid view object (if it is not already selected).

	 2.	 In the Properties window, click the Columns property, and then click the ellipsis (. . .)
button in the second column to open the Edit Columns dialog box.

You used this dialog box earlier to remove the ID and Faculty ID columns from the
Faculty table. (This dialog box is also used to set property settings for individual
columns.) Now, you’ll change the default width of the First Name and E-mail Address
columns.

	 3.	 Select the First Name column, and then set the Width property to 60.

A width of 60 (measured in pixels) will provide plenty of room for the names that you
have in the First Name column.

	 4.	 Select the E-mail Address column, and then set the Width property to 140.

This will provide a little more room for the longer e-mail addresses.

480	 Part IV  Database and Web Programming

	 5.	 Click OK to close the Edit Columns dialog box.

Now, you’ll set properties that control the appearance of all the columns in the table.

Note  You use the Edit Columns dialog box to configure individual columns. To modify
properties that apply to all the columns in a table, you adjust property settings for the
data grid view object in the Properties window.

	 6.	 In the Properties window, set the ColumnHeadersVisible property to False.

Although the column names are somewhat useful in this particular database,
sometimes column names don’t clearly identify their contents or they contain
abbreviations or words that you want to hide from your users. Setting this property
removes the column names from the table.

	 7.	 Click the AlternatingRowsDefaultCellStyle property, and then click the ellipsis button.

The AlternatingRowsDefaultCellStyle property controls the color that appears in the
background of data grid view cells in alternating rows. Changing this setting produces
an alternating effect (white and the color you select) from row to row in the data grid
view. In my opinion, this effect makes it easy to read records in longer tables.

Visual Studio displays the CellStyle Builder dialog box, a tool used to set the properties
of column cells in data grid view tables.

	 8.	 Click the BackColor property, click its arrow in the second column, click the Custom tab,
and then click the light yellow color.

Your dialog box looks like this. The yellow shading is not visible in this book, but you’ll
see it in parts of the dialog box.

	 Chapter 19  Data Presentation Using the DataGridView Control	 481

	 9.	 Click OK to close the dialog box.

When you run the program, the rows in the data grid view will be displayed in
alternating colors of white and yellow.

Note  The color that appears around the edges of the cell is controlled by the
BackgroundColor property. To change the color of all the cells in a data grid view, you can
adjust the DefaultCellStyle property. To change the background color used for the header
cells (if you display them), you can modify the ColumnHeadersDefaultCellStyle property.

	 10.	 Click the GridColor property, click the arrow in the second column, click the Custom
tab, and then click Navy (a dark blue color).

This property setting controls the color of the gridlines. If you change the background
color of the cells, you might also want to modify the gridline color.

Now, you’ll run the program to see the effect of your formatting changes.

	 11.	 Click the Start Debugging button.

After a few moments, the data grid view appears with information from the Faculty
table. Your screen looks similar to the following screen shot:

Notice that the column headers have been removed, the second column is a
little narrower, and the third column is a little wider. Notice also the alternating
white-and-yellow row pattern and the blue gridlines (they are not too discernible in
the printed book, alas, but you can see them on the screen).

	 12.	 Click the Close button on the form to stop the program.

482	 Part IV  Database and Web Programming

You might want to scan the Properties window for additional property settings and
customizations. There are several possibilities if you look closely at the list of formatting
options. Remember, these property settings affect all the columns in a table, not just
individual columns.

Adding a Second Data Grid View Object
To provide your users with a data-rich user interface containing multiple views of your
database, you should consider adding a second data grid view object to your form. After
you have established a dataset in the Data Sources window, it is relatively straightforward to
add an additional DataGridView control bound to a second table within the dataset. If you
connect to a second database table (rather than a second copy of the first table), you can
also add a second navigation bar to the form and use it to control the second data grid view
separately. In the following exercise, you’ll add a second version of the Faculty table to your
form that contains a different set of fields with faculty information.

Bind a second DataGridView control to the Faculty table

	 1.	 Expand the size of the form or reduce the height of the FacultyDataGridView object to
make room on the form for a second data grid view object below the first.

Because my screen resolution is probably smaller than yours, I’m reducing the height of
the FacultyDataGridView object and making the form a little bigger to accommodate
the second data grid view.

	 2.	 Open the Data Sources window, if it is not currently visible.

	 3.	 Drag the Faculty table from the Data Sources window to below the
FacultyDataGridView object.

Visual Studio creates a second data grid view object named FacultyDataGridView1
on the form. In this case, you’re adding a second copy of the Faculty table to your
program. However, if your database has multiple tables, an interesting thing to do
is add a second table to the form, which will give you completely different database
records to look at.

	 4.	 Right-click the new FacultyDataGridView1 object, and then click the Edit Columns
command.

The Edit Columns dialog box opens.

	 5.	 Select and remove the ID, E-mail Address, Department, Faculty Type, and Business
Phone columns.

	 Chapter 19  Data Presentation Using the DataGridView Control	 483

This time, you’ll show some different information from the Faculty table. When you’re
finished, just the Last Name, First Name, and Faculty ID columns are left, as shown in
the following screen shot:

	 6.	 Click OK to close the Edit Columns dialog box.

	 7.	 Move and resize the second data grid view object on the form so that all three rows are
displayed and the data grid views are next to each other.

Your form looks something like the following screen shot. (Because I am running Visual
Studio at a screen resolution of 800 x 600, I needed to hide many of the Visual Studio
tool windows to show the form.)

484	 Part IV  Database and Web Programming

If you want to run your program now and have the two data grid view controls linked,
you don’t need to add any additional controls to your project. With one navigation
bar, the two tables will be linked and both will scroll automatically, even though they
display slightly different fields. Let’s see how this works.

	 8.	 Click the Save All button to save your changes.

	 9.	 Click the Start Debugging button on the toolbar.

Visual Studio runs the DataGridView Sample program in the IDE. You see two data grid
view objects on the form, as shown in the following screen shot:

	 10.	 Use the navigation bar to start scrolling through the Faculty table records.

You can see that the two data grid view objects are linked, because they share the
same table and underlying data adapter and binding navigator. This is a feature of the
way dataset navigation works in this particular implementation; however, if you choose
to display two separate database tables, you can add a second navigation bar and
move through the records separately.

	 11.	 Use the top scroll bar to move through the contents of the top data grid view object on
its own.

The scroll bars allow you to view the two data grid view objects independently, so you
always don’t have to be looking at the records for the same employee.

	 12.	 When you’re finished experimenting with the two data grid view objects, click the Close
button to close the DataGridView Sample application.

You can perhaps appreciate how useful two data grid view objects might be for the user who
wants to compare two very large tables of information. If the data is further filtered by SQL
SELECT statements, the application quickly becomes quite powerful.

	 Chapter 19  Data Presentation Using the DataGridView Control	 485

Adding a BindingNavigator Control to Create
a Second Navigation Bar on the Form
If you choose to add a second database table to your form, keep in mind that you can
also add a second navigation bar to the form so that your user can use two different
navigation bars at once. To make this work, you need to be using a database that
contains more than one table. (In the Faculty2010.accdb database, there was only one
table, but it is common for databases to have several tables to choose among.) Follow
these steps to add a second table and navigation bar to your program:

	 1.	 Use the Data Sources window to create a second data grid view object on your
form, representing a second table in the database.

	 2.	 Customize the table’s fields by setting properties and using the Edit Columns
command.

	 3.	 Double-click the BindingNavigator control on the Data tab of the Toolbox.
Visual Studio adds a binding navigator object named BindingNavigator1 to the
component tray and adds a second navigation bar to the top of your form. You
may need to move the data grid view objects down slightly if the new navigation
bar is covering them.

	 4.	 Change the BindingSource property of the second binding navigator object to
the binding source of the second table. This is made easy by the BindingSource
arrow in the Properties window, which shows the names of the two valid binding
sources in the program, so you can simply pick it from the list. Once a link has
been established between the second navigation bar and the binding source
object representing the second table, your program is ready to run.

One Step Further: Updating the Original Database
As I mentioned earlier, the dataset object in your program is only a representation of the
data in your original database. This is also true of the information stored in the data grid view
objects on your form—if the user makes a change to this data, the change isn’t written back
to the original database unless you have set the data grid view object’s ReadOnly property
to False and the user clicks the Save Data button on the navigation bar. The designers of
ADO.NET and Visual Studio created this relationship to protect the original database and to
allow your users to manipulate data freely in your programs—whether you plan to save the
changes or not.

In the following exercise, you’ll examine the first data grid view object’s ReadOnly property,
which enables or disables changes in the FacultyDataGridView object. You’ll also learn how
to use the Save Data button, which writes changes back to the original database tables
on disk.

486	 Part IV  Database and Web Programming

Enable updates to the database

	 1.	 Click the first data grid view object on the form (FacultyDataGridView).

	 2.	 In the Properties window, scroll to the ReadOnly property, and then examine its
property setting.

If the ReadOnly property is set to False, the user is free to make changes to the
information in the data grid view cells. If you want to allow your users to modify the
information and write it back to the database your program is connected to, you
should keep this default setting. If you want to disable editing, you should set the
ReadOnly property to True.

You’ll keep the default setting of False in this case—you want to test updating the
underlying Faculty2010.accdb database.

Tip  The complete DataGridView Sample program is located in the C:\Vb10sbs\Chap19\
Datagridview sample folder.

	 3.	 Click the Start Debugging button to test the first grid’s ReadOnly property.

The two data grid view objects appear with data from the Faculty table.

	 4.	 In the first data grid view object, in the record for Physics faculty member Wilson Pais,
click the cell containing Lecturer (the Faculty Type field), type Assistant Professor,
and then press Enter.

As you make the change, a tiny pencil icon appears in the row header to the left,
indicating that a change is being made. Your screen looks similar to this:

	 Chapter 19  Data Presentation Using the DataGridView Control	 487

When you press Enter or click a different cell in the data grid view object, the change is
stored in the Faculty2010DataSet dataset.

	 5.	 Click the Save Data button on the navigation bar.

Visual Studio uses the UpdateAll method in the data grid view’s table adapter object
to write the changed dataset to the underlying database. The program statement used
to accomplish this save operation in the FacultyBindingNavigatorSaveItem_Click event
procedure looks like this:

Me.TableAdapterManager.UpdateAll(Me.Faculty2010DataSet)

TableAdapterManager is the component in Visual Studio 2010 that allows you to control
one or more database tables in a program. The UpdateAll method saves changes in all
open tables in a program, which means that it saves changes not only in the Faculty
table, but any other table that you have open. You do not have to accept the default
saving behavior here. If you would like to save only the changes in the Faculty table
when your user clicks the Save Data button, replace the statement above with the
following line of code:

Me.FacultyTableAdapter.Update(Me.Faculty2010DataSet.Faculty)

If you use the Update method for a named table adapter object, then just that table
adapter’s associated data will be saved. (And remember, you can also control user edits
within tables by using the ReadOnly property.)

	 6.	 Click the Close button to end the program.

The program closes and the Visual Studio IDE returns. Now, you’ll run the program
again to see whether the Faculty table in the Faculty2010.accdb database has indeed
been modified. (When you restart the program, it will load data from the database file.)

	 7.	 Click the Start Debugging button.

After a moment, the data grid view objects are loaded with data. You will see that the
row in the Faculty table containing the name Wilson Pais has been updated with the
change to Assistant Professor. The program works!

	 8.	 Click the Close button to end the program.

If you want to continue experimenting with the ReadOnly property for one or both of the
data grid view objects, set ReadOnly to True now, and see what happens when you try to
modify the database. (You won’t be able to make edits or save any changes.) You might
also experiment with adding new rows of data to the database by using the built-in editing
features and toolbar buttons associated with the DataGridView and BindingNavigator
controls. (Before you add new rows, set the ReadOnly property back to False.)

Now take stock of your accomplishments. You’ve learned to display multiple tables and
records by using the DataGridView and BindingNavigator controls, and you’ve learned
how to customize the data grid view objects with property settings and how to write

488	 Part IV  Database and Web Programming

table updates from the data grid view back to the original database. As you can begin to
see, database programming with ADO.NET and Visual Studio is straightforward but also
somewhat involved. There are many tools, components, and programming techniques
related to viewing, manipulating, and updating database records, and we haven’t even
begun to talk seriously about important issues such as security and what happens when you
work with large databases that are being used by many users at the same time.

Although you’ve been able to accomplish a lot with little or no program code, there is still
much to learn if you plan to make extensive use of databases within Visual Basic applications.
For a list of books I recommend for you to continue your studies, see the Appendix, “Where
to Go for More Information.”

Data Access in a Web Forms Environment
The data access techniques discussed in Chapter 18 and this chapter were designed
for use in the Windows Forms Designer—the Visual Studio environment that you’ve
used to build most of the programs in this book. However, you can also use ADO.NET
programming techniques in a Web Forms environment, which allows you to share data
resources over the Internet and datacentric applications that are accessible through
a Web browser such as Internet Explorer. I’ll show you how to do this near the end
of the next chapter, and you’ll learn how to use a few new tools there too, including
the GridView control, a version of the DataGridView control designed for displaying
database tables on Web sites.

Chapter 19 Quick Reference

To Do This

Establish a connection to
database tables in a project

Use the Data Source Configuration Wizard to link the project to
a database, create a dataset, and fill the Data Sources window with
a representation of the selected tables.

Create a data grid view
object on a form to display
an entire database table

Drag a table icon from the Data Sources window to the form.
Then resize the data grid view object so that each column is visible.

Preview data bound to
a data grid view object

Click the data grid view object’s smart tag to display the DataGridView
Tasks list. Click the Preview Data command, and then click the Preview
button in the Preview Data dialog box.

Remove a column from
a data grid view object

Click the data grid view object’s smart tag to display the DataGridView
Tasks list. Click the Edit Columns command, click the column that
you want to remove in the Selected Columns box, and then click the
Remove button.

	 Chapter 19  Data Presentation Using the DataGridView Control	 489

To Do This

Sort the records in a data
grid view object at run time

Click the column header that you want to sort by. Visual Studio sorts
the data grid view object alphabetically based on that column.

Reverse the direction
of a data grid view sort at
run time

Click the column header a second time to reverse the direction of the
sort (from A–Z to Z–A).

Change the default column
width for a column in a data
grid view object

In the Properties window, click the Columns property, and then the
ellipsis button. In the Edit Columns dialog box, adjust the Width
property.

Hide column headers in
a data grid view object

Set the ColumnHeadersVisible property to False.

Create an alternating color
scheme for rows within
a data grid view object

Pick a color scheme for alternating rows by using the
AlternatingRowsDefaultCellStyle property. In the CellStyle Builder
dialog box, adjust the BackColor property. The color that you select
will alternate with white.

Change the color of
gridlines in a data grid
view object

Adjust the GridColor property.

Add a second data grid
view object to a form

Drag a second table from the Data Sources window to the form.
(It can be the same table that you used in the first data grid view
object, or a second table within the database.) Resize and customize
the table, taking care to make the form large enough to display all the
database columns and records that your user will want to see. If you
want to add a second navigation bar to the form to provide access
to the table, create a second BindingNavigator control on the form,
and set its BindingSource property to the binding source representing
the new table you created.

Prevent the user from
editing or changing the data
in a data grid view object

Set the data grid view object’s ReadOnly property to True.

Write changes made in the
data grid view object back
to the underlying database

Verify that the data grid view object’s ReadOnly property has
been set to False. Then at run time, use the Save Data button on
the navigation bar to save your changes and update the database.
Alternatively, you can use the table adapter’s Update method or the
Me.TableAdapterManager.UpdateAll method within program code.

		 491

Chapter 20

Creating Web Sites and Web Pages
by Using Visual Web Developer
and ASP.NET

After completing this chapter, you will be able to:

n	 Start Visual Web Developer and create a new Web site.

n	 Use Visual Web Developer tools and windows, including the Web Page Designer.

n	 Use the Visual Web Developer Toolbox to add server controls to Web pages.

n	 Add text, formatting effects, and Visual Basic code to a Web page that calculates loan
payments for a car loan.

n	 Create a Web page that displays Help information.

n	 Use the HyperLink control to link one Web page to another on a Web site.

n	 Use the GridView control to display a table of database information on a Web page.

n	 Set the Title for a Web page and edit the master page.

In this chapter, you’ll learn how to build Web sites and Web pages by using the Visual Web
Developer tool included with Microsoft Visual Studio 2010. Visual Web Developer has the
look and feel of the Visual Studio Integrated Development Environment (IDE), but it is
customized for Web programming and Microsoft ASP.NET 4, the Microsoft .NET Framework
component designed to provide state-of-the-art Internet functionality. Although a complete
description of Web programming and ASP.NET isn’t possible here, there’s enough in common
between Web programming and Windows programming to allow you to do some useful
experimentation—even if you have little or no experience with Hypertext Markup Language
(HTML). Invest a few hours in this chapter, and you’ll see how quickly you can build a Web
site that calculates loan payments for car loans, create a Web page with Help information,
and display loan prospects from a Microsoft Access database by using the GridView control.

Inside ASP.NET
ASP.NET 4, Microsoft’s Web development platform, has been enhanced in this release.
Some of the improvements include how Web pages are created in the Web Page Designer;
various feature enhancements to ASP.NET Web pages and ASP.NET MVC; support for
recently introduced browsers and handheld devices; a new ASP.NET Chart server control;
enhancements to the FormView, ListView, and QueryExtender controls; new dynamic data

Table of Contents

Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.
NET . 491

Inside ASP.NET . 491

Web Pages vs. Windows Forms . 493

Server Controls . 493

HTML Controls . 494

Building a Web Site by Using Visual
Web Developer . 495

Considering Software Requirements
for ASP.NET Programming . 495

Using the Web Page Designer . 498

Adding Server Controls to a Web Site . 501

Writing Event Procedures for Web Page Controls 504

Customizing the Web Site Template . 509

Displaying Database Records on a Web Page . 512

One Step Further: Setting Web Site Titles
in Internet Explorer . 519

Chapter 20 Quick Reference . 522

492	 Part IV  Database and Web Programming

controls and enhancements; and improvements to the AJAX (Asynchronous JavaScript
and XML) programming model. Although ASP.NET has some similarities with an earlier Web
programming technology named Active Server Pages (ASP), ASP.NET has been significantly
enhanced since its first release in Visual Studio .NET 2002, and continues to evolve as new
features are added to the .NET Framework and Visual Studio software. Visual Web Developer
is the tool that you use to create and manage ASP.NET user interfaces, commonly called Web
pages or (in a more comprehensive sense) Web sites.

Tip  In programming books about ASP.NET, you’ll sometimes see Web pages referred to as Web
Forms and Web sites referred to as Web applications or ASP.NET applications.

By using Visual Web Developer, you can create a Web site that displays a user interface,
processes data, and provides many of the commands and features that a standard
application for Windows might offer. However, the Web site you create is viewed in a
Web browser, such as Internet Explorer, Mozilla Firefox, Apple Safari, or even one of the
new mobile device types, including Google Chrome, the Research in Motion BlackBerry
smart phone, and the Apple iPhone. These Web sites are typically stored on one or more
Web servers, which use Microsoft Internet Information Services (IIS) to display the correct
Web pages and handle most of the computing tasks required by your Web site. (In Visual
Studio 2010, Web sites can also be located and run on a local computer that does not
require IIS, giving you more options for development and deployment.) This distributed
strategy allows your Web sites to potentially run on a wide range of Internet-based or
stand-alone computers—wherever your users and their rich data sources are located.

To create a Web site in Visual Studio 2010, you click the New Web Site command on the File
menu, and then use the Visual Web Developer to build one or more Web pages that will
collectively represent your Web site. Each Web page consists of two pieces:

n	 A Web Forms page, which contains HTML, ASP.NET markup, and controls to create the
user interface.

n	 A code-behind file, which is a code module that contains program code that “stands
behind” the Web Forms page.

This division is conceptually much like the Windows Forms you’ve been creating in Microsoft
Visual Basic—there’s a UI component and a code module component. The code for both of
these components can be stored in a single .aspx file, but typically the Web Forms page code
is stored in an .aspx file, and the code-behind file is stored in an .aspx.vb file.

In addition to Web pages, Web sites can contain code modules (.vb files), HTML pages (.htm
files), configuration information (Web.config files), global Web application information
(Global.asax files), cascading style sheet (CSS) information, scripting files (JavaScript), master

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 493

pages, and other components. You can use the Web Page Designer and Solution Explorer to
switch back and forth between these components quickly and efficiently.

Web Pages vs. Windows Forms
What are the important differences between Web pages and Windows Forms? To begin
with, Web pages offer a slightly different programming paradigm than Windows Forms.
Whereas Windows Forms use a Windows application window as the primary user interface
for a program, a Web site presents information to the user through one or more Web pages
with supporting program code. These pages are viewed through a Web browser, and you
can create them by using the Web Page Designer.

Like a Windows Form, a Web page can include text, graphic images, buttons, list boxes, and
other objects that are used to provide information, process input, or display output. However,
the basic set of controls you use to create a Web page is not the set on the Common Controls
tab of the Toolbox. Instead, ASP.NET Web sites must use controls on one of the tabs in the
Visual Web Developer Toolbox, including Standard, Data, HTML, and many others. Each of
the Visual Web Developer controls has its own unique methods, properties, and events, and
although there are many similarities between these controls and Windows Forms controls,
there are also several important differences. For example, the Visual Studio DataGridView
control is called GridView in Visual Web Developer and has different properties and methods.

Many Web page controls are server controls, meaning that they run on the Web server.
Server controls have an “asp” prefix in their tag. HTML controls (located on the HTML tab
of the Visual Web Developer Toolbox) are client controls by default, meaning that they run
only within the user’s browser. For now, however, you simply need to know that you can use
server controls, HTML controls, or a combination of both in your Web site projects. As you
gain experience in Web programming, you may want to investigate AJAX programming in
Visual Studio, which can enhance the efficiency of your Web applications and add advanced
user-interface elements for users.

Server Controls
Server controls are more capable than HTML controls and function in many ways like the
Windows Forms controls. Indeed, many of the server controls have the same names as the
Windows Forms controls and offer many of the same properties, methods, and events. In
addition to simple controls such as Button, TextBox, and Label, more sophisticated controls
such as Chart, FileUpload, LoginView, and RequiredFieldValidator are provided on a number
of tabs in the Toolbox; Visual Studio 2010 has added a number of controls to the list. The
screen shot on the following page shows a sample of the server controls in the Visual Web
Developer Toolbox. (Dynamic Data and Reporting controls are not shown.)

494	 Part IV  Database and Web Programming

HTML Controls
The HTML controls are a set of older user interface (UI) controls that are supported by all
Web browsers and conform closely to the early HTML standards developed for managing
UI elements on a typical Web page. They include Button, Text, and Checkbox—useful basic
controls for managing information on a Web page that can be represented entirely with HTML
code. Indeed, you might recognize these controls if you’ve coded in HTML before. However,
although they’re easy to use and have the advantage of being a “common denominator”
for Web browsers, they’re limited by the fact that they have no ability to maintain their own
state. (In other words, the data that they contain will be lost between views of a Web page.)
The following screen shot shows the HTML controls offered on the HTML tab of the Toolbox
in Visual Web Developer:

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 495

Building a Web Site by Using Visual
Web Developer

The best way to learn about Visual Web Developer and ASP.NET is to get some hands-on
practice. In the exercises in this chapter, you’ll create a simple car loan calculator that
determines monthly payments and contains an About tab that explains how the program
works. Later in the chapter, you’ll use the GridView control to display a table of data on
a Web page in the same Web site. You’ll begin by verifying that Visual Studio is properly
configured for ASP.NET programming, and then you’ll create a new Web site project. Next,
you’ll use the Web Page Designer to create a Web page with text and links on it, and you’ll
use controls in the Visual Web Developer Toolbox to add controls to the Web page.

Considering Software Requirements
for ASP.NET Programming
Before you can create your first ASP.NET Web site, you need to make sure your computer is
set up properly. To perform ASP.NET programming, you need to have Visual Web Developer
installed. Visual Web Developer is a component of Visual Studio 2010 Professional, Premium,
and more advanced editions. You can also download Visual Web Developer 2010 Express at
http://www.microsoft.com/express/Web/, and it contains almost all the features described in this
chapter (I’ll point out any differences as we go). If you are using Visual Web Developer 2010
Express, be sure to set the settings to Expert by clicking the Tools menu, clicking Settings, and
then clicking Expert Settings. This will ensure that the steps in this chapter more closely match
your software.

Visual Studio 2010 and Visual Web Developer include their own local Web server, so setting up
and configuring a Web server with Microsoft Internet Information Services (IIS) and the .NET
Framework is not required. Having a local Web server makes it easy to create and test your
ASP.NET Web sites, and you’ll see it described below as the ASP.NET Development Server.

In Visual Studio 2010, you can create and run your Web site in one of three locations:

n	 Your own computer (via the ASP.NET Development Server)

n	 An HTTP server that contains IIS and related components

n	 An FTP site (a remote file server)

The first location is the option we’ll use in this book because it requires no additional
hardware or software. In addition, when you develop your Web site on the local file system,
all the Web site files are stored in one location. When you’re finished testing the application,
you can deploy the files to a Web server of your choosing.

496	 Part IV  Database and Web Programming

Create a new Web site

	 1.	 Start Visual Studio, and then click the New Web Site command on the File menu.

Note  If you don’t see the New Web Site command on the File menu, then you don’t have
Visual Web Developer installed. To download Visual Web Developer Express, visit
http://www.microsoft.com/express/Web/ and follow the installation instructions.

Although you might have seen the New Web Site command before, we haven’t used it
yet in this book. This command starts Visual Web Developer and prepares Visual Studio
to build a Web site. You see a New Web Site dialog box similar to the following:

In this dialog box, you can select the Web site or application template, the location for
the Web site (local file system, HTTP server, or FTP site), and the programming language
that you want to use (Visual Basic or Microsoft Visual C#). You can also identify the
version of the .NET Framework that you want to target with your Web application.
(Version 4 offers the most features, but there are times that you may need to design
specifically for platforms with an earlier version of the .NET Framework. However, Visual
Web Developer 2010 Express does not provide the option of targeting a specific version
of the .NET Framework.)

	 2.	 In the New Web Site dialog box, verify that Visual Basic is the selected language and
that ASP.NET Web Site is the selected template.

	 3.	 In the Web Location list, make sure that File System is selected.

	 4.	 Type C:\Vb10sbs\MyChap20 in the File Name text box.

Although you have been specifying the folder location for projects after you have
built the projects in this book, in Visual Web Developer, projects are saved up front.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 497

The “my” prefix in the path will avoid a conflict with the solution Web site in the
practice files (C:\Vb10sbs\Chap20) that I’ve built for you.

	 5.	 Click OK to accept your selections.

Visual Studio loads Visual Web Developer and creates a Web page (Default.aspx) to
contain the user interface and a code-behind file (Default.aspx.vb) that will store the
code for your Web page.

	 6.	 If you don’t see Default.aspx open in the Web Page Designer, double-click Default.aspx
in Solution Explorer now to open it.

	 7.	 At the bottom of the Web Page Designer, click the Design tab.

Your screen looks something like the one shown in the following screen shot:

Unlike the Windows Forms Designer, the Web Page Designer displays the Web page in
three possible views in the IDE, and three tabs at the bottom of the Designer (Design,
Split, and Source) allow you to change your view of the Web page.

The Design tab shows you approximately how your Web page will look when a Web
browser displays it. When the Design tab is selected, a basic template page (“My
ASP.NET Application”) appears in the Designer with the result of source-code
formatting, and you can add controls to your Web page and adjust how objects on
the page are arranged.

On the Source tab, you can view and edit the HTML and ASP.NET markup that’s used to
display the Web page in a Web browser. If you’ve used Microsoft Expression Web, you’ll

498	 Part IV  Database and Web Programming

be familiar with these two ways of displaying a Web page and perhaps also with some
of the HTML tags that control how Web pages are actually displayed. The Split tab
offers a composite view of the Design and Source tabs.

A few additional differences between the Windows Forms Designer and the Web
Page Designer are worth noting at this point. The Toolbox now contains several
collections of controls used exclusively for Web programming. Solution Explorer also
contains a different list of project files for the Web site you’re building, as shown in the
following screen shot. In particular, notice the Default.aspx file in Solution Explorer;
this file contains the UI code for the active Web page. Nested under the Default.aspx
file, you’ll find a file named Default.aspx.vb. A configuration file named Web.config
and a master page file named Site.master are also listed.

Note  When you close your new Web site and exit Visual Web Developer, note that you open
the Web site again by clicking the Visual Studio File menu and then clicking the Open Web Site
command. Web sites are not opened by using the Open Project command on the File menu.

Now you’re ready to add some text to the Web page by using the Web Page Designer.

Using the Web Page Designer
Unlike a Windows Form, a Web page can have text added directly to it when it is in the Web
Page Designer. In Source view, the text appears within HTML and ASP.NET tags somewhat as
it does in the Visual Studio Code Editor. In Design view, the text appears in top-to-bottom
fashion within a grid as it does in a word processor such as Microsoft Word, and you’ll see no
HTML. In the next exercises, you’ll type text in Design view, edit it, and then make formatting
changes by using buttons on the Formatting toolbar. Manipulating text in this way is usually

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 499

much faster than adding a Label control to the Web page to contain the text. You’ll practice
entering the text for your car loan calculator in the following exercise.

Add text in Design view

	 1.	 Click the Design tab, if it is not currently selected, to view the Web Page Designer in
Design view.

A faint rectangle appears at the top of the Web page, near the template text
“WELCOME TO ASP.NET.” The template text is there to show you how text appears on
a Web Form, and where you can go to get additional information about ASP.NET. You’ll
also notice that your Web page has Home and About tabs, which are provided for you
as part of your default page.

	 2.	 Position your insertion point at the end of the text “WELCOME TO ASP.NET.”

A blinking I-beam appears at the end of the line.

	 3.	 Press the BACKSPACE key to remove “WELCOME TO ASP.NET,” and then type Car Loan
Calculator.

Visual Studio displays the title of your Web page exactly as it will appear when you
open the Web site in your browser.

	 4.	 Delete the line beginning with “To learn more about ASP.NET. . .,” and in its place, type
the following sentence:

Enter the required information and click Calculate!

	 5.	 Delete the sentence in the template beginning with “You can also find
documentation. . .”

Now you’ll use the Formatting toolbar to format the title with italic formatting
and a different color.

	 6.	 Right-click the Standard toolbar in Visual Web Developer to display the list of toolbars
available in the IDE.

	 7.	 If you do not see a check mark next to Formatting in this list, click Formatting to add
the Formatting toolbar.

The Formatting toolbar now appears in the IDE if it was not already visible. Notice that
it contains a few features not usually found on a text formatting toolbar.

	 8.	 Select the text “Car Loan Calculator.”

Before you can format text in Visual Web Developer, you must select it.

	 9.	 Click the Italic button on the Formatting toolbar.

	 10.	 On the Format menu, click the Font command, click Red in the Color list box, and then
click OK.

500	 Part IV  Database and Web Programming

Your screen looks like this:

Now, you’ll examine the HTML and ASP.NET markup for the text and formatting you entered.

View the HTML and ASP.NET markup for a Web page

	 1.	 Click the Source tab at the bottom of the Designer.

The Source tab displays the actual HTML and ASP.NET markup for your Web page.
To see more of the markup, you might want to resize a few programming tools
temporarily and use the document scroll bars. The markup looks like the following
screen shot. Your markup might have some differences.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 501

A Web page is made up of page information, scripting code, cascading style sheet (CSS)
information, HTML tags, ASP.NET tags, image references, objects, and text. The @ Page
directive contains information about the language you selected when creating the Web
application, the name of any code-behind file, and any inherited forms.

HTML and ASP.NET tags typically appear in pairs so that you can see clearly where
a section begins and ends. For example, the <style> tag identifies the beginning of
text formatting, and the </style> tag identifies the end. Notice that the “Car Loan
Calculator” text appears within tags to make the text italic. Below the
“Car Loan Calculator” text, the second line of text you entered is displayed.

Tip  Remember that the Source tab is an actual editor, so you can change the text that you
entered by using standard text editing techniques. If you know something about HTML
and ASP.NET, you can add other tags and content as well.

	 2.	 Click the Design tab to display your Web page in Design view, and open the Toolbox if
it is not visible.

Adding Server Controls to a Web Site
Now you’ll add TextBox, Label, and Button controls to the car loan calculator. Although
these controls are located in the Visual Web Developer Toolbox, they’re very similar to the
Windows Forms controls of the same name that you’ve used throughout this book. (I’ll
cover a few of the important differences as they come up.) The most important thing to
remember is that in the Web Page Designer, controls are inserted at the insertion point if you
double-click the control name in the Toolbox. After you add the controls to the Web page,
you’ll set property settings for the controls.

Use TextBox, Label, and Button controls

	 1.	 Display the Standard tab of the Toolbox, if it isn’t already visible.

	 2.	 Position the insertion point below the last line of text on the Web page, and then press
ENTER to create a little blank space below the text for the controls.

Because controls are placed at the insertion point, you need to use the text editing keys
to position the insertion point appropriately before double-clicking a control in the
Toolbox.

Note  By default, the Web Page Designer positions controls relative to other controls.
This is an important difference between the Web Page Designer and the Windows Forms
Designer. The Windows Forms Designer allows you to position controls wherever you
like on a form. You can change the Web Page Designer so that you can position controls
wherever you like on a Web page (called absolute positioning); however, you might get
different behavior in different Web browsers.

502	 Part IV  Database and Web Programming

	 3.	 Double-click the TextBox control on the Standard tab of the Toolbox to create a text
box object at the insertion point on the Web page.

Notice the asp:textbox#TextBox1 text that appears above the text box object. The “asp”
prefix indicates that this object is an ASP.NET server control. (This text disappears when
you run the program.)

	 4.	 Click the right side of the text box object to place the insertion point at the outside
edge, and then press ENTER.

	 5.	 Double-click the TextBox control again to add a second text box object to the
Web page.

	 6.	 Repeat Steps 4 and 5 to create a third text box object below the second text box.

Now you’ll use the Label control to insert labels that identify the purpose of the text
boxes.

	 7.	 Click to the right of the first text box object to place the insertion point at the right
edge of the text box.

	 8.	 Press the SPACEBAR key twice to add two blank spaces, and then double-click the Label
control in the Toolbox to add a label object to the Web page.

	 9.	 Repeat Steps 7 and 8 to add label objects to the right of the second and third text boxes.

	 10.	 Click to the right of the third label object to place the insertion point to the right of the
label, and then press ENTER.

	 11.	 Double-click the Button control to create a button object at the bottom of the Web page.

The Button control, like the TextBox and Label controls, is very similar to its Windows
Forms counterpart. Your screen looks like this:

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 503

Now you’ll set a few properties for the seven new controls you have created on the Web
page. If it is not already visible, open the Properties window by pressing F4. As you set
the properties, you’ll notice one important difference between Web pages and Windows
Forms—the familiar Name property has been changed to ID in Visual Web Developer.
Despite their different names, the two properties perform the same function.

	 12.	 Set the following properties for the objects on the form:

Object Property Setting

TextBox1 ID txtAmount

TextBox2 ID txtInterest

TextBox3 ID txtPayment

Label1 ID

Text

lblAmount

“Loan Amount”

Label2 ID

Text

lblInterest

“Interest Rate (for example, 0.09)”

Label3 ID

Text

lblPayment

“Monthly Payment”

Button1 ID

Text

btnCalculate

“Calculate”

Your Web page looks like this:

504	 Part IV  Database and Web Programming

Writing Event Procedures for Web Page Controls
You write default event procedures (or event handlers) for controls on a Web page by
double-clicking the objects on the Web page and typing the necessary program code in
the Code Editor. Although the user will see the controls on the Web page in his or her own
Web browser, the actual code that’s executed will be located on the local test computer or
a Web server, depending on how you configured your project for development and how it
is eventually deployed. For example, when the user clicks a button on a Web page that is
hosted by a Web server, the browser sends the button click event back to the server, which
processes the event and sends a new Web page back to the browser. Although the process
seems similar to that of Windows Forms, there’s actually a lot going on behind the scenes
when a control is used on an ASP.NET Web page!

In the following exercise, you’ll practice creating the default event procedure for the
btnCalculate object on the Web page.

Create the btnCalculate_Click event procedure

	 1.	 Double-click the Calculate button on the Web page.

The code-behind file (Default.aspx.vb) opens in the Code Editor, and the btnCalculate_
Click event procedure appears.

	 2.	 Type the following program code:

Dim LoanPayment As Double

'Use Pmt function to determine payment for 36 month loan

LoanPayment = Pmt(CDbl(txtInterest.Text) / 12, 36, CDbl(txtAmount.Text))

txtPayment.Text = Format(Abs(LoanPayment), "$0.00")

This event procedure uses the Pmt function, a financial function that’s part of the Visual
Basic language, to determine what the monthly payment for a car loan would be by using
the specified interest rate (txtInterest.Text), a three-year (36-month) loan period, and the
specified principal amount (txtAmount.Text). The result is stored in the LoanPayment
double-precision variable, and then it is formatted with appropriate monetary formatting
and displayed by using the txtPayment text box object on the Web page.

The two Text properties are converted from string format to double-precision format
by using the CDbl function. The Abs (absolute value) function is used to make the
loan payment a positive number. (Abs currently has a jagged underline in the Code
Editor because it relies on the System.Math class, which you’ll specify next.) Why make
the loan payment appear as a positive number? The Pmt function returns a negative
number by default (reflecting money that’s owed), but I think negative formatting
looks strange when it isn’t part of a balance sheet, so I’m converting it to positive.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 505

Notice that the program statements in the code-behind file are just regular Visual Basic
code—the same stuff you’ve been using throughout this book. Basically, the process
feels similar to creating a Windows application.

	 3.	 Scroll to the top of the Code Editor, and then enter the following program statement as
the first line of the file:

Imports System.Math

As you learned in Chapter 5, “Visual Basic Variables and Formulas, and the .NET
Framework,” the Abs function isn’t included in Visual Basic by default, but it is part of
the System.Math class in the .NET Framework and can be more easily referenced in
your project by the Imports statement. Web applications can make use of the .NET
Framework class libraries just as Windows applications can.

The Code Editor looks like this:

	 4.	 Click the Save All button on the Standard toolbar.

That’s it! You’ve entered the program code necessary to run the car loan calculator and make
your Web page interactive. Now you’ll build and run the project and see how it works. You’ll
also learn a little bit about security settings within Internet Explorer, a topic closely related to
Web development.

Build and view the Web site

	 1.	 Click the Start Debugging button on the Standard toolbar.

Visual Studio starts the ASP.NET Development Server, which runs ASP.NET applications
locally (on your own computer) so that you can test this application. A status balloon
appears at the bottom of your screen and lets you know the local Uniform Resource

506	 Part IV  Database and Web Programming

Locator (URL) on your computer that has been established, as shown in the following
screen shot. You’ll also see a message about debugging:

The potentially confusing Debugging Not Enabled dialog box is not a major concern.
Visual Web Developer is just indicating that the Web.config file in your project does
not currently allow debugging (a standard security feature). Although you can bypass
this dialog box each time that you test the application within Visual Web Developer by
clicking the Run Without Debugging button, I recommend that you modify the Web.
config file now.

Security Tip  Before you widely distribute or deploy a real Web site, be sure to disable
debugging in Web.config to keep your application safe from unauthorized tampering.

	 2.	 Click OK to modify the Web.config file.

Visual Studio modifies the file, builds your Web site, and displays the opening Web
page in Internet Explorer.

The car loan calculator looks like the screen shot on the following page. If Internet
Explorer does not appear, you might need to select it on the Windows taskbar.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 507

Security Tip  You might see the Information Bar at the top of Internet Explorer indicating
that intranet settings are turned off by default. An intranet warning is again related to
Internet Explorer’s design to protect you from rogue programs or unauthorized access.
An intranet is a local network (typically a home network or small workgroup network),
and because Visual Studio uses intranet-style addressing when you test Web sites built on
your own computer, you’re likely to see this warning message. To suppress the warning
temporarily, click the Information Bar and then click Don’t Show Me This Again. To remove
intranet warnings more permanently, click the Internet Options command on the Tools
menu of Internet Explorer, click the Security tab, and then click Local Intranet. Click the
Sites button, and clear the check mark from Automatically Detect Intranet Network in
the Local Intranet dialog box. However, exercise caution whenever you disable security
warnings, as they are meant to protect you.

Now, let’s get back to testing our Web page.

	 3.	 Type 18000 in the Loan Amount text box, and then type 0.09 in the Interest Rate
text box.

You’ll compute the monthly loan payment for an $18,000 loan at 9 percent interest for
36 months.

508	 Part IV  Database and Web Programming

	 4.	 Click the Calculate button.

Visual Basic calculates the payment amount and displays $572.40 in the Monthly
Payment text box. Your screen looks like this:

	 5.	 Close Internet Explorer.

You’re finished testing your Web site for now. When Internet Explorer closes, your
program is effectively ended. As you can see, building and viewing a Web site is
basically the same as building and running a Windows application, except that the
Web site is executed in the browser. You can even set break points and debug your
application just as you can in a Windows application.

Curious about installing a Web site like this on an actual Web server? The basic procedure for
deploying Web sites is to copy the .aspx files and any necessary support files for the project
to a properly configured virtual directory on a Web server running IIS and .NET Framework 4.
There are a couple of ways to perform deployment in Visual Web Developer. To get started,
click Copy Web Site on the Website menu, or click Publish Web Site on the Build menu.
(Visual Web Developer 2010 Express does not include the Publish Web Site command.)
For more information about your options, see “ASP.NET Deployment Content Map” in the
Visual Studio Help documentation. To find a hosting company that can host ASP.NET Web
applications, you can check out http://www.asp.net.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 509

Validating Input Fields on a Web Page
Although this Web page is useful, it runs into problems if the user forgets to enter
a principal amount or an interest rate or specifies data in the wrong format. To make
Web sites like this more robust, I usually add one or more validator controls that
force users to enter input in the proper format. The validator controls are located on
the Validation tab of the Visual Web Developer Toolbox and include controls that
require data entry in a field (RequiredFieldValidator), require entry in the proper range
(RangeValidator), and so on. For information on the validator controls, search the Visual
Studio Help documentation. They are straightforward to use.

Customizing the Web Site Template
Now the fun begins! Only very simple Web sites consist of just one Web page. Using Visual
Web Developer, you can expand your Web site quickly to include additional information and
resources, including HTML pages, XML pages, text files, database records, Web services, login
sessions, site maps, and more. If you want to add a Web page, you have three options:

n	 You can create a new Web page by using the HTML Page template or the Web Form
template. You select these templates by using the Add New Item command on the
Website menu. After you create the page, you add text and objects to the page by
using the Web Page Designer.

n	 You can add a Web page that you have already created by using the Add Existing
Item command on the Web site menu, and then customize the page in the Web Page
Designer. You use this method if you want to include one or more Web pages that you
have already created in a tool such as Expression Web. (If possible, add pages that don’t
rely on external style sheets and resources, or you’ll need to add those items to the
project as well.)

n	 You can use an existing Web page that is part of the Web site template that you are
using. For example, in the Web site template that you have open now, there is an About
Web page and various Login Web pages that you can customize and use quickly.

In the following exercise, you’ll display the About Web page supplied by the template that you
are using, and you will customize it with some information about how the car loan calculator
application works.

Customize the About.aspx Web page

	 1.	 Display Solution Explorer, click the About.aspx file, and click the View Designer button.

Visual Web Designer displays About.aspx in the Designer, and it displays a line of
placeholder text (“Put content here.”).

510	 Part IV  Database and Web Programming

	 2.	 Delete the placeholder text, and then type the following information:

Car Loan Calculator

The Car Loan Calculator Web site was developed for the book Microsoft Visual
Basic 2010 Step by Step, by Michael Halvorson (Microsoft Press, 2010). The Web
site is best viewed using Microsoft Internet Explorer version 6.0 or later. To learn
more about how this ADO.NET application was created, read Chapter 20 in the
book.

Operating Instructions:

Type a loan amount, without dollar sign or commas, into the Loan Amount box.

Type an interest rate in decimal format into the Interest Rate text box. Do not
include the “%” sign. For example, to specify a 9% interest rate, type “0.09.”

Note that this loan calculator assumes a three-year, 36-month payment period.

Click the Calculate button to compute the basic monthly loan payment that does
not include taxes or other fees.

	 3.	 Using buttons on the Formatting toolbar, add bold formatting for the headings and
italic for the book title, as shown here:

	 4.	 Click the Save All button on the Standard toolbar to save your changes.

	 5.	 Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 511

	 6.	 Click the Home tab on the Web page.

Visual Studio displays the Home page for your Web site, the car loan calculator.

	 7.	 Compute another loan payment to experiment further with the loan calculator.

If you want to test another set of numbers, try entering 20000 for the loan amount
and 0.075 for the interest rate. The result should be $622.12.

	 8.	 Now click the About tab to view the About Web page with instructions for your
program.

Internet Explorer displays the About page on the screen. Your browser looks something
like this:

	 9.	 Read the text, and then click the Back button in Internet Explorer.

Just like any Web site, this one lets you click the Back and Forward buttons to jump
from one Web page to the next.

	 10.	 Close Internet Explorer to close the Web site.

You’ve added a simple About page to your Web site, and you have experimented
with moving from one page to the next. Pretty cool so far. Now, try something more
sophisticated that shows how far you can take your Web site if you choose to include
information from a database.

512	 Part IV  Database and Web Programming

Displaying Database Records on a Web Page
For many users, one of the most exciting aspects of the World Wide Web is the ability to
access large amounts of information rapidly through a Web browser. Often, of course, the
quantity of information that needs to be displayed on a commercial Web site far exceeds
what a developer can realistically prepare using simple text documents. In these cases, Web
programmers add database objects to their Web sites to display tables, fields, and records
of database information on Web pages, and they connect the objects to a secure database
residing on the Web server or another location.

Visual Studio 2010 makes it easy to display simple database tables on a Web site, so as
your computing needs grow, you can use Visual Studio to process orders, handle security,
manage complex customer information profiles, and create new database records—all
from the Web. Importantly, Visual Web Developer delivers this power very effectively.
For example, by using the GridView control, you can display a database table containing
dozens or thousands of records on a Web page without any program code. You’ll see
how this works by completing the following exercise, which adds a Web page containing
loan contact data to the Car Loan Calculator project. If you completed the database
programming exercises in Chapter 18, “Getting Started with ADO.NET,” and Chapter 19,
“Data Presentation Using the DataGridView Control,” be sure to notice the similarities
(and a few differences) between database programming in a Windows environment and
database programming on the Web.

Add a new Web page for database information

	 1.	 Click the Add New Item command on the Website menu.

Visual Web Developer displays a list of components that you can add to your Web site.

	 2.	 Click the Web Form template, type FacultyLoanLeads.aspx in the Name text box, and
then click Add.

Visual Web Developer adds a new Web page to your Web site. You’ll customize it with
some text and server controls.

	 3.	 Click the Design tab to switch to Design view.

	 4.	 Enter the following text at the top of the Web page:

The following grid shows instructors who want loans and their contact phone
numbers:

	 5.	 Press ENTER twice to add two blank lines below the text.

Remember that Web page controls are added to Web pages at the insertion point, so it
is always important to create a few blank lines when you are preparing to add a control.

Next, you’ll display two fields from the Faculty table of the Faculty2010.accdb database by
adding a GridView control to the Web page. GridView is similar to the DataGridView control
you used in Chapter 19, but GridView has been optimized for use on the Web. (There are also

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 513

a few other differences, which you can explore by using the Properties window and Visual
Studio Help documentation.) Note that I’m using the same Access database table I used
in Chapters 18 and 19, so you can see how similar database programming is in Visual Web
Developer. Many programmers also use SQL databases on their Web sites, and Visual Web
Developer also handles that format very well.

Add a GridView control

	 1.	 With the new Web page open and the insertion point in the desired location,
double-click the GridView control on the Data tab of the Visual Web Developer
Toolbox.

Visual Web Developer adds a grid view object named GridView1 to the Web page. The
grid view object currently contains placeholder information.

	 2.	 If the GridView Tasks list is not already displayed, click the GridView1 object’s smart tag
to display the list.

	 3.	 Click the Choose Data Source arrow, and then click the <New Data Source> option.

	 4.	 Visual Web Developer displays the Data Source Configuration Wizard, a tool that you
used in Chapters 18 and 19 to establish a connection to a database and select the
tables and fields that will make up a dataset.

Your screen looks like this:

514	 Part IV  Database and Web Programming

	 5.	 Click the Access Database icon, type Faculty2010 in the Specify An ID For The Data
Source box, and then click OK.

You are now prompted to specify the location of the Access database on your system.
(This dialog box is slightly different than the one you used in Chapter 18.)

	 6.	 Type C:\Vb10sbs\Chap18\Faculty2010.accdb, and then click Next.

Note  If you get a message that says “The Microsoft.ACE.OLEDB.12.0 provider is not
registered on the local machine,” you might not have Access 2007 or later installed. If you
don’t have Access 2007 or later installed, you will need to download and install the 2007
Office System Driver: Data Connectivity Components from Microsoft.com.

You are now asked to configure your data source; that is, to select the table and fields
that you want to display on your Web page. Here, you’ll use two fields from the Faculty
table. (Remember that in Visual Studio, database fields are often referred to as columns,
so you’ll see the word columns used in the IDE and the following instructions.)

	 7.	 Click the Name list box arrow, and then click Faculty. (There is probably only one or two
database tables here, but if there are several, click the Name arrow to view them.)

	 8.	 Select the Last Name and Business Phone check boxes in the Columns list box.

Your screen looks like this:

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 515

Through your actions here, you are creating an SQL SELECT statement that configures
a dataset representing a portion of the Faculty2010.accdb database. You can see the
SELECT statement at the bottom of this dialog box.

	 9.	 Click Next to see the Test Query screen.

	 10.	 Click the Test Query button to see a preview of your data.

You’ll see a preview of actual Last Name and Business Phone fields from the database.
This data looks as expected, although if we were preparing this Web site for wider
distribution, we would take the extra step of formatting the Business Phone column
so that it contains standard spacing and phone number formatting.

	 11.	 Click Finish.

Visual Web Developer closes the wizard and adjusts the number of columns and
column headers in the grid view object to match the selections that you have made.
However, it continues to display placeholder information (“abc”) in the grid view cells.

	 12.	 With the GridView Tasks list still open, click the Auto Format command.

	 13.	 Click the Professional scheme.

The AutoFormat dialog box looks like this:

The ability to format, adjust, and preview formatting options quickly is a great feature
of the GridView control.

	 14.	 Click OK, and then close the GridView Tasks list.

The FacultyLoanLeads.aspx Web page is complete now, and looks like the screen
shot on the following page. (My GridView control is within a <div> tag, but yours
might be within a <p> tag.)

516	 Part IV  Database and Web Programming

Now, you’ll add a hyperlink on the first Web page (or home page) that will display this Web
page when the user wants to see the database table. You’ll create the hyperlink with the
HyperLink control, which has been designed to allow users to jump from the current Web
page to a new one with a simple mouse click.

How does the HyperLink control work? The HyperLink control is located in the Standard
Toolbox. When you add a HyperLink control to your Web page, you set the text that will be
displayed on the page by using the Text property, and then you specify the desired Web page
or resource to jump to (either a URL or a local path) by using the NavigateUrl property. That’s
all there is to it.

Add a hyperlink to the home page

	 1.	 Click the Default.aspx tab at the top of the Designer.

The home page for your Web site opens in the Designer.

	 2.	 Click to the right of the Calculate button object to place the insertion point after that
object.

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 517

	 3.	 Press ENTER to create space for the hyperlink object.

	 4.	 Double-click the HyperLink control on the Standard tab of the Toolbox to create
a hyperlink object at the insertion point.

	 5.	 Select the hyperlink object, and then set the Text property of the object to “Display
Loan Prospects.”

We’ll pretend that your users are bank loan officers (or well-informed car salespeople)
looking to sell auto loans to university professors. Display Loan Prospects will be the
link that they click to view the selected database records.

	 6.	 Set the ID property of the hyperlink object to “lnkProspects.”

	 7.	 Click the NavigateUrl property, and then click the ellipsis button in the second column.

The Select URL dialog box opens.

	 8.	 Click the FacultyLoanLeads.aspx file in the Contents Of Folder list box, and then
click OK.

	 9.	 Click Save All to save your changes.

Your link is finished, and you’re ready to test the Web site and GridView control in your
browser.

Test the final Car Loan Calculator Web site

Tip  The complete Car Loan Calculator Web site is located in the C:\Vb10sbs\Chap20\
Chap20 folder. Use the Open Web Site command on the File menu to open an existing
Web site.

	 1.	 Click the Start Debugging button.

Visual Studio builds the Web site and displays it in Internet Explorer.

	 2.	 Enter 8000 for the loan amount and 0.08 for the interest rate, and then click Calculate.

The result is $250.69. Whenever you add to a project, it is always good to go back and
test the original features to verify that they have not been modified inadvertently. Your
screen looks like the screen shot on the following page.

518	 Part IV  Database and Web Programming

The new hyperlink (Display Loan Prospects) is visible at the bottom of the Web page.

	 3.	 Click Display Loan Prospects to load the database table.

Internet Explorer loads the Last Name and Business Phone fields from the Faculty2010.
accdb database into the grid view object. Your Web page looks something like this:

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 519

The information is nicely formatted and appears useful. By default, you’ll find that the
data in this table cannot be sorted, but you can change this option by selecting
the Enable Sorting check box in GridView Tasks. If your database contains many rows
(records) of information, you can select the Enable Paging check box in GridView Tasks
to display a list of page numbers at the bottom of the Web page (like a list that you
might see in a search engine that displays many pages of “hits” for your search).

	 4.	 Click the Back and Forward buttons in Internet Explorer.

As you learned earlier, you can jump back and forth between Web pages in your Web
site, just as you would in any professional Web site.

	 5.	 When you’re finished experimenting, close Internet Explorer to close the Web site.

You’ve added a table of custom database information without adding any program code!

One Step Further: Setting Web Site Titles
in Internet Explorer

Haven’t had enough yet? Here are two last Web programming tips to enhance your Web site
and send you off on your own explorations.

You might have noticed while testing the Car Loan Calculator Web site that Internet Explorer
displayed “Home Page” in the title bar and window tab when displaying your Web site. Your
program also displays the very large template title “MY ASP.NET APPLICATION” at the top
of the window. In other words, your screen looked like this:

You can customize what Internet Explorer and other browsers display in the title bar by setting
the Title property of the DOCUMENT object for your Web page; and you can modify the
“MY ASP.NET APPLICATION” string by editing the site master page. Give editing both values
a try now.

Set the Title property

	 1.	 With the Default.aspx Web page open in Design view, click the DOCUMENT object in
the Object list box at the top of the Properties window.

520	 Part IV  Database and Web Programming

Each Web page in a Web site contains a DOCUMENT object that holds important
general settings for the Web page. However, the DOCUMENT object is not selected
by default in the Designer, so you might not have noticed it. One of the important
properties for the DOCUMENT object is Title, which sets the title of the current Web
page in the browser.

	 2.	 Set the Title property to “Car Loan Calculator.”

The change does not appear on the screen, but Visual Web Developer records it internally.
Now, change the title of your application in the site master page.

Edit the master page title

	 1.	 Click the Site.Master file in Solution Explorer, and then click the View Designer button.

Visual Studio displays the master page in the Designer. The master page is a template
that provides default settings for your Web site and lets you adjust characteristics such
as appearance, banner titles, menus, and links. For example, you can click smart tags
associated with the Web site’s menu items and adjust them much as you customized
menus in Chapter 4, “Working with Menus, Toolbars, and Dialog Boxes.”

Your screen looks like this:

	 Chapter 20  Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET	 521

	 2.	 Delete the title “MY ASP.NET APPLICATION” and type TIME FOR A NEW CAR?

Visual Web Designer enters your new title. Now run the Web site again.

	 3.	 Click the Start Debugging button.

Visual Studio opens Internet Explorer and loads the Web site. Now a more useful title
bar and banner message appears, as shown in the following screen shot:

Now that looks better.

	 4.	 Close Internet Explorer, and then update the Title properties for the other Web pages
on your Web site.

	 5.	 When you’re finished experimenting with the Car Loan Calculator, save your changes
and close Visual Studio.

Congratulations on completing the entire Microsoft Visual Basic 2010 Step by Step
programming course! Take a few moments to flip back through this book and see all that
you have learned. Now you’re ready for more sophisticated Visual Basic challenges and
programming techniques. Check out the resource list in the Appendix, “Where to Go for More
Information,” for a few ideas about continuing your learning. But take a break first—you’ve
earned it!

522	 Part IV  Database and Web Programming

Chapter 20 Quick Reference

To Do This

Create a new ASP.NET
Web site

Click the New Web Site command on the File menu, click the
ASP.NET Web Site template, specify a folder location in the Web
Location list box, and then click OK.

Switch between Design view
and Source view in the Web
Page Designer

Click the Source or Design tabs in the Web Page Designer. For a
mixed view, click the Split tab.

Enter text on a Web page Click the Design tab, and then type the text you want to add.

Format text on a Web page On the page, select the text that you want to format, and then click
a button or control on the Formatting toolbar. Additional formatting
options are available on the Format menu.

View the HTML and ASP.NET
markup in your Web page

Click the Source tab in the Web Page Designer.

Add controls to a Web page Display the Web page in Design view, open the Toolbox (which
automatically contains Visual Web Developer controls), position
the insertion point where you want to place the control on the page,
and then double-click the control in the Toolbox.

Change the name of an
object on a Web page

Use the Properties window to change the object’s ID property to
a new name.

Write the default event
procedure for an object on
a Web page

Double-click the object to display the code-behind file, and then
write the event procedure code for the object in the Code Editor.

Verify the format of the data
entered by the user into
a control on a Web page

Use one or more validator controls from the Validation tab of the
Toolbox to test the data entered in an input control.

Run and test a Web site in
Visual Studio

Click the Start Debugging button on the Standard toolbar. Visual
Studio builds the project, starts the ASP.NET Development Server,
and loads the Web site in Internet Explorer.

Create a Web page for
a project

Click the Add New Item command on the Website menu, and then
add a new Web Form or an HTML Page template to the project.
Create and format the page by using the Web Page Designer.

Create a link to other Web
pages on your Web site

Add a HyperLink control to your Web page, and then set the
control’s NavigateUrl property to the address of the linked
Web page.

Display database records
on a Web page

Add a GridView control to a Web page in the Web Page Designer.
Establish a connection to the database and format the data by using
commands in the GridView Tasks list. (The Choose Data Source
command starts the Data Source Configuration Wizard.)

Set the title displayed for
Web pages on the Internet
Explorer title bar

For each Web page, use the Properties window to set the
DOCUMENT object’s Title property.

Adjust the banner title,
menus, and other default
values in the master page

Select the Site.Master file in Solution Explorer, and then click View
Designer. Adjust the master page’s default values in the Designer.

		 523

Appendix

Where to Go for More Information
This book has presented beginning, intermediate, and advanced Microsoft Visual Basic 2010
programming techniques with the aim of making you a confident software developer and
Windows programmer. Now that you’ve experimented with many of the tools and features
in Visual Basic 2010, you’re ready for more advanced topics and the full breadth of the
Microsoft Visual Studio 2010 development suite.

If you have your sights set on a career in Visual Basic programming, you might also want to
test your proficiency by preparing for a certified exam in Visual Basic 2010 development. In
this appendix, you’ll learn about additional resources for Visual Basic programming, including
helpful Web sites, a source for certification information, and books that you can use to
expand your Visual Basic programming skills.

Visual Basic Web Sites
The Web is a boon to programmers and is definitely the fastest mechanism for gathering
the latest information about Visual Basic 2010 and related technologies. In this section, I list
several of the Web sites that I use to learn about new products and services related to Visual
Basic. As you use this list, note that the Internet address and contents of each site change
from time to time, so the sites might not appear exactly as I’ve described them. Considering
the constant ebb and flow of the Internet, it’s also a good idea to search for “Visual Basic,”
“Visual Studio 2010,” and “Visual Basic Tutorial” occasionally to see what new information is
available. (For the most specific hits, include the quotes around each search item as shown.)
You might also find some useful information if you search for the product’s early code names
such as “Visual Basic 10.”

http://msdn.microsoft.com/en-us/vbasic/default.aspx

The Microsoft Visual Basic Developer Center home page is the best overall site for
documentation, breaking news, conference information, and product support for Visual
Basic 2010. (If you’re not interested in the U.S. English language site, browse to the Web
site and select a different language in the list box at the top of the page.) The Developer
Center gives you up-to-date information about the entire Visual Basic product line and lets
you know how new operating systems, applications, and programming tools affect Visual
Basic development. Features that I like here are the blogs by Visual Basic team members,
and access to recent videos and downloads.

Table of Contents

Where to Go for More Information . 523
Visual Basic Web Sites . 523

Video Web Sites . 524

Books about Visual Basic and Visual
Studio Programming . 525

Visual Basic Programming . . 526

Microsoft .NET Framework . 526

Database Programming with ADO.NET . 526

Web Programming with ASP.NET . 527

Office Programming . . 527

General Books about Programming and Computer Science 528

524	 Appendix

Tip  Remember that you can also access MSDN resources quickly from the Visual Studio Start
Page within the Visual Studio Integrated Development Environment (IDE). The Start Page loads
updated articles and news content each time you start Visual Studio, so its contents are always
changing.

http://www.microsoft.com/learning/en/us/training/format-books.aspx

The Microsoft Learning Web site offers the newest books on Visual Studio programming
from Microsoft Press. Check here for new books about Visual Basic, Microsoft Visual C#,
Microsoft Visual C++, and supporting database and Web programming technologies. You
can also download freebies, learn about certification, and send e-mail to Microsoft Press.

http://www.microsoft.com/learning/en/us/start/start-right-courses.aspx

This URL leads to the Microsoft Learning Web site for software training and services,
including testing, certification, and distance learning. Over the past several years, many Visual
Basic programmers have found that they can better demonstrate their development skills to
potential employers if they pass one or more certification examinations and earn a Microsoft
certified credential, such as Microsoft Certified Technology Specialist (MCTS), Microsoft
Certified Professional Developer (MCPD), Microsoft Certified Application Developer (MCAD),
and Microsoft Certified Solution Developer (MCSD). Visit the Web site to learn more about
current certification options.

http://www.microsoft.com/communities/default.mspx

This site of technical communities for many Microsoft software products and technologies
offers opportunities to interact with Microsoft employees and your software development
peers. Through this Web site, you can access blogs, newsgroups, webcasts, technical chats, user
groups, and other resources related to Visual Studio development. Visual Studio newsgroup
topics are currently listed under Find a Community in the Products and Technologies category.

Video Web Sites
The Web has seen an explosion of video content. There are several sites that have videos
related to Visual Basic and programming. If you have a few minutes and a high-speed
Internet connection, videos can be a great way to quickly learn something new. If you are the
type of person that learns best by visualizing, check out some of these sites:

http://msdn.microsoft.com/en-us/vbasic/

The Visual Basic Developer Center has a How Do I videos section with videos that are specific
to Visual Basic. These videos cover a variety of areas including new features in Visual Basic 2010,
Forms over Data, Office, Windows, LINQ, and WPF.

http://windowsclient.net/learn/videos.aspx

	 Where to Go for More Information	 525

WindowsClient.net is a Microsoft site that has information about writing client applications
for Windows. The site focuses on two presentation technologies, Windows Forms and
Windows Presentation Foundation (WPF). In addition to technical articles, hands-on labs,
samples, forums, and blog posts, this site also has videos. The Windows Forms videos are
a great place to continue your learning after completing this book.

http://channel9.msdn.com/learn/

Channel 9 is a Microsoft site that hosts videos and discussions around programming.
It has a learning center that has online training videos. Some of the training includes Visual
Studio 2010, .NET Framework 4, Windows 7, Office 2010, SharePoint 2010, Silverlight,
SQL Server, and Windows Phone.

http://live.visitmix.com/Videos

Mix is a yearly Microsoft conference that focuses on current and upcoming Web
technologies. All of the sessions are recorded and posted online for free. The technologies
include Silverlight, ASP.NET, Visual Studio, Web services, HTML, Internet Explorer, and
Windows Phone.

http://microsoftpdc.com/Videos

PDC, or the Professional Developers Conference, is a Microsoft conference that focuses on
future Microsoft technologies. All of the sessions are recorded and posted online for free.
The technologies include Windows, Windows Azure, WPF, ASP.NET, ADO.NET, Visual Studio,
Visual Basic, C#, and Office.

http://www.learnvisualstudio.net/

The LearnVisualStudio.NET site is a pay site that includes over 500 videos that target beginner
to experienced skill levels. The videos cover several areas in .NET including the .NET Framework,
Visual Studio, Visual Basic, C#, Windows Forms, WPF, ASP.NET, ADO.NET, and SQL Server.

Books about Visual Basic and Visual
Studio Programming

Books about Visual Basic and Visual Studio programming provide in-depth sources of
information and self-paced training that Web sites can supplement but not replace. As you
seek to expand your Visual Basic and Visual Studio programming skills, I recommend that
you consult the following sources of printed information (listed here by category and date
of publication). Note that this isn’t a complete bibliography of Visual Studio titles, but it is
a list that’s representative of the books available in English at the time of the initial release of
Visual Studio 2010. I also list books related to database programming, Web programming,
Visual Basic for Applications (VBA) programming, and general books about software
development and computer science.

526	 Appendix

Visual Basic Programming
n	 Visual Basic 2010 Programmer’s Reference, by Rod Stephens (Wrox,

ISBN 978-0-470-49983-2).

n	 Professional Visual Studio 2010, by Nick Randolph, David Gardner, Chris Anderson,
and Michael Minutillo (Wrox, ISBN 978-0470548653).

n	 Programming Windows Services with Microsoft Visual Basic 2008, by Michael Gernaey
(Microsoft Press, ISBN 978-0-7356-2433-7).

n	 Practical Guidelines and Best Practices for Microsoft Visual Basic and Visual C# Developers,
by Francesco Balena and Giuseppe Dimauro (Microsoft Press, ISBN 978-0-7356-2172-5).

n	 Programming Microsoft Visual Basic 2005: The Language, by Francesco Balena
(Microsoft Press, ISBN 978-0-7356-2183-1). This book covers Visual Basic 2005, but it
is still very useful because many of the language features remain the same between
versions.

Microsoft .NET Framework
n	 Microsoft .NET Internals, by Tom Christian (Microsoft Press, ISBN 978-0-7356-2675-1).

Takes Visual Studio 2010 programmers deep into the architecture and inner workings
of the .NET Framework. Offers a tour the core framework and the tools that extend
.NET, including Silverlight, WPF, WCF, and WF.

n	 MCTS Self-Paced Training Kit (Exam 70-536): Microsoft® .NET Framework–Application
Development Foundation, Second Edition, by Tony Northup (Microsoft Press,
ISBN 0-7356-2619-7).

n	 Microsoft Windows Presentation Foundation: A Scenario-Based Approach, by Billy Hollis
(Microsoft Press, ISBN 978-0-7356-2418-4).

n	 Microsoft Windows Workflow Foundation Step by Step, by Kenn Scribner (Microsoft
Press, ISBN 978-0-7356-2335-4).

n	 Microsoft Windows Communication Foundation Step by Step, by John Sharp (Microsoft
Press, ISBN 978-0-7356-2336-1).

Database Programming with ADO.NET
n	 Programming the Microsoft ADO.NET Entity Framework, by David Sceppa (Microsoft

Press, ISBN 978-0-7356-2529-7). The Entity Framework allows developers to construct
their application model and then map the application model to their database schema.
Developers write queries using either Language Integrated Query (LINQ) or Entity
SQL. The Entity Framework converts the LINQ expressions or Entity SQL queries into
database queries based on the mapping information supplied.

	 Where to Go for More Information	 527

n	 ADO.NET 3.5 Cookbook, by Bill Hamilton (O’Reilly Media, 978-0596101404). ADO.NET 3.5
is part of Visual Studio 2008, but still useful with Visual Studio 2010.

n	 Programming Microsoft LINQ, by Paolo Pialorsi and Marco Russo (Microsoft Press,
ISBN 978-0-7356-2400-9). This is a source of in-depth information about the LINQ
technology included with Visual Studio 2008. It is still useful with Visual Studio 2010.

n	 Microsoft ADO.NET 2.0 Step by Step, by Rebecca Riordan (Microsoft Press,
ISBN 978-0-7356-2164-0).

n	 Programming Microsoft ADO.NET 2.0 Core Reference, by David Sceppa (Microsoft Press,
ISBN 978-0-7356-2206-7).

n	 Programming Microsoft ADO.NET 2.0 Applications: Advanced Topics, by Glenn Johnson
(Microsoft Press, ISBN 978-0-7356-2141-1).

Note  Books about ADO.NET 2.0 remain useful for Visual Studio 2010.

Web Programming with ASP.NET
n	 Microsoft ASP.NET 4 Step by Step, by George Shepherd (Microsoft Press,

ISBN 978-0-7356-2701-7). ASP.NET 4 is the version included with Visual Studio 2010.

n	 Programming Microsoft ASP.NET 4., by Dino Esposito (Microsoft Press,
ISBN 978-0-7356-2527-3).

n	 Programming Microsoft ASP.NET MVC, by Dino Esposito (Microsoft Press,
ISBN 978-0-7356-2714-7).

n	 Microsoft ASP.NET and AJAX: Architecting Web Applications, by Dino Esposito
(Microsoft Press, 978-07356-2621-8).

n	 ASP.NET Internals, by George Shepherd (Microsoft Press, ISBN 978-0-7356-2641-6).

n	 Pro ASP.NET 4 in VB 2010, Third Edition, by Matthew MacDonald, Mario Szpuszta,
and Vidya Vrat Agarwal (Apress, ISBN 978-1430225119).

Office Programming
n	 Microsoft Office Excel 2007 Visual Basic for Applications Step by Step, by Reed Jacobsen

(Microsoft Press, ISBN 978-0735624023).

n	 Mastering VBA for Microsoft Office 2007, by Richard Mansfield (Sybex, 978-0470279595).

n	 Visual Studio Tools for Office 2007: VSTO for Excel, Word, and Outlook, by Eric Carter
and Eric Lippert (Addison-Wesley Professional, ISBN 978-0321533210).

528	 Appendix

n	 Access 2007 VBA Bible: For Data-Centric Microsoft Office Applications, by Helen
Feddema (Wiley, ISBN 978-0470047026).

n	 Access 2007 VBA Programmer’s Reference, by Teresa Hennig, Rob Cooper, Geoffrey L.
Griffith, and Armen Stein (Wrox, ISBN 978-0470047033).

In Microsoft Office 2007, a new paradigm was released for writing VBA macros in Office
applications. In 2010, a new version of Office is scheduled to be released, but as of mid-2010,
no books are available describing VBA and the upgraded technology.

General Books about Programming and Computer Science
n	 Code Complete, Second Edition, by Steve McConnell (Microsoft Press,

ISBN 978-0-7356-1967-8). I list this book first because it has been one of my favorite
resources for self-taught programmers.

n	 Code, by Charles Petzold (Microsoft Press, ISBN 978-0-7356-1131-3).

n	 Writing Secure Code, Second Edition, by Michael Howard and David LeBlanc
(Microsoft Press, ISBN 978-0-7356-1722-3).

n	 Software Project Survival Guide, by Steve McConnell (Microsoft Press,
ISBN 978-1-57231-621-8).

n	 Data Structures and Algorithms Using Visual Basic .NET, by Michael McMillan
(Cambridge University Press, ISBN 978-0-521-54765-9).

n	 The Art of Computer Programming, Volumes 1–3, by Donald Knuth (Addison-Wesley
Professional, ISBN 978-0-201-48541-7). I was given the third-edition, three-volume set
(published in 1997–1998) as a gift, and it made my day! If you can afford only one, get
Volume 1.

n	 Data Structures and Algorithms, by Alfred V. Aho, Jeffrey D. Ullman, and John E.
Hopcroft (Addison-Wesley, ISBN 978-0-201-00023-8).

It is especially important that self-taught programmers acquire a library of general
programming books over time that can help them with more theoretical (and non-
language-dependent) topics such as fundamental algorithms, data structures, sorting,
searching, compression, random numbers, advanced mathematics, networking, and
compilers. The books listed in this appendix are only the beginning, and many can be found
in used-book stores.

		 529

Index

Symbols
and Numbers
- (subtraction operator),

143, 147
& (string concatenation operator),

75, 147, 149, 184
* (multiplication operator),

143, 147
. . . (ellipsis), in menu

commands, 100
.gif files, 113
.jpeg files, 113
.NET Framework

accessing Help files for, 28
Array class, 288–89
Exception objects, 236–37
identifying version of, 496
Imports statement, 243
math methods, 152–55
MSDN Help in, 28
My namespace, 314–16
overview, 153
specifying version in new

projects, 39
StreamReader class,

316–17
String class, 327
System.Drawing

namespace, 376
System.lO namespace, 242
System.Math class, 154

.png files, 113
/ (division operator),

 143, 147
@ Page directive, 501
\ (backslash), 147
^ (exponential operator),

43, 147, 149
_ (line continuation character),

75, 187
| (pipe symbol), 113
+ (addition operator), 143, 147
< (less than operator), 161, 331
<= (less than or equal to operator),

161, 331
<> (not equal to operator),

161, 331
= (assignment or equal to operator),

161, 182, 331
= (assignment or equal to), 125
> (greater than operator), 161, 331

>= (greater than or equal to
operator), 161, 331

>cmd command, using to switch to
Command Window, 223

A
Abs(n) method, 152, 504–05
absolute path names, 89
Access databases,

working with, 444
access keys

adding, 100–02, 119
defined, 99
displaying, in Windows, 100

Add connection dialog box, 447
Add Controls program

creating new Label and Button
controls, 363, 365–66

folder location, 366
running, 366–67

Add method (List Box), 85, 87, 175
Add New Item dialog box, 248
Add ToolStrip Button button, 109
AddHandler statement, 417
adding

code snippets, 208
nonstandard dialog boxes, 117

addition operator (+), 143, 147
address, coordinate system, 376
ADO Faculty Form program,

456–58
ADO.NET, 442
ADO.NET Entity Framework, 442
Advanced Math program,

147–52
AIIowFullOpen property, 114
All Windows Forms tab, 67
AllowUserToResizeColumns

property, 478
Alphabetical button (Properties

window), 15
Always Show Solution

check box, 7, 31
Anchor and Dock program

folder location, 370
organizing objects at run

time, 368–69
running, 370–71

Anchor property, 368–69
anchoring objects, 368–71, 374
And (logical operator), 167–69

AndAlso operator, 169–71
animating objects

by using properties,
380–81

expanding and shrinking,
386–88

moving on forms, 380–81
on forms (Sun icon example),

382–85
animation, 380
AnyColor property, 114
applications

console, 373–74
datacentric, 439
deploying, 62–63, 65

arguments
defined, 131, 257
in Function procedures, 257
in Sub procedures, 262
more than one in a

function, 133
passing by value and by

reference, 268–71
Array Class Sorts project, 289–95
Array class, overview, 288–89
array literal, 278
arrays. See also dynamic arrays;

fixed-size arrays
assigning values to, 295
converting strings with separators

to, 332, 346
creating, 274, 295
declaring, 278–79
For . . . Next loops in, 281–82
overview, 273–74
processing elements in, 295
public, creating, 295
redimensioning, preserving data

in, 295
reordering contents of, 296
scope of, 274
setting aside memory for, 276
sorting, 289–95
syntax elements, table of, 274
three-dimensional, 288
working with elements, 277

As keyword, 125
As Type keyword, 257
Asc function, 330, 339, 347
ASCII codes

characters, sorting and, 329
converting, 330, 347

530	 ASP.NET

determining, 330
dramatic shifts in causing

errors, 340
encrypting text by changing,

337–38
ASP.NET

overview, 491–93
software requirements for, 495
tags, 501
Web sites, creating, 522

assemblies, 12, 62
assigning

color, 113
value and simultaneously

declaring variables, 207
assignment or equal to operator (=),

125, 161, 182, 331
Atan(n) method, 152
Auto Format command, 515
Auto Hide command (Windows

menu), 17, 21–22, 34
Autos window

described, 216
overview, 217
using, 225

AutoSize property (Layout
category), 47–48, 198

B
background colors and images, 391
backslash (\), 147
base classes

creating, 399, 412
inheriting, 408–11
inheriting in new classes, 413

Basic Math program
program statements, 145–47
working with basic operators,

144–45
[] (brackets), 257
BindingNavigator control, 485
BindingSource property, 468
Birthday program

building, 73–76
folder location, 76
running, 76–78

bitmaps, 112
bits, 135
Boolean data type, 136
Boolean expressions, 163
Boolean properties, 51
BorderStyle property (Appearance

category), 47
bound controls, 454
bound objects, 466
brackets ([]), 257
break mode. See debugging mode

breakpoints
defined, 212
removing, 224–25
setting, 213, 225

browsers
opening Web, 23–24
setting default, 93

Brush object, 377
Build command, 61
building Web sites, 505–08
Button control (Toolbox)

creating, 365–66
creating buttons with, 70
using with Web pages, 502

buttons
adding, 40–42
creating, 71, 95
ellipsis, 15
overview, 71
radio, 81–83
smart tag, 50
toolbar, 108–10
View Designer, 54

ByRef keyword
in Sub procedures, 262, 266
passing arguments with, 268–70
when to use, 270

Byte data type, 136
bytes, 135
ByVal keyword

default setting, 262
passing arguments with, 268–70
when to use, 270

C
calculations

performing with functions,
258–61

visual feedback during, 296
calling

forms, DialogEvent property in,
358–59

Function procedures, 258, 271
printing event handlers, 437
Sub procedures, 262–63, 271

Car Loan Calculator project
adding controls to, 501–02
adding text in Web Page

Designer, 499–501
customizing, 509–11
testing, 507–08
Web site for, 505–08
Windows Forms Designer vs, 498

carriage return
as separators in lines of text, 332
characters, 184
formatting text strings with, 295

Case Else clause, 172
case sensitivity in code, 130, 193
Catch code blocks. See Try . . . Catch

code blocks
Categorized button (Properties

window), 15
Categorized button (Property

window), 45
CDbl function, 504–05
cells, changing colors of, 480–81
CellStyle Builder dialog box, 480–81
Celsius Conversion program

folder location, 195
using Do loops, 193–96

changing
compiler settings in IDE, 29–30
default page in Web

browser, 23
property settings, 14–16

Char data type, 136
characters

ASCII set, 329–30
carriage return, 184
converting to ASCII codes, 347
IBM extended set, 330
maximum number of,

in text lines, 185
password, 169
Unicode, 330

check boxes, creating, 78–80, 95
check marks, adding, 100
CheckBox control (Toolbox), 78–80
CheckBox program

creating, 78–80
folder location, 80
running, 81

CheckedChanged event
procedure, 83

CheckedListBox control, 85
CheckState property, 80
Choose Data Source dialog box, 446
Chr function, 330, 339, 347
class libraries, 90, 157
class variables, declaring, 403–04
classes

adding new to projects, 401
base. See base classes
creating, 402–08
declaring object variables

to use, 413
defined, 90
FileStream, opening text files

with, 437
inheriting, 413
methods, creating in, 405–06, 412
overview, 401
properties, creating in,

404–05, 412

	 controls	 531

Click procedure, 56–58
ClickOnce technology, 62, 65
client controls. See HTML
Clock menu program

adding access keys to, 101–02
changing order of items, 102
creating, 98–99
editing menu event procedures,

103–05
clock properties, 106
closing

programs, 13
programs without saving, 251–52
tool windows, 17
Visual Studio, 33

code
case sensitivity in, 193
character length of lines, 75
comments in, 86
declaring variables at top

of form, 139
executing one line of, 225
for displaying Print dialog box

and print files, 427–28
HTML in Web pages, 522
opening hidden forms with, 373
program style, 54
protected, 229
using fundamental data

types in, 137–41
viewing, 11
writing, 52–56, 65

Code Editor
accessing Help files for, 28
character length of lines

of code, 75
displaying, 54
entering program statements,

52–56
examining expressions,

properties, variables in, 225
executing one line, of code in, 225
identifying mistakes in, 54–55
opening, 52, 65

code snippets
adding, 208
inserting, 203–08
reorganizing, 207–08

Code Snippets Manager command,
207–08

Code Snippets Manager
dialog box, 207

code-behind files, 468
collections. See also Controls

collection
creating, 304–06, 312
overview, 297
processing objects in, 311

referencing objects in, 298
special treatment for

objects in, 311
tracking Internet addresses with,

305–06
color

assigning, 113
changing, 116
changing cell, 480–81
filling shapes with, 377
in Visual Basic code, identifying

elements with, 54
setting background, 391
setting foreground, 49

Color dialog box
customizing color settings, 114
opening, 116
writing event procedures for

button, 113–14
ColorDialog control

adding, 111
properties of, 114
purpose, 110

ColumnHeadersVisible property,
480, 489

columns. See also fields
changing width, 478, 489
configuring individual, 479–80
hiding headers, 480, 489
removing, 476, 488

ComboBox control, 85
command prompt, 373
Command window

overview, 223
running commands in

IDE from, 226
running File.SaveAll, 224
switching from Immediate

window, 223, 226
commands

>cmd, 223
Auto Hide (Windows menu),

21–22
menu, guidelines, 100
running in IDE from Command

window, 226
commas, displaying with Format

function, 140, 137
comment character (‘), 295
comments, 57, 86, 95
comparing strings, 33, 329–31
comparison (or relational)

operators, 161, 173–77, 330–31
compiler settings

checking, 31–33
customizing, 29–30
in Visual Studio, 32–33

compiler settings, checking, 31–33

compiling
forms into .exe or .dll files, 394–95
programs, 34

component tray, displaying in the
IDE, 98

components
data access layer, 451
switching between, 8

conditional expressions
comparing, 167–69, 179
defined, 161
If . . . Then decision structure,

161–62
in Do Loops, 192
logical operators in, 167–69
order of If statements, 163
order of operator types, 167
writing, 179

configuring
data source for Web display,

514–15
date time picker object, 78
individual columns, 479–80
SQL statements, 514–15
Visual Studio for Visual Basic

Development, 34
connecting

to database tables, 488
to databases, 466, 468–71

connection string, 446
connections

binding to controls on forms, 443
choosing, 448
establishing, using Data Source

configuration Wizard, 444–52
console applications, 373–74
Constant Tester program, 142–43
constants

creating, 157
in program code, 142–43
vbCR, 206

continuing lines with _ character,
75, 187

controls
adding to forms, 354, 364–67, 374
adding to Web pages, 522
bound, 454–55
defined, 90
dialog box, 110–11
masked text box, binding to

dataset objects, 458–59
moving with For Each . . . Next

loops, 301–02
on user input, 164–67
organization of, in Toolbox, 41
organizing, on forms, 367–71
overview, 67
server vs. client, 493

532	 Controls collection

server, adding to Web pages,
501–02

validator, 509, 522
Windows Forms, 67
writing event procedures for Web

pages, 504–05
Controls collection.

See also collections
moving controls with

For Each . . . Next loops, 301–02
moving objects, 311
Name property for special

treatment of objects, 303–04
object experimentation

procedure, 299
overview, 297

Controls collection program
moving controls with

For Each . . . Next loops, 301–02
using For Each . . . Next loops

to change Text properties,
299–301

convert to string (CStr)
function, 57

coordinate system, 376
Cos(n) method, 152
counter variables

global, 140, 190–91
in loops, 182
opening files with, 190–91
other uses for, 186
overview, 183

crashes, program. See run-time
errors

creating
folders, 72
modules, 248–51
standard-sized objects, 183
toolbars with ToolStrip control,

107–10
creating lines, shapes on, 390
CStr (convert to string) function, 57
customizing

color settings, with Properties
window, 114

compiler settings in IDE, 29–30
Help files, 34
inherited forms, 412
Web pages, 509–11

D
data access in Web forms

environment, 488
data grid view objects

adding second, 482–84, 489
changing column width, 489
creating, 471–74

creating color scheme for
rows, 489

creating to display database
tables, 488

hiding column headers in, 489
preventing editing or changing

of data, 489
previewing data bound to,

474–75, 488
removing columns from, 476, 488
setting properties, 479–82
sorting data in, 478–79

data navigator, 443
Data Source Configuration Wizard

choosing database model, 445
creating datasets in, 443
starting, 445

Data Sources window
creating database objects on

forms with, 454–58
overview, 452

data types
assigning, 125
fundamental, 135–41
inference of, by Visual Basic,

126–27
signed, 135
specifying in function

procedures, 257
string, 135
unsigned, 135
user-defined (UDTs), 141

Data Types program, 137–41
database objects

creating by using Data Sources
window, 454–58

defined, 450
databases

choosing format, 446
copying local, 449
displaying information on Web

pages, 512–13
establishing connection to, 466,

468–71
Faculty.mdb sample, 444
filtering and sorting information

stored in datasets, 466
formatting data on forms, 466
overview, 441
relational, 443
updating, 485–87, 489

DataBindings property,
overview, 459

datacentric applications, 439
DataGridView control

overview, 467
scrolling, resizing, and sorting

with, 478–79

DataGridView tasks list, 476
DataGridView Tasks list, 474
Dataset Designer, 451–52
datasets

binding controls to, 458–59
creating, 466
defined, 443, 450
displaying information on forms,

453–55
in Data Source Configuration

Wizard, 445, 452
information, displaying during

debugging sessions, 226
typed vs untyped, 451
visualizers, 220

DataTips, 215–16
Date data type, 136
date, setting system,

in Windows, 105
DateString property, 104–05, 107
DateTimePicker control, 73–78
DayOfYear property, 75
debug builds, executable file type in

Visual Studio, 60
Debug Test program

debugging, 212–14
folder location, 218
removing breakpoints, 224–25

Debug toolbar, displaying, 225
debugging mode. See also testing

disabling, in Web config, 506
opening text visualizers in,

220–21
starting, 214
stopping, 226
using, 212–17

Debugging Not Enabled dialog box,
505–06

debugging sessions
displaying HTML, XML, dataset

information during, 226
stopping, 226

Decimal data type, 136, 182
decision structures. See also If . . . Then

decision structures; Select Case
decision structures

decision structures, defined, 161
declaration statements, array

information included in, table,
282, 274

declared variables, hiding in
classes, 412

declaring collections as variables,
304–05

declaring variables
at top of form’s code, 139
by inference, 126–27
implicitly, 126–27

	 error handlers	 533

in Dim statement, 125–26
in projects with more than one

form, 140
object, to use classes, 413
public, in modules, 253–55
required compiler settings for, 32
while assigning values, 190, 207

Decrypt string variable, 344, 347
Default.aspx, 497
defensive programming

techniques, 243
delayed saving feature, 31, 40
deleting

breakpoints, 226
form files, 354
menu items, 102
objects, 43, 65
toolbar buttons, 110

deploying
applications, 62–63, 65
Web sites, 508

descriptive label properties,
setting, 48–49

Design mode
moving objects in, 42
Source mode, switching

between, 522
Design view, adding text in,

499–500
Designer. See also Menu Designer;

View Designer; Web Page
Designer

changing startup forms using,
371–73

Dataset, 451–52
displaying, 10–11
location in IDE, 8
scroll bars in, 40
Source tab, 500
switching to, 10
view button, 54
Window Forms. See Windows

Forms Designer
Desktop Bounds program

folder location, 363
setting DesktopBounds property,

362–64
DesktopBounds property, 359,

362–64
detecting mouse events, 177–78
development environment. See IDE
dialog box controls, 110–11, 120
dialog boxes

accessing Help files for, 28
Add New Item, 248
adding Print Preview and Page

Setup, 430–33
Code Snippets Manager, 207

Color, 113–14
defined, 352
displaying, 120
displaying after creation, 112
displaying output, 157
displaying printing in

programs, 437
Edit Columns, 476
getting input by using, 156
inheriting, 394–97
input function of, 78
Input Mask, 164–65, 458
message, 133
New Project, 38–39
nonstandard, 117
Open. See Open dialog box
Open Project, 5–6
opening, 112
opening forms in. See ShowDialog

method
Page Setup, 430–33
Project Location, 72
Select Resource, 49

DialogResult property, 358–59
Digital Clock program

creating, 197–99
folder location, 199
running, 199

Dim keyword, 275
Dim statement, 124–26, 156, 208
dimensioning, 286–87
Disc Drive Error project

folder location, 230
loading, 230–32

disc drive errors,
writing handlers, 233

Disc Drive Handler program
folder location, 240
tracking run-time errors with

variables, 240–42
Discard button, closing without

saving, 252
disconnected data sources, 450
disks, creating new text files on, 321
division by zero, 145, 171
division operator (/), 143, 147
division, integer, 147
Do loops

avoiding endless, 193–96, 207
converting temperatures by using

(Celsius Conversion program
example), 193–96

described, 192
syntax, 192–93
Until keyword in, 196, 208

Dock property, 8, 368–69, 374
docking

objects, 368–71, 374

tool windows, 17, 19–21, 34
windows, 8

docking guides, 17–18
documents

multipage, printing, 437
tabbed. See tabbed documents

Double data type, 136
double-clicking

names of properties, 51
to create standard-sized

objects, 183
Draw Shapes program

creating lines, rectangles, and
ellipse shapes, 378–80

folder location, 379
DrawImage method, 419
DrawLine method, example, 377
drop-down list boxes, 85, 95
Dynamic Array program

folder location, 286
testing, 286–87
using, to hold temperatures,

284–86
dynamic arrays. See also arrays

creating, 283–84, 295
defined, 275
recording temperatures in,

284–87

E
Edit Columns dialog box, 476,

479–80
editing

event procedures, 112–13
menu event procedures, 102–05

ellipsis (. . .), in menu commands, 100
ellipsis buttons, 15
Else If keyword, 162–63
Else keyword, 162–63
Encrypt Text program

examining the code of, 338
folder location, 337

encryption, protecting text with,
336–40, 344, 347

End button, writing code for, 52–54
End If keyword, 162–63
End keyword, 53
End Select keywords, 172
EndofStream property, 317, 345
EndsWith method, 332
environment settings,

changing, 29–30
equal to or assignment operator (=),

71, 161, 331
error handlers. See also errors

defensive programming
techniques vs, 243

534	 errors

for printing, 422
nested Try . . . Catch code blocks

in, 242
overview, 228
specifying retry periods, 240–42
structured, 243
structured, defined, 211
structured, function of, 227
testing (Disc Drive Error

project), 234
when to use, 228
writing disc drive, 233

errors. See also error handlers
creating, in programs, 245
disc drive, 229
generating for testing purposes,

240–42
indicators for (jagged)***, 211
logic, 210
path, 229
run-time, 149–52, 210, 244
syntax, 210
testing for specific in event

handlers, 245
types of problems addressed by

handlers, table, 228–29
event handlers

calling printing, 437
creating printing, 437
testing for specific

conditions in, 245
writing, 177–78

event procedures
constants in, 142–43
defined, 53, 91
displaying additional forms by

using, 356–57
editing, 112–13
menu, editing, 102–05
writing color button, 113–14
writing, for objects on Web

pages, 522
writing, for Web page controls,

504–05, 509–11
event-driven programming, 159–60
events

in Visual Basic, 160
mouse, detecting, 177–78

Exception objects
combining Catch statements

with, 239
overview, 236
types of, table, 236–37
what to use, 237

exceptions. See run-time errors
executable file types (.exe)

and Windows applications, 61
creating, 60–61, 65

overview, 60
executing

one line of code, 225
statements more than

once, 181
statements specific number of

times, 207
statements until conditions

met, 207
Exit For statement, 191, 207
Exit Try statement, 243–44
Exp(n) method, 152
expanding objects at run time,

386–88
Explorer Form template, 353
exponential operator (̂), 143,

147, 149
expressions

adding to Watch window, 226
Boolean, 163
conditional, 161–63, 192
examining in Code Editor, 225

F
F1 Help key, 26–27
F8 key, alternative to Step Into

button, 219
Faculty.mdb sample database

folder location, 447
overview, 444

feedback, visual. See progress bar
fields. See also columns

backing, 403
defined, 442
displaying multiple database,

454–56
File menu, Save All command, 56
File.SaveAll command, 224
files

code-behind, 468
defining valid, 112
deleting form, 354
encrypting, 336
forms, saving, 65
opening using For . . . Next loops,

186–88
renaming form, 354
sequential, 317
switching between, 22–23, 34
trashing, 336

FileStream class, opening text files
with, 437

Fill Array button, 291–92
filling shapes with color, 377
Filter list, adding items to, 113
Filter property, 112
filtering

data, by writing SQL
statements, 466

database information stored in
datasets, 466

input, 165–66
Finally clause

displaying message boxes
with, 235

with Try . . . Catch code blocks,
234–35

Fixed Array program
creating, 279–82
folder location, 282
running, 283
testing, 282–83

fixed-size arrays. See also arrays
declaring, syntax items, 275
recording temperatures in,

279–83
floating windows, 19
focus, in text boxes, 144
FolderBrowserDialog control, 110
folders, creating, 72–73
Font property, 15, 47–48
FontDialog control, 110
For Each . . . Next loops

changing Text properties with
(Controls Collection program
example), 299–301

Name property in, 302–04
referencing objects in collections,

298–99
For keyword, 182
For Loop Icon program

folder location, 190
loading, 186–89
running, 188–89

For Loop program
displaying text by using

For . . . Next loop, 187, 183–85
folder location, 184
testing, 184–85

For Loops, complex, 185–86
For . . . Next loops

complex, 185–86
described, 182
displaying text by using, 183–85
exiting, 207
in arrays, 281–82
opening files by using, 186–88,

190–91
syntax, 182
writing, 181–82

ForeColor property (Properties
window), 16, 49, 113, 190–91

Form Inheritance program,
394–99

form variables, public vs., 255

	 If. . .Then decision structures	 535

Form_Load procedure, 63, 87
Format function, to display

commas, 137
formatting

database data on forms, 466
predefined patterns for, 164.

See also masks
program statements, 53
text, 15

Formatting toolbars, 499–500
forms

accessing Help files for, 28
adding navigation controls to, 466
adding to programs, 351–56, 373
anchoring objects on, 368–71, 374
changing transparency of, 388–90
controls, adding at run time,

364–67, 374
creating bound objects capable of

displaying dataset data on, 466
creating with code, setting

properties, 374
displaying additional, using event

procedures, 356–57
docking objects on, 368–71
files, saving, 65
formatting database information

on, 466
hidden, opening, 373
inherited, customizing,

397–99, 412
minimizing, maximizing, and

restoring, 364, 374
opening, 10, 357
positioning on Windows desktop,

359–64
public variables vs. variables

 in, 255
startup, 371–74
transparency, changing, 391
uses for, 352
variables in projects with

multiple, 140
formulas

creating, 157
defined, 143
parentheses in, 156–57

frames, creating, 81
Framework. See .NET Framework
Framework Math program, 153–55
FromFile method, 83, 87, 187, 237
front ends, database, 439
FullOpen property, 114
Function procedures

calling, 258, 271
defined, 255
overview, 256
syntax items in, 257–58

function statements, 257
functions

defined, 133
InputBox, 131–32
LBound, UBound, 280
MsgBox, 133
performing calculations with

(win rate example), 258–61
public, creating, 270
syntax items, using, 257–58
with more than one

argument, 133

G
GDI+ graphics services, changing

form transparency, 376, 388
general-purpose procedures, 256
global counter variables, 140,

190–91
graphics

printing, 418, 437
resizing, 49

Graphics Interchange Format (.gif).
See .gif files

Graphics.DrawImage
method, 418, 437

Graphics.DrawString method,
420–23, 437

Graphics.MeasureString
method, 424

greater than operator (>), 161, 331
greater than or equal to operator

(>=), 161, 331
GridColor property, 386
grids

aligning objects to, 42
cell color, changing, 480–81
gridline color, changing, 481, 489
hidden by default, 42
reversing direction of

sort, 489
snapline, 42
sorting records in, 489

GridView control, 512–15
group boxes, property settings,

table of, 83
GroupBox control, 81–82
guide diamonds, 17

H
Height property, 386
Hello World program

creating, 68
folder location, 72
overview, 67
running, 72–73

Help files
accessing, 28, 34
customizing, 34
F1 key, 26–27
managing settings, 25–26
MSDN, 27–28
navigating, 28
topic locations in Visual

Studio 2010, 28
Help Library Manager, 25–26
hidden forms, opening by using

program code, 373
hiding

declared variables in classes, 412
forms, 373
shortcut keys, 118
tool windows, 21, 34

Hour (date) method,
description, 107

HTML
controls described, 493
controls overview, 494
creating pages, 522
displaying during debugging

sessions, 215
tags, 501
viewing for Web pages, 500, 522
visualizers, 220

Hungarian Naming
Convention, 130

HyperLink control, 516, 522
hyperlinks, adding, 516–17

I
IBM extended character set, 330
icons

file type, 112
pin, 215
shortcut, 61

IDE
accessing Help files for, 28
changing compiler settings for,

29–30, 34
component tray, 98
Data Source Configuration

Wizard, 445
Navigator, 22–23
overview, 4
running commands from

Command Window in, 226
running Visual Basic from, 58
toolbars available in, 8

If . . . Then decision structures
conditional expressions using,

161–62
in Checkbox controls, 80
logic errors in, 211

536	 Image property

short-circuiting, 169–71, 179
syntax, 179

Image property, 49
images, setting background, 391
immed command, using to switch to

Immediate window, 223
Immediate window

modifying variables with, 222–23
opening, 226
switching to Command window,

223, 226
Import and Export Settings

command (Tools menu),
22, 29–30

Imports statement
math methods, 152
referencing class libraries, 154–55,

157, 243
index position, of objects, 298
inheritance, 90, 393–94
Inheritance Picker dialog box,

394, 396
inherited forms, customizing,

397–99, 412
inheriting

base classes in new classes, 413
dialog boxes, 394–97
forms’ interfaces and

functionalities, 412
Inherits keyword, 413
Inherits statement, 400, 408–11
Input Box program, 131–32
Input Controls program, 78–79
Input Mask dialog box,

164–65, 458
input, controlling user, 164–67
InputBox function, 131–32
Insert Snippet command,

203–08, 316
Insert Standard Items button, 108
inserting code snippets, 203–08
insertion point, in text boxes, 144
Int function, 57
Integer data type, 136–37, 182
integer division (\), 147–48
Intellisense, 53, 71
Internet addresses, tracking by

using new collections, 305–06
Internet Explorer

disabling security warnings, 507
title bar, 519–22

intranet security settings, 507
Is keyword, 173

J
Joint Photographic Experts Group

format. See .jpeg files

K
keys, primary, 470
keywords. See also specific

keywords
defined, 89
in variable names, 130
Intellisense and, 53

L
Label control

adding objects, 102–03
creating, 365–66
using with Web pages, 502

labels
adding, 43–44, 102–03
changing property settings, 16
defined, 43
descriptive properties, setting,

48–49
number properties, setting,

47–48
Language-Integrated Query (LINQ),

442, 462
LBound function, 280
Left property, 380
less than operator (<), 161, 331
less than or equal to operator (<_),

161, 331
letters, converting to numbers, 340
lightweight views, 27
line continuation character (_),

75, 187
lines

creating on forms, 390
entering, 104
processing in text boxes, 332
reading text files by, 345

linking, to Web pages, 522
LinkLabel control (Toolbox), 91
links, changing color of, 92–93
LinkVisited property, 93
LINQ (Language-Integrated Query),

442, 462
List Box control, 174
List Box program

folder location, 88
running, 88

list boxes
adding items to, 85, 95
creating, 85–87, 95
defined, 84–85
drop-down, creating, 85
in Visual Studio, 71
Insert Snippet, 204

ListBox control, 84
Local Help files, 25

Location property
described, 380
overview, 381–82

Location text box, 40
logic errors

defined, 210
finding and correcting, 213
identifying, 211

logical operators, 167–69
Long data type, 136–37, 182
loops

avoiding endless, 193
creating, 181–82
creating complex, 185–86
setting run time periods for, 208

lower and upper bounds, specifying
in public arrays, 295

Lucky Seven game program
adding additional forms,

352–56
adding Help forms, 352–56
building executable files, 61
closing, 64
closing without saving, 252
creating, 38–44
folder location, 59
properties of, in table, 51
reloading, 63–64
running, 58–59, 357–58
user interface contents, 38

M
macros, compatibility between

Word versions, 309–10, 312
manipulation, string, 326–27
Mask property, 164
MaskedTextBox control, 164,

458–60
masks

defined, 164
formatting database information

with, 458–61
mathematical (or arithmetic)

operators, 146, 143
mathematical (or arithmetic)

operators, 150, 147
maximizing forms at run time, 374
MaximumSize property, 364
MaxLength property, 185
Me keyword, 355
Me object, 373
MeasureString method, 424
memory management, 125, 276
menu bar, 8
Menu Designer

adding access keys, 98–100
changing order of commands, 102

	 objects	 537

menu items. See also menus
adding access keys, 100
adding access keys to, 119
adding to menu commands,

98–99
changing order of, 102, 119
creating, 119
deleting, 102
guidelines for, 100
naming, 104
shortcut keys, assigning, 102,

117–19
Menu program

folder location, 105, 114
menus and dialog boxes in, 114
running, 105–06, 115–17

menus. See also menu items
event procedures, editing, 102–05
running, 88

MenuStrip control (Toolbox)
displaying objects, 98
overview, 97
shortcut keys, assigning, 117–18

message boxes. See also dialog
boxes

creating, 74–75
displaying, 235
displaying information on

forms, 133
MessageBox class, 134
metafiles, Windows, 112
methods

calling, 157
creating in classes, 405–06, 412
defined, 75, 91
Graphics.DrawString, 420–23
math, 152
Print, 418, 437
ShowDialog, 112

Microsoft Access. See Access
Microsoft Intellisense, 53, 71
Microsoft OLE DB, 448
Microsoft.Jet.OLEDB error

message, 444
minimizing forms at run time, 374
MinimumSize property, 364
Minute (date) method,

description, 107
mistakes, identifying by jagged

lines, 54–55
mnuOpenItem Click event

procedure, 343–44
mnuSaveAsItem_Click event

procedure, 338
Mod (remainder division operator),

143, 148
modal forms, 357
modeless forms, 352

modules
adding, 252–55
adding existing, 270
creating, 248–51, 270
overview, 248
removing, 270
removing from projects, 251
renaming, 250, 270
saving, 250–51

Month (date) method,
description, 107

mouse events, detecting, 177–78
moving

objects, 42, 64
objects in Control

collections, 311
objects on forms, 380–82
tool windows, 17–19, 34
toolbar buttons, 110

Moving Icon program
animating sun icon, 382–85
folder location, 385
running, 385–86

MSDN Online Help, 27–28
MSDN, switching views in, 27
MsgBox function

creating message boxes, 74–75
displaying contents of variables,

133–35
Xor (logical operator)

encryption, 340
Multiline property, 183–86
multiline text boxes, size limit, 185
multiplication operator (*),

143, 147
multi-targeting feature, 39
Music Trivia program

closing, 13
opening, 5–7
running, 11–13

My namespace
accessing forms using, 356
overview, 314–16
reading text files with, 345
writing text files, 346

My.Computer.FileSystem object
ReadAllText method, 315–21
WriteAllText method, 321–23

N
Name property, 174–75, 302–04
namespaces, 90
naming

classes, 403
conventions for variables, 130
data, 124
menu items, 104

navigation controls
adding second, 484
adding to forms, 466

navigation toolbar, 456–57
New Connection button, 446
New Project command (File Menu)

and Windows Installer, 63
console applications, 373

New Project dialog box, 38–39, 68
New Project link (Start Page), 38
New Web Site command, 496
Next keyword, 182, 184
non-modal forms, 352, 357
nonstandard dialog boxes, 117
Not (logical operator), 167
not equal to operator (<>), 161, 331
Now property, description, 107
number computation, random, 57
number sequences, creating in

loops, 185–89
numbers, converting letters to, 340
numeric values, encrypting, 340

O
Object data type, 136
object variables

declaring to use classes, 412
setting properties for, 413

object-oriented programming
(OOP), 393

objects. See also specific objects
adding, 40–42
aligning to hidden, 42
anchoring, 368–71, 374
animating, 391
changing property settings,

14–16, 47
choosing database, 449–50,

469–71
control, 365–66
creating based on new classes,

407–08
creating standard-sized, by

double-clicking, 183
defined, 13, 90
deleting, 43, 65
docking, 368–71, 374
events supported by

Visual Basic, 160
expanding, shrinking at

run time, 391
in collections, 297–98
index position of, 298
moving, 64, 311, 391
multiline text box,

size limits of, 185
processing, in collections, 311

538	 Office applications

referencing in collections, 298–99
renaming, 179
renaming on Web pages, 522
resizing, 42, 65
selecting, for reuse. See

Inheritance Picker dialog box
special treatment for, in

collections, 311
startup, 371–74
switching between, 47
text box, 313
timer, 200, 203, 382–85
writing event procedures for on

Web pages, 522
Office applications, using Visual

Basic for Applications
collections in, 309

Online Help files, 25, 27–28
Opacity property, 388–91
Open button, editing event

procedures, 112–13
Open dialog box

displaying, 113, 314–15, 345
displaying and selecting

text file, 426
filtering file types, 112–13

Open Encrypted File command, 338
Open Project dialog box, 5–6
Open Web Site command, 498
OpenFileDialog control

adding, 111, 345
managing print requests with,

424–28
opening text files using, 314
purpose, 110

opening
Code Editor, 52, 65
dialog boxes, 112–13
files by using For . . . Next loops,

186–88, 190–91
forms, 10
Immediate window, 226
projects, 4–6, 34
projects, troubleshooting, 7
Watch windows, 218–19
Web browser, in Visual Studio,

23–24
operators

advanced, 147–50
arithmetic (or mathematical),

143, 147
comparison (or relational), 161
comparison (or relational)

operators, 330–31
logical, 167–69
order of precedence, 155–57, 167
shortcut, 147

Option Compare setting, 33

Option Explicit Off statement,
126–27

Option Explicit setting, 32
Option Infer setting, 33, 126–27
Option Strict setting, 32
Options command

(Tools menu), 40
Or (logical operator), 167
order of precedence, 155–57, 167
OrElse operator, 169–71
origin, coordinate system, 376
Other Windows menu, 8
Other Windows submenu, 23

P
Page Setup dialog box

adding with PageSetupDialog
control, 430–33

display page setup
dialog box, 432

testing, 434–37
PageSetupDialog control

adding, 430–33
purpose, 111

Paint event procedure, creating
shapes with, 378–80

parentheses
in Sub procedures, 262
use of, in formulas, 156–57

PasswordChar property, 169, 200
passwords, setting time limit for,

200–03
path errors, 229
path names, absolute

and relative, 89
Pen object, 377
Person Class program

building, 401–02
creating classes, 402–08
folder location, 407, 410
inheriting base classes, 408–10
testing, 410–11

picture boxes
adding to programs, 111
defined, 44
file types, 112–13
property settings, table of, 83
setting properties, 49–51

PictureBox control, 44, 83
pictures, adding, 44.

See also graphics
pin icons, 215
pipe symbol (|), 113
pixels, coordinate system, 376
Pmt function, overview, 504
Portable Network Graphics (.png).

See .png files

positioning startup forms on
Windows desktop, 374

practice files, installing, 4
Preserve keyword, 287
Preview Data dialog box, 474–75
previewing data bound to data grid

view objects, 474–75
primary keys, 470
Print Dialogs program

folder location, 433
testing Page Setup and Print

Preview features, 434–36
Print File program

adding Print Preview and Page
Setup, 431–33

building, 424–28
folder location, 428
running, 428–30

Print Graphics program
folder location, 419
running, 419–20

Print method, 418, 437
Print Preview dialog box, adding

with PrintPreviewDialog
control, 430–33

Print Preview, testing, 434–37
Print Text program

folder location, 423
running, 423

PrintDialog control
managing print requests with,

424–28
purpose, 111

PrintDocument class, 415–20
PrintDocument control, 416–19
PrintDocument object, 437
printing

adding code to display Print
dialog box, 427–28

creating event handler, 437
displaying dialog boxes, 437
event handlers, calling, 437
graphics from printing event

handlers, 437
managing requests with controls,

424–28, 430–33
multipage documents, 437
multipage text files, 424
preparing projects for, 437
set default settings, 427
text from printing event

handlers, 437
text from text box objects, 420
text using Graphics.DrawString

method, 420–23
using error handlers, 422

printing area, defining, 427–28
PrintPage, 424

	 relational (or comparison) operators	 539

PrintPreviewDialog control
adding, 430–33
purpose, 111

Private keyword, 403, 412
procedure statements, in Sub

procedures, 262
procedures. See also Sub procedures

click, 56–58
creating, 255–56
defined, 53
Function, calling, 258, 271
Function, defined, 255
general-purpose, 256
overview, 53
sharing, 247–48
Sub, defined, 255

Process class, 93
Process.Start method,

feature of, 93
processing elements in arrays, 295
program code

automatic additions by
Visual Basic, 55

comments in, 86
error messages, 55
executing one line of, 225
identifying elements by color, 55
opening hidden forms with, 373
writing, 65

program crashes, 227
program statements. See also code

Basic Math program, 145–47
defined, 53, 89, 123
entering in Code Editor, 52–56
executing, 208
overview, 53
procedures and, 53
sequencing numbers

by using, 207
setting properties using, 57
syntax in, 53

program style, 54
programming

defensive techniques, 243
event-driven, 159–60
steps for new projects, 38

programming languages available
in Visual Studio, 4, 38

programs. See also specific
programs

adding controls to, 110–11
adding new forms to, 373
adding toolbars to, 109, 119
closing, 13
closing without saving, 251–52
compiling, 34
Data Types, 137–41
errors in, creating, 245

reloading, 63–64
running, 11–13, 258–61
saving, 56, 65
skeleton, 127
stopping, 72
using standard dialog

boxes in, 120
Visual Basic, creating with no user

interface, 374
progress bar, 290–91, 296
project files, 7
Project Location dialog box, 72
project settings, checking, 31–33
projects. See also specific projects

creating, 40–44, 68
opening, 4–6, 34
opening, troubleshooting, 7
programming steps for

new, 38
reloading, 65
saving, 72–73
with more than one form, 140

Projects folders, 6
prompting user for information,

131–32
properties. See also property

settings
adding to Watch window, 226
animating objects by using,

380–81
Boolean, 51
changing at run time, 71, 95
creating, 404–05
creating in classes, 412
defined, 90
descriptive label, setting, 48–49
for moving objects, 380
for picture boxes, setting, 49–51
names of, double-clicking, 51
number label, setting, 47–48
overview, 13
setting, 34, 45–47
setting at design time, 13
setting for data grid view objects,

479–82
setting for object variables, 413
setting, for Web pages, 503
tables of, reading, 51
viewing, 13

Properties window
categories in, 14–15
customizing color settings

with, 114
displaying, 45
location in IDE, 8
Object list, 13
organization of, 14, 46
overview, 13–16

property settings
changing, 14–16, 45
defined, 13

protecting text with basic
encryption, 336–40

providers, 448
public arrays, 295. See also arrays
public functions, creating, 270
Public keyword, 142, 275
public Sub procedures, 271
public variables

creating, 270
declaring in modules, 140,

251, 253–55
form variables vs., 255

Publish command, 62, 65

Q
Query Builder, creating SQL

statements with, 461–66
Quick Note program

examining code in, 326
folder location, 323
running, 323–25

quotation marks, with text
strings, 128

R
Radio Button program

creating, 82–83
folder location, 84
running, 84

radio buttons
creating, 82–83
defined, 81

RadioButton control, 81–82
random number computation, 57
Randomize function, 59
Randomize statement, 63–64
ReadAllText method, 315–21
ReadLine method, 317, 345
ReadOnly property, 486–87
Rebuild command, 61, 65
receiving input in specified

format, 179
records, in databases, 442
ReDim Preserve statement,

287–88
ReDim statement, dimensioning

with variables, 284
redimensioning

arrays, 295
for three-dimensional

arrays, 288
relational (or comparison)

operators, 161, 330–31

540	 relational databases

relational databases, 443
relative path names, 89
release builds, executable file type

in Visual Studio, 60–61
reloading programs, 63–64
reloading projects, 63–65
remainder division operator (Mod),

143, 148
removing

breakpoints, 224–26
columns, 476, 488

renaming
form files, 354
modules, 250, 270
objects, 179
objects on Web pages, 522

Replace method, 332
resizing

button objects, 42
forms, 40
graphics, 49
objects, 42, 65
tool windows, 19, 34

restoring
forms at run time, 374
hidden windows, 17

Return statements, 257
reversing, order of an

array, 295
RichTextBox control (Toolbox)

managing print requests with,
424–28

spacing and formatting
options of, 185

RichTextBox object, loading text
files into, 437

Rnd function, 57
rows

changing color of, 481, 489
in data tables, 442

running
programs, 11–13
Visual Basic from IDE, 58
WebLink program, 94–95
Windows applications with

Windows Explorer, 61
run-time errors

correction of, 151
defensive programming

techniques, 243
defined, 150, 210
detecting, processing, 244
preventing, 171
program crashes, 227
solving, 211
testing for multiple, 237–39
throwing, 239
variables to track, 240–42

S
Save All button (Standard toolbar),

65, 72
Save All command (File menu),

56, 65
Save As dialog box,

displaying, 345
Save Data button, function

of, 485
Save New Projects When Created

check box, 31
SaveFileDialog control, 110
saving

delayed, 31, 40
form files, 65
programming environment

settings, 22
programs, 56, 65
projects, 31
user input, 130–32

SByte data type, 136
schema file, XML, 443, 451
scope

of arrays, 274
of variables, 128, 189–90

scroll bars
in list boxes, 84
in text boxes, 313
in the Designer, 40

ScrollBars property, 183
scrolling, faster, 407
search box, in Help files, 28
Search Criteria Builder dialog box,

462–63
Second (date) method,

description, 107
Select Case decision structures

comparison (or relational)
operators with, 173–77

defined, 87
event procedures, 140
syntax, 171–72, 179

Select Case keywords, 172
Select Case program

adding mouse event handler,
177–78

folder location, 176
processing inputs from list box,

173–77
running, 176–77

Select Resource dialog box, 49
SelectedIndex property,

85–86, 176
SelectedIndexChanged event

procedure, 86. See also event
procedures

sequential files, 317

server controls
adding to Web pages, 501–02
described, 493
overview, 493

servers, 495
SetBounds method, 380
setting

breakpoints, 225
properties, 34
time limits, 200–03

settings
default print settings, 427
saving programming

environment, 22
shapes

creating lines, rectangles, and
ellipses, 378–80

creating on forms, 390
filling with color, 377

sharing, variables and procedures,
247–48

ShellSort Sub procedures, 332,
335–36

Short data type, 136–37
shortcut icons, creating, 61
shortcut keys

assigning to menu items, 119
assigning to menus, 117–18
defined, 117
hiding, 118
testing, 118–19

ShortcutKeys property, 117, 119
Show method

switching between forms, 373
to open forms, 357

ShowDialog method
displaying Open dialog box, 113
opening dialog boxes, 112–13
switching between forms, 373

ShowHelp property, 114
shrinking objects at run time, 391
Sign(n) method, 152
Simonyi, Charles, 130
simultaneous declaring/ assigning

variables, 190
Sin(n) method, 152
Single data type, 136
Size structure, 364
SizeMode property (Behavior

category), 49
sizing

startup forms on desktop, 374
windows, 19

skeleton programs, 127
smart tag buttons, 50, 107–08
snapline grids, 42
snippets. See code snippets
SolidColorOnly property, 114

	 text	 541

Solution Explorer
displaying, 10
location in IDE, 8
project files for web

building in, 498
renaming form files using, 354

Solution Name text box, 40
solutions

always show, 7, 31
overview, 7

Sort Array button, 292–93
Sort Text program

examining code in, 334–36
folder location, 332
running, 332–34

sorting
data in data grid view objects,

478–79
records in grids, 489
reversing direction of, 489
strings, 33
strings in text boxes, 331–36
text, 329–30

Source mode, Design mode,
switching between, 522

Source tab, 501
Spin button, writing code for, 54–56
Split method, 332, 346
SQL Server, 448
SQL statements

configuring, 514–15
creating with Query Builder,

462–66
overview, 461–62

Sqrt(n) method, 152
square roots, calculation of, 153–55
Standard toolbar

defined, 8
Start Debugging command, 58

Start Debugging command, 11, 58
Start method, 93–94
Start Page

New Project link, 38
opening projects from, 4

starting Visual Studio, 4–5, 34
StartPosition property, 360–62, 374
statement syntax, 53, 124
statements. See also specific types

executing, 208
function, 257
in If . . . Then decision structure,

161–62
sequencing numbers

by using, 207
Step Into button, 216
Step keyword, 207
Stop Debugging (Debug toolbar),

closing program with, 72

StreamReader class
adding text to additional form,

355–56
overview, 316–17
reading text files with, 345

StreamWriter class, 322, 346
String class

elements and Visual Basic
equivalents, 327–29

list of elements in, 346
processing strings in, 326–29

string concatenation operator (&),
75, 147, 149, 184

String data type, 136
string variables, 125
String.Concat method, 327
strings

comparing, 33, 329–31
connection, 446
manipulating and processing,

326–27
sorting, 33

structured error handlers,
211, 227, 243

Sub procedures. See also procedures
calling, 262–63, 271
defined, 255
managing input with, 264–68
overview, 262
parentheses in, 262
public, creating, 271
ShellSort, 332, 335–36
syntax items, using, 262

subroutines. See Sub procedures
Substring method, 332
subtraction operator (–), 143, 147
Sun icon animation. See Moving

Icon program
switching

between components, 8
between files, 22–23, 34
between forms, 373
between objects, 47
between tools, 22–23, 34
types of windows, 21
views in MSDN, 27

syntax errors
checking lines for, 104
identifying by jagged line, 72
in variable assignments, 140
overview, 210
solving, 210
unused variables, 128

syntax, statement, 53, 124
System Clock properties, 106
System.Drawing namespace, 376
System.Drawing.Graphics class

overview, 376–77

shapes and methods used in,
table, 377

System.Drawing.Printing
namespace, 416

System.IO namespace, 355
System.Math class, 152, 154
System.Windows.Forms.Form

class, 351

T
tab characters, formatting text

strings with, 295
tabbed documents

displaying code using, 11
displaying windows as, 17
switching to dockable or floating

windows, 21
tools as, 8

table adapters, 443
TableAdapterManager

component, 487
tables

binding second DataGridView
control to, 482–84

controlling multiple, 487
database, 488
defined, 442
dragging, binding, sizing,

472–73
Tan(n) method, 152
taskbar, Windows, 8
templates

Explorer Form, 353
in Add New Item dialog box, 248
Inherited Form, 395–96
inserting code. See snippets

testing. See also debugging mode
conditions in If . . . Then decision

structure, 162–63
connection, 447
error handler, 234
event handlers, specific

errors in, 245
for multiple run-time errors,

237–39
loop conditions, 192

text
aligning, 47
decrypting, 347
entering on Web pages, 522
formatting, 15
pasting from Windows

Clipboard, 324
printing from printing event

handlers, 437
printing from text box

objects, 420

542	 Text Box Sub program

protecting with basic encryption,
336–40

sorting, 329–30
Text Box Sub program

creating, 264–67
folder location, 267
managing input with Sub

procedures, 264–68
running, 267–68

text boxes
creating, 70, 95
displaying text by using, 313
input function of, 78
Location, Solution Name, 40
multiline, size limits of, 185
overview, 70
processing lines in, 332
sorting strings in, 331–36

Text Browser program
examining code in, 320–21
folder location, 319
running, 317–19

text files
creating new on disk, 321
defined, 313
loading into RichTextBox

object, 437
multipage, printing, 424
opening and displaying, My

namespace, 315–16
opening and displaying,

StreamReader class, 316–17
opening with FileStream class, 437
reading, 313–14
writing, 321, 346

Text properties, changing
for descriptive labels, 48–49
for number labels, 48
with For Each . . . Next loops,

299–301
text strings

combining, 157
formatting with carriage returns,

tab characters, 295
TextAlign property (Appearance

category), 47
TextBox control

assigning values to variables,
146–47

using counter variables in
multiline text, 183–85

using with Web pages, 502
Throw statements, 239, 245
time, setting system,

in Windows, 104
Timed Password program

folder location, 202
setting password time limits, 200

settings for, table, 200–01
testing, 202–03

Timer control
described, 196
settings for, 198
using, 197–99

timer objects
creating animation by using,

382–85
uses for, 200, 203

TimeString property, 104, 107
title bars, on Web pages, 92, 522
To keyword, 173, 182, 207
toggles, 100
tool windows

auto hiding, 17
closing, 17
docking, 17, 19–21, 34
hiding, 21–22, 34
moving, 17–19, 34
resizing, 19, 34
restoring hidden, 17

toolbars
adding to programs, 119
creating, 107–10
creating with ToolStrip

control, 109
Debug, displaying, 225
Formatting, 499–500
moving and deleting

buttons on, 110
navigation, 456–57
viewing a list of, 8

Toolbox. See also specific controls
location in IDE, 8
organization of controls, 41
Web Page Designer, 498

tools
as tabbed documents, 8
switching between, 22–23, 34
viewing, 8
Visual Studio, 7–9

Toolstrip control, 103
ToolStrip control, 107–10
Top property, 380
ToString method, 75
TrackWins program

opening, 252
running, 261
win rate function, creating,

258–61
transparency, changing for

forms, 388–90
Transparent Form program

folder location, 389
setting Opacity property, 388–90

trashing files, 336
troubleshooting opening projects, 7

Try . . . Catch code blocks
error handlers, 236
exiting, 245
nested, in error handlers, 242
syntax, 229
trapping errors with (Disc Drive

Error program example),
233–34

using Finally clause with, 234
writing nested, 245

Type Here tag, 98–99
typed datasets, 451

U
UBound function, 280
UDTs (user-defined data type), 141
Ulnteger data type, 136
ULong data type, 136
unhandled exceptions, 232
Unicode, 330
Until keyword, in Do loops,

196, 208
UpdateAll method, 487
updating databases, 485–87, 489
upgrading from Visual Basic 2008,

5–6
upper and lower bounds, specifying

in public arrays, 302, 295
URL Collection program

creating collections, 305–06
folder location, 307
running, 307–09

user interfaces. See also forms
creating, 40–44, 64
elements. See properties

User Validation program
adding password protection,

168–69
controlling user input, 164–67

user-defined data types (UDTs), 141
UShort data type, 136

V
validator controls, 509
value, assigning

to arrays, 278–79, 295
while declaring variables, 190, 207

Variable Test program, 126–30
variables

adding to Watch window, 225
Autos window to view, 225
changing values of, 127–30, 156
counter, 182–85
declared, hiding in classes, 412
declaring, 156
declaring class, 403–04

	 Web sites	 543

declaring, in Dim statement,
125–26

Decrypt string, 344
defined, 89, 124
described, 247–48
displaying contents of, 133–35
examining in Code Editor, 225
implicit declaration of, 126–27
length of names, 130
modifying with the Immediate

window, 222–23
naming conventions, 130
public or global, 140
required compiler setting for

declaring, 32
sharing, 247–48
storage size of, 135
string, 125
tracking run-time errors with,

240–42
validating, 139

variants, 125
vbCr constant, 206
vbCrLF constant, 282
View Code button, 54, 65
View Designer, 54
View Menu, 8
viewing

code, 11
properties, 13
Web sites, 505–08

Visible property (Behavior
category), 49–51

Visual Basic. See also Visual Studio
accessing Help files for, 28
adding code automatically, 55
applications, deploying, 62
checking compiler settings, 32–33
comments in, 57
compiler, defined, 53
design mode, 42
determining version, 7
equivalents to String Class

elements, 327–29
error messages, 55
identifying elements by color, 55
Input Controls program, 78–79
line continuation character (_), 75
memory allocation for arrays, 276
program statements in, 53,

123–24
programs, creating with no user

interface, 374
random number computation

in, 57
running from IDE, 58
running programs from

Web server, 91

Visual Basic 2008 vs Visual
Basic 2010, common control
changes, 67

Visual Basic for Applications,
309–10, 312

visual feedback during
calculations, 296

Visual Studio. See also Visual Basic
checking compiler settings in,

32–33
configuring for Visual Basic

development, 34
creating and running Web

sites in, 495
default settings, 29–30
deployment overview, 62–63
displaying list box of

properties, 71
executable file types,

creating in, 60
exiting, 33, 35
Help documentation in, 24–25
Help topic locations in, 28
icons, bitmaps, and animation

files in, 186
IDE. See IDE
programming languages available

in, 4, 38
programs, stopping in, 72
running programs in, 12
starting, 4–5
starting Visual Studio, 34
tools, 7–9
Web browser, opening, 23–24
Web sites, running

and testing, 522
Visual Studio 2008, Help

documentation in, 24–25
Visual Web Developer

creating Web sites, 491
deploying Web sites with, 508
displaying database tables, 512
download location, 496

visualizers
displaying information with, 226
types of, overview, 220

vTab constant, 282

W
Watch windows

adding variables, properties,
expressions to, 218–19, 225

displaying, 226
opening, 218
overview, 217

Web Browser command (Other
Windows submenu), 23

Web forms environment, data
access in, 488

Web Page Designer
described, 498–500
Design mode vs. Source mode,

switching between, 522
Design tab, 497
gridline color, changing, 481
page views in, 497
positioning controls in, 501
Source tab, 497
Split tab, 497

Web pages
adding text in Web Page

Designer, 498–500
changing names of

objects on, 522
components, 468, 501
controls, adding, 522
customizing, 509–11
displaying, 94
displaying database

records on, 522
displaying title on Internet

Explorer title bar, 92, 522
entering text on, 522
formatting text on, 522
Gridview control, adding,

512–15
hyperlinks, adding, 516–17
linking to other pages, 522
server controls, adding,

501–02
setting properties, 503
validating input fields, 509
validator controls, 522
viewing HTML code in, 522
viewing HTML for, 500
Windows Forms vs., 493
writing event procedures for

controls, 504–05
Web server, running Visual Basic

programs, 91
Web sites

adding pages for database
information, 512–13

adding pages to, 509
ASP.NET, creating, 522
building and viewing, 505–08
components, 468
creating, 496
creating with Visual Web

Developer, 491
deploying, 508
in Visual Studio, running and

testing, 522
locations for creating and running

in Visual Studio 2010, 495

544	 Web.config file

setting title in Internet Explorer
title bar, 92, 519–21

testing (Car Loan Calculator
example), 517–19

Web.config file, 506
WebLink program

creating, 91–94
folder location, 94
running, 94–95

Weekday (date) function, 107
While keyword, 196
Width property, expanding,

shrinking picture box at run
time, 386

win rate function, creating,
258–61

windows. See also tool windows
docking, 8
floating, 19
minimizing, maximizing,

restoring, 364
switching between types of, 21

Windows applications and
executable file types, 61

Windows Clipboard, pasting text
from, 324

Windows Explorer, running
Windows applications with, 61

Windows Forms Application, 39

Windows Forms controls, 67
Windows Forms Designer vs Web

Page Designer, 498
Windows Forms vs Web pages, 493
Windows Installer, 63
Windows metafiles, 112
Windows taskbar, 8
Windows Version Snippet program,

203–06
Windows, running programs in, 61
WindowState property, 364
Word macros, compatibility

between versions, 309–10
Wrap keyword, 184
WriteAllText method, 321–23
writing

conditional expressions, 179
event handlers, 179
event handlers, disc drive, 233
event procedures (Color button

example), 113–14
program code, 65

X
XCOPY installation, 62
XML

displaying during debugging
sessions, 226

schema file, 443, 451
visualizers, 220

Xor (logical operator)
encrypting text by using the,

340–45
encrypting text with,

341–42
encrypting with, 347
meaning, 167

Xor Encryption program
examining the code of,

342–44
folder location, 341
running, 341–42

Y
Year (date) function, 107

Z
zero, division by, 145, 171
Zoom In program

folder location, 388
loading, 386–88

Michael Halvorson
Michael Halvorson is the author or co-author of more than
35 books, including Microsoft Visual Basic 2008 Step by Step,
Microsoft Office XP Inside Out, and Microsoft Visual Basic 6.0
Professional Step By Step. Halvorson has been the recipient of
numerous non-fiction writing awards, including the Computer
Press Best How-to Book Award (Software category) and the
Society for Technical Communication Excellence Award (Writing
category). Halvorson earned a bachelor’s degree in Computer
Science from Pacific Lutheran University in Tacoma, Washington,
and master’s and doctoral degrees in History from the University
of Washington in Seattle. He was employed at Microsoft

Corporation from 1985 to 1993, and he has been an advocate for Visual Basic programming
since the product’s original debut at Windows World in 1991. Halvorson is currently
an associate professor at Pacific Lutheran University.

Best Practices for Software Engineering

ALSO SEE

microsoft.com/mspress

Code Complete,
Second Edition
Steve McConnell
ISBN 9780735619678

Widely considered one of the best practical guides to
programming—fully updated. Drawing from research,
academia, and everyday commercial practice, McConnell
synthesizes must-know principles and techniques into
clear, pragmatic guidance. Rethink your approach—and
deliver the highest quality code.

Software Estimation:
Demystifying the Black Art
Steve McConnell
ISBN 9780735605350

Amazon.com’s pick for “Best Computer Book of 2006”!
Generating accurate software estimates is fairly straight-
forward—once you understand the art of creating them.
Acclaimed author Steve McConnell demystifi es the
process—illuminating the practical procedures, formulas,
and heuristics you can apply right away.

Agile Portfolio Management
Jochen Krebs
ISBN 9780735625679

Agile processes foster better collaboration, innovation,
and results. So why limit their use to software projects—
when you can transform your entire business? This book
illuminates the opportunities—and rewards—of applying
agile processes to your overall IT portfolio, with best
practices for optimizing results.

The Enterprise and Scrum
Ken Schwaber
ISBN 9780735623378

Extend Scrum’s benefi ts—greater agility, higher-quality
products, and lower costs—beyond individual teams to
the entire enterprise. Scrum cofounder Ken Schwaber
describes proven practices for adopting Scrum principles
across your organization, including that all-critical
component—managing change.

Simple Architectures for
Complex Enterprises
Roger Sessions
ISBN 9780735625785

Why do so many IT projects fail? Enterprise consultant
Roger Sessions believes complex problems require
simple solutions. And in this book, he shows how to
make simplicity a core architectural requirement—as
critical as performance, reliability, or security—to achieve
better, more reliable results for your organization.

Software Requirements, Second Edition
Karl E. Wiegers
ISBN 9780735618794

More About Software Requirements:
Thorny Issues and Practical Advice
Karl E. Wiegers
ISBN 9780735622678

Software Requirement Patterns
Stephen Withall
ISBN 9780735623989

Agile Project Management with Scrum
Ken Schwaber
ISBN 9780735619937

Solid Code
Donis Marshall, John Bruno
ISBN 9780735625921

Dev BestPrac_ResPg_02.indd 1 4/4/10 9:41 PM

Stay in touch!
To subscribe to the Microsoft Press® Book Connection Newsletter—for news on upcoming
books, events, and special offers—please visit:

What do
you think of
this book?
We want to hear from you!
To participate in a brief online survey, please visit:

Tell us how well this book meets your needs—what works effectively, and what we can
do better. Your feedback will help us continually improve our books and learning
resources for you.

Thank you in advance for your input!

microsoft.com/learning/booksurvey

microsoft.com/learning/books/newsletter

SurvPage_corp.indd 1 8/14/09 4:40 AM

	Cover page
	Copyright page

	Dedication page
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Visual Basic Versions
	Downloading Visual Basic 2010 Express

	Finding Your Best Starting Point in This Book
	Hardware and Software Requirements
	Prerelease Software
	Installing and Using the Practice Files
	Installing the Practice Files
	Using the Practice Files

	Uninstalling the Practice Files
	Conventions and Features in This Book
	Conventions
	Other Features

	Helpful Support Links
	Visual Studio 2010 Software Support

	Support for This Book
	We Want to Hear from You

	Part I: Getting Started with Microsoft Visual Basic 2010
	Chapter 1: Exploring the Visual Studio Integrated Development Environment
	The Visual Studio Development Environment
	The Visual Studio Tools
	The Designer
	Running a Visual Basic Program

	The Properties Window
	Moving and Resizing the Programming Tools
	Moving and Resizing Tool Windows
	Docking Tool Windows
	Hiding Tool Windows

	Switching Among Open Files and Tools by Using the IDE Navigator
	Opening a Web Browser Within Visual Studio
	Getting Help
	Managing Help Settings
	Using F1 Help

	Customizing IDE Settings to Match Step-by-Step Exercises
	Setting the IDE for Visual Basic Development
	Checking Project and Compiler Settings

	One Step Further: Exiting Visual Studio
	Chapter 1 Quick Reference

	Chapter 2: Writing Your First Program
	Lucky Seven: Your First Visual Basic Program
	Programming Steps
	Creating the User Interface
	Setting the Properties
	The Picture Box Properties
	Writing the Code
	A Look at the Button1_Click Procedure
	Running Visual Basic Applications
	Sample Projects on Disk
	Building an Executable File
	Deploying Your Application
	One Step Further: Adding to a Program
	Chapter 2 Quick Reference

	Chapter 3: Working with Toolbox Controls
	The Basic Use of Controls: The Hello World Program
	Using the DateTimePicker Control
	The Birthday Program

	Controls for Gathering Input
	Using Group Boxes and Radio Buttons
	Processing Input with List Boxes
	A Word About Terminology

	One Step Further: Using the LinkLabel Control
	Chapter 3 Quick Reference

	Chapter 4: Working with Menus, Toolbars, and Dialog Boxes
	Adding Menus by Using the MenuStrip Control
	Adding Access Keys to Menu Commands
	Processing Menu Choices
	Adding Toolbars with the ToolStrip Control
	Using Dialog Box Controls
	Event Procedures That Manage Common
Dialog Boxes
	One Step Further: Assigning Shortcut Keys to Menus
	Chapter 4 Quick Reference

	Part II: Programming Fundamentals
	Chapter 5: Visual Basic Variables and Formulas, and the .NET Framework
	The Anatomy of a Visual Basic Program Statement
	Using Variables to Store Information
	Setting Aside Space for Variables: The Dim Statement
	Implicit Variable Declaration

	Using Variables in a Program
	Using a Variable to Store Input
	Using a Variable for Output
	Working with Specific Data Types
	Constants: Variables That Don’t Change

	Working with Visual Basic Operators
	Basic Math: The +, –, *, and / Operators
	Using Advanced Operators: \, Mod, ^, and &

	Working with Math Methods in the .NET Framework
	One Step Further: Establishing Order of Precedence
	Using Parentheses in a Formula

	Chapter 5 Quick Reference

	Chapter 6: Using Decision Structures
	Event-Driven Programming
	Using Conditional Expressions
	If ... Then Decision Structures
	Testing Several Conditions in an If ... Then Decision Structure
	Using Logical Operators in Conditional Expressions
	Short-Circuiting by Using AndAlso and OrElse

	Select Case Decision Structures
	Using Comparison Operators with a Select Case Structure

	One Step Further: Detecting Mouse Events
	Chapter 6 Quick Reference

	Chapter 7: Using Loops and Timers
	Writing For ... Next Loops
	Using a Counter Variable in a Multiline TextBox Control
	Creating Complex For ... Next Loops
	Using a Counter That Has Greater Scope

	Writing Do Loops
	Avoiding an Endless Loop
	The Timer Control
	Creating a Digital Clock by Using a Timer Control
	Using a Timer Object to Set a Time Limit
	One Step Further: Inserting Code Snippets
	Chapter 7 Quick Reference

	Chapter 8: Debugging Visual Basic Programs
	Finding and Correcting Errors
	Three Types of Errors
	Identifying Logic Errors
	Debugging 101: Using Debugging Mode
	Tracking Variables by Using a Watch Window
	Visualizers: Debugging Tools That Display Data
	Using the Immediate and Command Windows
	Switching to the Command Window
	One Step Further: Removing Breakpoints
	Chapter 8 Quick Reference

	Chapter 9: Trapping Errors by Using Structured Error Handling
	Processing Errors by Using the Try ... Catch Statement
	When to Use Error Handlers
	Setting the Trap: The Try ... Catch Code Block
	Path and Disc Drive Errors

	Writing a Disc Drive Error Handler
	Using the Finally Clause to Perform Cleanup Tasks
	More Complex Try ... Catch Error Handlers
	The Exception Object
	Specifying a Retry Period
	Using Nested Try ... Catch Blocks

	Comparing Error Handlers with Defensive Programming Techniques
	One Step Further: The Exit Try Statement
	Chapter 9 Quick Reference

	Chapter 10: Creating Modules and Procedures
	Working with Modules
	Creating a Module

	Working with Public Variables
	Creating Procedures
	Writing Function Procedures
	Function Syntax
	Calling a Function Procedure
	Using a Function to Perform a Calculation

	Writing Sub Procedures
	Sub Procedure Syntax
	Calling a Sub Procedure
	Using a Sub Procedure to Manage Input

	One Step Further: Passing Arguments by Value and by Reference
	Chapter 10 Quick Reference

	Chapter 11: Using Arrays to Manage Numeric and String Data
	Working with Arrays of Variables
	Creating an Array
	Declaring a Fixed-Size Array
	Setting Aside Memory
	Working with Array Elements
	Declaring an Array and Assigning It Initial Values
	Creating a Fixed-Size Array to Hold Temperatures
	Creating a Dynamic Array

	Preserving Array Contents by Using ReDim Preserve
	Using ReDim for Three-Dimensional Arrays

	One Step Further: Processing Large Arrays by Using Methods in the Array Class
	The Array Class

	Chapter 11 Quick Reference

	Chapter 12: Working with Collections
	Working with Object Collections
	Referencing Objects in a Collection
	Writing For Each ... Next Loops
	Experimenting with Objects in the Controls Collection
	Using the Name Property in a For Each ... Next Loop

	Creating Your Own Collections
	Declaring New Collections

	One Step Further: VBA Collections
	Entering the Word Macro

	Chapter 12 Quick Reference

	Chapter 13: Exploring Text Files and String Processing
	Reading Text Files
	The My Namespace
	The StreamReader Class
	Using the ReadAllText Method

	Writing Text Files
	The WriteAllText Method
	The StreamWriter Class
	Using the WriteAllText Method

	Processing Strings with the String Class
	Sorting Text
	Working with ASCII Codes
	Sorting Strings in a Text Box
	Examining the Sort Text Program Code

	Protecting Text with Basic Encryption
	One Step Further: Using the Xor Operator
	Examining the Encryption Program Code

	Chapter 13 Quick Reference

	Part III: Designing the User Interface
	Chapter 14: Managing Windows Forms and Controls at Run Time
	Adding New Forms to a Program
	How Forms Are Used
	Working with Multiple Forms
	Using the DialogResult Property in the Calling Form

	Positioning Forms on the Windows Desktop
	Minimizing, Maximizing, and Restoring Windows

	Adding Controls to a Form at Run Time
	Organizing Controls on a Form
	One Step Further: Specifying the Startup Object
	Chapter 14 Quick Reference

	Chapter 15: Adding Graphics and Animation Effects
	Adding Artwork by Using the System.Drawing Namespace
	Using a Form’s Coordinate System
	The System.Drawing.Graphics Class
	Using the Form’s Paint Event

	Adding Animation to Your Programs
	Moving Objects on the Form
	The Location Property
	Creating Animation by Using a Timer Object

	Expanding and Shrinking Objects While a Program Is Running
	One Step Further: Changing Form Transparency
	Chapter 15 Quick Reference

	Chapter 16: Inheriting Forms and Creating Base Classes
	Inheriting a Form by Using the Inheritance Picker
	Creating Your Own Base Classes
	Adding a New Class to Your Project

	One Step Further: Inheriting a Base Class
	Chapter 16 Quick Reference

	Chapter 17: Working with Printers
	Using the PrintDocument Class
	Printing Text from a Text Box Object

	Printing Multipage Text Files
	One Step Further: Adding Print Preview and Page Setup Dialog Boxes
	Chapter 17 Quick Reference

	Part IV: Database and Web Programming
	Chapter 18: Getting Started with ADO.NET
	Database Programming with ADO.NET
	Database Terminology
	Working with an Access Database
	The Data Sources Window

	Using Bound Controls to Display Database Information
	One Step Further: SQL Statements, LINQ, and Filtering Data
	Chapter 18 Quick Reference

	Chapter 19: Data Presentation Using the DataGridView Control
	Using DataGridView to Display Database Records
	Formatting DataGridView Cells
	Adding a Second Data Grid View Object
	One Step Further: Updating the Original Database
	Chapter 19 Quick Reference

	Chapter 20: Creating Web Sites and Web Pages by Using Visual Web Developer and ASP.NET
	Inside ASP.NET
	Web Pages vs. Windows Forms
	Server Controls
	HTML Controls

	Building a Web Site by Using Visual Web Developer
	Considering Software Requirements for ASP.NET Programming

	Using the Web Page Designer
	Adding Server Controls to a Web Site
	Writing Event Procedures for Web Page Controls

	Customizing the Web Site Template
	Displaying Database Records on a Web Page
	One Step Further: Setting Web Site Titles in Internet Explorer
	Chapter 20 Quick Reference

	Appendix: Where to Go for More Information
	Visual Basic Web Sites
	Video Web Sites
	Books about Visual Basic and Visual Studio Programming
	Visual Basic Programming
	Microsoft .NET Framework
	Database Programming with ADO.NET
	Web Programming with ASP.NET
	Office Programming
	General Books about Programming and Computer Science

	Index
	About the Author
	Marketing page

	Survey page

