Soltware

www.computer.org/software

The Artistry of Software Architecture

Maarten Boassan

Vol. 12, No. 6
November 1995

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.

IEEE

COMPUTER
SOCIETY

© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

GUEST EDITOR"’S

e

INTRODUCTION

%&Z‘@ -

I WA |

® There is undoubtedly a large measure of
art involved in software design. But artistic
expression in the absence of rules results in
chaotic design. 1o produce open systems, we
must agree on some well-defined rules to

govern interaction among systems and

subsystems.

MAARTEN .
BoAssoN,

Hollandse
Signaalapparaten

esigning software
is not very different
from designing any
other complex struc-
ture: Few people are
good at it; no single recipe always
produces a good product; and the
more people involved, the smaller the
probability of success. On the other
hand, a design produced by someone

valuable than the
great masterpieces that
have been created
throughout our rich cultural
history. Examples of
both bad and good
designs can be
found all around
us, in almost
every engineering
field; practically
everyone recognizes a
piece of art when they see it.
Why is design quality so criti-
cally dependent on the skills and
capabilitics of a single
designer? What are
these skills? And can
anyone learn them
b - sufficiently well wo
design good sys-
tems?
The common
" factor in all design
b activities appears to
* be strict adherence

who to a well-chosen
is good at) ~ overall structure and
design pro- / I} grinciple. The
vides an excellent : priire ot physical things
basis for long, reliable '3 / bridges and buildings is
service. In exceptional cases, P> largely dictated by the laws of
a good software design is no less . nature, which limit a designer’s choices.

IEEE SOFTWARE

0740-7459,/95,/$04.00 © 1995 IEEE BeSt Copy Ava“able 13
pebubhaibuthl o Sttt

¢ Architectural Mismatch: Why
Reuse Is So Hard, pp. 17-26

David Garlan, Robert Allen, and Jobn
Ockerbloom

Architectural mismatch stems from
mismatched assumptions a reusable part
makes about the system structure it is to
be part of. These assumptions often
conflict with the assumptions of other
parts and are almost always implicit,
making them extremely difficult to ana-
lvze before building the system.

To illustrate how the perspective of
architectural mismatch can clarify our
understanding of component integra-
tion problems, we describe our experi-
ence of building a family of software
design environments from existing
parts. On the basis of our experience,
we show how an analysis of architectur-
al mismatch exposes some fundamental,
thorny problems for software composi-
tion and suggests some possible
research avenues needed to solve them.

¢ Comparing Architectural
Design Styles, pp. 27-41

Mary Shaw

One of the more difficult decisions
designers face in this area is selecting
an appropriate architectural style.

In this article, I examine 11 designs
for an automobile cruise-control sys-
tem. Most of the designs appeal to
multiple stvles, but they generally fall
into four main groups: object-oriented
architectures, including information
hiding; state-based architectures; feed-
back-control architectures; and archi-
tectures that emphasize the system’s
real-time properties.

It is my hope that this evaluation
will not only make it easier to under-
stand the relative merits of different
architectural design idioms, but also
serve as a springboard for analyzing the
remaining obstacles to practical archi-
tectural design at the system level.

¢ The “4+1” View Model of
Software Architecture, pp. 42-50
Philippe Kruchten
The 4 + 1 View Model describes
! software architecture using five concur-
! rent views, each of which addresses a
. specific set of concerns: The logical
. view describes the design’s object
model, the process view describes the
design’s concurrency and synchroniza-
don aspects; the physical view describes

ARTICLE SUMMARIES: SOFTWARE ARCHITECTURE

the mapping of the software onto the
hardware and shows the system’s dis-
tributed aspects, and the development
view describes the software’s static
organization in the development envi-
ronment. Software designers can orga-
nize the description of their architectur-
al decisions around these four views and
then illustrate them with a few selected
use cases, or scenarios, which constitute
a fifth view. The architecture is partially
evolved from these scenarios.

The 4+1 View Model allows various
stakeholders to find what they need in
the software architecture. System engi-
neers can approach it first from the
physical view, then the process view;
end users, customers, and data special-
ists can approach it from the logical
view; and project managers and soft-
ware-configuration staff members can
approach it from the development view.

¢ Creating Architectures with
Building Blocks, pp. 51-60

Frank J. van der Linden and Jiirgen
K. Miiller

At Philips Communications
Industry (PKI), we develop embedded
telecommunication-infrastructure sys-
tems. Because we must deliver each
product in site-specific configurations
— of which there are many — and
because the development of such sys-
temis is a Major investment, we must
create a product family rather than a sin-
gle product. We organize system con-
struction according to three design
dimensions covered by the system
architecture: structure, aspects, and
behavior.

Of the three dimensions, we consid-
er structure to be the most important.
In this dimension, reducing complexity
is our main concern. We thus organize
system functionality into four layers, or
subsystems. These subsystems are com-
posed of software modules — ‘building
blocks’ — which are the basic software
entities in the system architecture.

The Building-Block Method is an
architectural method. It does not pre-
scribe the precise method you should
use to develop the building blocks. You
can use different methods within one
system according to the specific re-
quirements for each building block. You
can also use formal or informal specifi-
cations for building blocks, depending
upon your application domain.

¢ Implementing Dialogue
Independence, pp. 61-70

Drasko M. Sotirovski and Philippe B.
Kruchten

Dialogue independence — the
decoupling of the Computer-Human
Interface from the core applicaton
software — can be achieved simply
through an appropriate architectural
framework, with no loss of efficiency.
We show that the objective of dialogue
independence can be decomposed into
three separate subgoals that a software
architecture must resolve: existence,
property, and transition. We identify
architectural patterns that satisfy all
three subgoals, and give a rough sketch
of their design and implementation.

We chose an air-traffic-control sys-
tem to illustrate our proposed decom-
position because of our experience with
it and because it exposes many of the
difficulties inherent in a typical, large
CHI software architecture. We use the
terminology of object-oriented soft-
ware architecture, but we propose a
decomposition that is independent of
the methodology used.

Related Articles to Appear

We were unable to accommodate
these two articles in this issue. They
will appear in a future issue. In the
meantime, the unedited articles are
accessible through our Web site:
hetp://www.computer. org/pubs/
software/software.htm

¢ Architectural Design of a
Common Operating Environment

Shawn Burler, David Diskin, Novman
Houwes, and Kathleen Jordan

We have developed a Common
Operating Environment for a Global
Command and Control System. The
underlving design principle of our
effort has been to reduce complexity
and use architectural components that
are supported by existing commercial
products and standards.

+ A Generic Model for Software
Architectures

Wilhelm Rossak, Vussilka Kiroca, Leon
Fololian, Harold Luweson. and Tamar
Zeniel

We present an architecture-based
approach for developing domain-

specific, large and complex software
systems within the context of the Eng-
ineering of Computer Based Systems.

14

Best Copy Available

NOVEMBER 1895

Pure art has no such restrictions, and
artists have used this freedom more
or less saccessf'ully throughout histo-
ry. Classical artists created their own
sets of rules for each period because
the mind cannot deal effectively with
the unlimited freedom that comes
when all rules are suspended.
Modern artists consciously aban-
doned structural rules, which
accounts for the chaotic nature of
many contemporary pieces of art.

DESIGN AS AN ART

Software design is both similar to
and different from artistic design.
Software designers are not limited to
physical restrictions, but neither are
they guided by rules that have proven
their usefulness over a very long peri-
od of refinement. As with art, this
easily results in chaotic designs that
fail to meet even the most elemen-
tary requirements, equivalent to
structural integrity and safety in
physical designs. In fact, the potential
for chaos is ever greater, because
software is subject to much more
modification during its lifetime than
other artifacts (no one would think of
modifying Rembrandt’s Nightwatch,
the Eiffel Tower, or the Golden
Gate Bridge!).

As we have tried to come to grips
with the difficulties of large-system
software development, we have paid
a lot of attention to improving the
structure of the design process. The
research areas labeled “structured
programming,” “software engineer-
ing,” and, more recently, “software
process modeling” have significantly
contributed to a better understanding
of the problems.

Unfortunately, the benefits of the
software-engineering tools that
rapidly came into existence — and
are themselves now large, complex
systems — have been very heavily
oversold. As a result, much attention
has been focused on improving and
extending tools to better support the

design process — as if better drawing
boards would result in better bridges
and budumgs ! The better role for
such tools is to speed development
once a good system structure has
been conceived. Modern bridges are
possible because we now have tools
that support the verification of struc-
tural ideas, not the other way around.

This leads to the all-important
concept of a system’s architecture.
Here I use the term “architecture” to
mean a system structure that consists
of active modules, a mechanism to
allow interaction among these mod-
ules, and a set of rules that govern

[Volidution l Reuse 'Simplicily

lVenﬁtutmn ! ces

Prototype
High-level
language
Design freedom
Understanding

Architecture

Figure 1. Relationship between solu-
tions, techniques, and architecture.

the interaction. In this issue, “The
4+1 View Model of Architecture,” by
Phillipe Kruchten expands this defin-
ition to include many more aspects of
a systemn (and see a related article, “A
Generic Model for the Use and
Specification of Software Archi-
tecture” by Wilhelm Rossak, Vassilka
Kirova, Leon Jololian, and Harold
Lawson in an upcoming issue).

In contrast to this ideal approach,
a typical development approach
results in an architecture with a sepa-
rate set of rules for almost every
interface. If the size of the rule set is
used to grade an architecture, these
architectures would score extremely
low. Limiting this size is a useful
goal, and yet a rule set that is too
small reduces interaction possibili-

ties, potentially to the point where it
is impossible to implement the

quUerU Iu[lL[lUIldll(y DUIIIC ldrgc-
system development processes do
adopt an architecture-centered
approach (as described by Kruchten
in this issue or by Grady Booch in an
address to the Software Technology
Conference last spring?).

Figure 1 illustrates the central
role played by architecture. As the
figure shows, developers today use a
plethora of techniques to try to
address the cost-explosion problem
observed in nearly all large-system
developments. Without a suitable
architecture, it is difficult to apply
these techniques individually, let
alone in combination.

DATA-CENTRIC ARCHITECTURE

Clearly, architecture plays a key
role in the development process, and
without a suitable architecture devel-
opers can achieve little. Today, the
major question is: What rules should
we follow to successfully develop sys-
tems that meet all functional and
nonfunctional (performance, extensi-
bility, and fault-tolerance) require-
ments. There is no one answer to
this question; in fact there are sever-
al.

At a very high level, there are two
distinct approaches: The first orients
the architecture around the system’s
functions; the other around a global
data model. The majority of efforts,
past and present, have focused on the
functional paradigm, which defines
how individual functions interact,
synchronize, and communicate.

Many researchers have proposed a
solution to the architecture problem
(Mary Shaw describes a number of
them in the article “Comparing
Architectural Design Styles”). The
majority of these solutions, however,
result from a particular system-
design approach and suffer (some-
what) from their need for special
instances of generic architectural

IEEE SOFTWARE

15

rules to govern each individual interaction.

This is not the inevitable result of a function-oriented
approach, but instead largely reflects the strong tendency to
adopt information-hiding. Information hiding, in this context,
has been universally interpreted as the need for data abstrac-
tion, but this is not the only possible approach. A better alter-
native is a dual approach, in which you develop a global data
model first and then develop the functions necessary to bring
these postulated data elements into existence. This approach
leads to a radically different architecture. Relatively litde has
been published in this area, but the few experiments and
products that have used this approach have had extremely
promising results (see, for example, “The Architectural
Design of the Common Operating Environment for the
Global Command and Control System” by Shawn Butler,
David Diskin, Norman Howes, and Kathleen Jordan in an
upcoming issue and related articles.*).

Different types of systems — or even different subsys-
tems within a single system — may require different archi-
tectures, as described by Drasko Sotirovsky and Philippe

LKruchten in “Implementing Dialogue Independence.”

————

THE UNIVERSITY OF MINNESOTA

Department of Computer Science

Applications are invited for tenure-rack positions beginning September 16, 1996.
These positions are at the ossistant professor level, although appointments at the associ-
ate ond full professor levels will be considered for highly quolified appliconts. The two
areas of primary inferest are: (i} Software Engineering, and (ii) Computer Systems with
emphosis on Networks, Porallel and Distributed Systems. A Ph.D. in Computer Science
or related disciplines, commitment to teaching, distinguished research experience, and
a demonstrated ability fo define new and innovative research directions are required.

The Department of Computer Science at the University of Minnesota encompasses
o wide range of research areas, including software engineering, networks and distrib-
uted multimedia, dotobases, human-computer interaction, parallelizing compilers, com-
puter architecture, robotics and computer vision, olgorithms and complexity theory,
computational geometry, parallel and scienific compufing, and numerical analysis.

Faculty members in the Department of Computer Science hiove access to outstand-
ing computer facilities both within the Department and the various high performance
tomputing centers on campus, including the Minnesota Supercomputer Institute, the
Army High Performance Computing Reseorch Center, and the Computational Science
and Engineering Loboratory. The Minneapolis - St. Paul area is o major center for ad-
vanced technology and computer indusiry, and the Depariment of Computer Science
enjoys strong interactions with several such local industries.

Applicants should send curriculum vitoe (including publications), research sum-
mary, and the names of ot least three references to: Chair, Faculty Recruiting Commit-
tee, Depariment of Computer Science, 4-192 EE/CS Building, University of Minnesota,
200 Union Street S.E., Minneapolis, MN 55455.

Appliconts must be received by January 8, 1996. Interviews may take place be-
fore the closing dote, but final decisions will not be made before Junuary 8, 1996,

The University of Minnesota is an equal opportunity educator and employer.

For more information about the Department of Computer Science, see the World
Wide Web home page: www@cs.umn.edu.

Architecture choice is crucial — it may be the difference
between a successful project and a failure (as David Garlan
describes in “Architectural Mismatch: Why Reuse Is So
Hard”). As open systems are increasingly emphasized, we
clearly need standards that will allow us to couple systems
with different internal architectures. This requires not only
well-defined connectors (plugs that fit outlets), but also
well-understood data semantics (outlets and appliances
made for the same voltage).

In this area there are still many open questions, and the
problem is only beginning to be recognized as crucial. This
will change in the next few years, and the industry may rec-
ognize that a data-centered approach has important advan-
tages after all. Even as implementations of concepts like the
Common Object Request Broker Architecture becomes
readily available, software developers still doubt their uni-
versal applicability and continue to seek other architectural
models.

The Rossak article and “Creating Architectures with
Building Blocks” by Frank van der Linden and Jiirgen
Miiller are examples of numerous attempts to formalize
architectural models. We need a sound mathematical basis
to explore both the potential benefits and the limitations of
proposed architectures and to ultimately prove a system’s
properties on the basis of the properties of its individual
components. We still have a long way to go — research into
these issues is of the greatest possible importance in advanc-
ing the state of the art of large-system development. *

—

REFERENCES

1. M. Boasson, “Exploding Complexity May Be Our Own Fault,” IEEE
Software, Mar. 1993, p. 12.

2. G. Booch, “Practical Software Engineering,” CrossTalk, July 1995, pp. 4-13.
M. Boasson, “Control Systems Software,” IEEE Trans. Automatic
Control, July 1993, pp. 1094-1107.

4. N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM, Apr.
1989, pp. 444-458,

5. G.-C. Roman and H.C. Cunningham, “A Shared Dataspace Model of
Concurrency: Language and Programming Implications,” Proc. Int’l
Conf. Distributed Computing Systems, 1989, pp. 270-279.

6. H.R. Simpson, “Real Time Networks in Configurable Distributed
Systems,” Int’l Workshop Configurable Distributed Systems, IEE, London,
1992, pp. 45-59.

Maarten Boasson is head of Signaal’s Applied Systems
Research Department and a member of Thomson’s
Scientific and Technical Council, where he is responsible
for research and long-term development strategy in dis-
tributed, real-time systems. His research focuses on pre-
venting unnecessary complexity in system design.
Boasson has a master’s degree in mathematics from
Gorningen University. He is a member of the IEEE
Computer Society, ACM, and the American Association
of Artificial Intelligence, and cofounder of the IEEE task
force on computer-based systems engineering.

Address questions about this issue to Boasson at Hollandse Signaalapparaten
BV, PO Box 42, 7550 GD Hengelo, The Netherlands; boasson@hgl.signaal.nl.

NOVEMBER 1885

