
© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or

for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be

obtained from the IEEE.

For more information, please see www.ieee.org/portal/pages/about/documentation/copyright/polilink.html.

www.computer.org/software

The Artistry of Software Architecture

Maarten Boassan

Vol. 12, No. 6

November 1995

This material is presented to ensure timely dissemination of scholarly and technical
work. Copyright and all rights therein are retained by authors or by other copyright
holders. All persons copying this information are expected to adhere to the terms
and constraints invoked by each author's copyright. In most cases, these works

may not be reposted without the explicit permission of the copyright holder.

GUEST EDITOR’S INTRODUCTION

*There is undoubtedly a large measure of
art involved in sojkuare design. But artistic

expression in the absence of rules results in

chaotic design. To produce open systems, we

must agree on some well-dejhed rules to

govern interaction among systems and

D esigning software
is not very different
from designing any
other complex struc- who
ture: Few people are is good at

good at it; no single recipe always design pro-
produces a good product; and the vides an excellent
more people involved, the smaller the
probability of success. On the other

basis for long, reliable
service. In exceptional cases,

hand, a design produced by someone a good software design is no less

valuable than the
great masterpieces that

have been created
throughout our rich cultural

L history. Examples of
L both bad and good

1 designs can be
found all around
us, in almost
every engineering

Ir field; practically
everyone recognizes a

P * piece of art when they see it.
1T’hp is design quality so criti-

IL cally~ dcl)endent on the skills and
. c~p~~l~ili l ies of a single

h. tlesigncr? What are
. these skills? 4nd can

myone le;~rn them
S sufficiently well to

design good sys-
terns?

The coI1111lo11

factor in all design
activities appears to
be strict adherence
t u a well-Ehosen

l ‘.’ overall st&ture and

midges and buildings is
Trgely dictated by the laws of

nature, which limit a designer’s choices.

IEEE SOFTWARE 07407459/95/504 co 0 1995 IEEE Best Copy Available 13

ARTICLE SUMMARIES: SOFTWARE ARCHITECTURE
+ Architectural Mismatch: Why

Reuse Is So Hard, pp. 17-26
Dmid Garian, Robert .-Men, andJohn

Ockerbloom
.-Ircbitectu7xl mismatch stems from

mismatched assumptions a reusable part
makes about the system structure it is to
be part of. These assumptions often
contlict with the assumptions of other

I parts and are almost always implicit,
making them extremely difficult to ana-
lyze before building the system.

To illustrate how the perspective of
’ architectural mismatch can clari@ our

understanding of component integra-
tion problems, we describe our esperi-
ence of building a family of software
design environments from existing
parts. On the basis of our experience,
we show how an analvsis of architectur-
al mismatch exposes some fundamental,

1 thorny problems for software composi- I
non and suggests some possible
research avenues needed to solve them.

+ Comparing Architectural
Design Styles, pp. 27-41

Ma7y Shaw
One of the more difficult decisions

designers face in this area is selecting
an appropriate architectural style.

In this article, I examine 11 designs
for an automobile cruise-control sys-
tem. Most of the designs appeal to
multiple styles, but they generally fall
into four main groups: object-oriented

1 architectures, including information
/ hiding; state-based architectures; feed-
i back-control architectures; and archi-
/ tectures that emphasize the system’s

real-time properties.

I -’
It is my hope that this evaluation

i ~111 not only make it easier to under-
/ stand the relative merits of different
~ architectural design idioms, but also

serve as a springboard for analyzing the
j remaining obstacles to practical archi-
, tectural design at the system level.

+ The “4+1” View Model of
Software Architecture, pp. 42-50

Philippe Knlrhten
I The 4 + 1 View Model describes
/ software architecture using five concur-
! rent views, each of which addresses a
I specific set of concerns: The logical
I view describes the design’s object
/ model, the process view describes the
1 design’s concurrency and synchroniza-

tion aspects; the physical view describes

the mapping of the software onto the
hardware and shows the system’s dis-
tributed aspects, and the development
view describes the software’s static
organization in the development envi-
ronment. Software designers can orga-
nize the description of their architectur-
al decisions around these four views and
then illustrate them with a few selected
use cases, or scenarios, which constitute
a fifth view. The architecture is partially
evolved from these scenarios.

The -I+ 1 \‘iew hIode allows various
stakeholders to find what they need in
the software architecture. System engi-
neers can approach it first from the
physical view, then the process view;
end users, customers, and data special-
ists can approach it from the logical
view; and project managers and soft-
ware-con&guuration staff members can
approach it from the development view.

+ Creating Architectures with
Building Blocks, pp. 5 l-60

At Philips Communications
Indust? (PKI), we develop embedded
telecommunication-infrastructure sys-
terns. Because we must deliver each
product in site-specific configurations
- of which there are manv - and
because the development if such sys-
tems is a major investment, we must
create a p~odrlrtftimi~y rather than a sin-
gle product. LVe organize system con-
struction according to three design
dimensions covered by the system
architecture: structure, aspects, and
behavior.

Of the three dimensions, we consid-
er structure to be the most important.
In this dimension, reducing complexi
is our main concern. Lye thus organize
system functionality into four layers, or
subsystems. These subsystems are com-
posed of software modules - ‘building
blocks’ -which are the basic sofmare
entities in the system architecture.

The Building-Block &Iethod is an
architectural method. It does not pre-
scribe the precise method you should
use to develop the building blocks. You
can use different methods within one
system according to the specific re-
quirements for each building block. You
can also use formal or informal specifi-
cations for building blocks, depending
upon your application domain.

l Implementing Dialogue

7

Independence, pp. 61-70
Drasko Jl. Sotilavski and Philippe B.

Kmchten
Dialogue independence - the

decoupling of the Computer-Human
Interface from the core application
software - can be achieved simply
through an appropriate architectural
framework, with no loss of efficiency.
We show that the objective of dialogue
independence can be decomposed into
three separate subgoals that a software
architecture must resolve: e?dstence,
property, and transition. We identify
architectural patterns that satisfy all
three subgoals, and give a rough sketch
of their design and implementation.

u’e chose an air-traffic-control sys-
tem to illustrate our proposed decom-
position because of our experience with
it and because it exposes many of the
difficulties inherent in a typical, large
CHI sofmare architecture. We use the
terminology of object-oriented soft-
ware architecture, but we propose a
decomposition that is independent of
the methodology used.

Related Articles to Appear
11’e were unable to accommodate

these mo articles in this issue. They
will appear in a future issue. In the
meantime, the unedited articles are
accessible through our Web site:
http:llwww.computer. erg/pubs/
sofnvare/sof~~are.htm

+ Architectural Design of a
Common Operating Environment

.VW;~~I B~ctler, Dmid Di.rkirz, Norman
Hox~. i/ml h-,/tbkwi/ ~ordnn

11-e have developed a Common
Oper:lting Environment for a Global
Command :lnd Control S!.stem. The
untlerl!ing design principle of our
effort has been to reduce complexity
and use architecturnl components that
are supported I,!- eyistlng commercial
products and st.lnd,lrds.

+ A Generic Alodel for Software
Architectures

1\‘e present an nrchitecnlre-based
approach for developing domain-
specific, large 2nd coniples software
systems lvithin the context of the Eng-
ineering of Computer Based Systems.

14

Best Copy Available
NOVEMBER 1995

Pure art has no such restrictions, and design process - as if better drawing ties, potentially to the point where it
artists have used this freedom more boards would result in better bridges
or less successfully throughout histo-

is impossible to implement the
and buildings.’ The better role for required functionality. Some large-

ry. Classical artists created their own such tools is to speed development system development processes do
sets of rules for each period because once a good system structure has
the mind cannot deal effectively with

adopt an architecture-centered
been conceived. Modern bridges are

the unlimited freedom that comes
approach (as described by Kruchten

possible because we now have tools in this issue or by Grady Booth in an
when all rules are suspended. that support the verification of struc- address to the Software Technology
Modern artists consciously aban- tm-al ideas, not the other way around.
doned structural rules, which

Conference last sprinti).
This leads to the all-important Figure 1 illustrates the central

accounts for the chaotic nature of concept of a system’s architecture. role played by architecture. As the
many contemporary pieces of art. Here I use the term “architecture” to figure shows, developers today use a

mean a system structure that consists plethora of techniques to try to
of active modules, a mechanism to

DESIGN AS AN ART
address the cost-explosion problem

allow interaction among these mod- observed in nearly all large-system
ules, and a set of rules that govern developments. Without a suitable

Software design is both similar to architecture, it is difficult to apply
and different from artistic design.
Software designers are not limited to

these techniques individually, let
alone in combination.

physical restrictions, but neither are I
they guided by rules that have proven i
their usefulness over a very long peri- / DATA-CENTRIC ARCHITECTURE
od of refinement. As with art, this j
easily results in chaotic designs that :
fail to meet even the most elemen-

Clearly, architecture plays a key
!

tary requirements, equivalent to i
role in the development process, and
without a suitable architecture devel-

structural integrity and safety in j : opers can achieve little. Today, the
physical designs. In fact, the potential major question is: What rules should
for chaos is ever greater, because

j
) : we follow to successfully develop sys-

software is subject to much more I- ---- --- -- -- terns that meet all functional and
modification during its lifetime than Figure 1. Relationship between solu-

tions, techniques, and architecture.
nonfunctional (performance, extensi-

other artifacts (no one would think of
modifying Rembrandt’s Nightwatch,

bility, and fault-tolerance) require-
ments. There is no one answer to

the Eiffel Tower, or the Golden this question; in fact there are sever-
Gate Bridge!). the interaction. In this issue, “The al.

As we have tried to come to grips 4+1 View Model of Architecture,” by At a very high level, there are two
with the difficulties of large-system Phillipe Kruchten expands this defin- distinct approaches: The first orients
software development, we have paid ition to include many more aspects of the architecture around the system’s
a lot of attention to improving the a system (and see a related article, “A functions; the other around a global
structure of the design process. The Generic Model for the Use and data model. The majority of efforts,
research areas labeled “structured Specification of Software Archi- past and present, have focused on the
programming,” “ software engineer- tecture” by Wilhelm Rossak, Vassilka functional paradigm, which defines
ing,” and, more recently, “software Kirova, Leon Jololian, and Harold how individual functions interact,
process modeling” have significantly Lawson in an upcoming issue). synchronize, and communicate.
contributed to a better understanding In contrast to this ideal approach, Many researchers have proposed a
of the problems. a typical development approach solution to the architecture problem

Unfortunately, the benefits of the results in an architecture with a sepa- (Mary Shaw describes a number of
software-engineering tools that
rapidly came into existence - and

rate set of rules for almost every them in the article “Comparing
interface. If the size of the rule set is Architectural Design Styles”). The

are themselves now large, complex used to grade an architecture, these majority of these solutions, however,
systems - have been very heavily architectures would score extremely result from a particular system-
oversold. As a result, much attention low. Limiting this size is a useful design approach and suffer (some-
has been focused on improving and goal, and yet a rule set that is too what) from their need for special
extending tools to better support the small reduces interaction possibili- instances of generic architectural

IEEE SOFTWARE 15

rules to govern each individual interaction.
This is not the inevitable result of a function-oriented

approach, but instead largely reflects the strong tendency to
adopt information-hiding. Information hiding, in this context,
has been universally interpreted as the need for data abstrac-
tion, but this is not the only possible approach. A better alter-
native is a dual approach, in which you develop a global data
model first and then develop the functions necessary to bring
these postulated data elements into existence. This approach
leads to a radically different architecture. Relatively little has
been published in this area, but the few experiments and
products that have used this approach have had extremely
promising results (see, for example, “The Architectural
Design of the Common Operating Environment for the
Global Command and Control System” by Shawn Butler,
David Diskin, Norman Howes, and Kathleen Jordan in an
upcoming issue and related articles.3-6).

Different types of systems - or even different subsys-
tems within a single system - may require different archi-
tectures, as described by Drasko Sotirovsky and Philippe
Kruchten in “Implementing Dialogue Independence.”

THE UNIVERSITY OF M INNESOTA
Department of Computer Science

Applications are invited for tenure-track positions beginning September 16, 1996.
These positions are at the assistant professor level, although appointments at the associ-
ate and full professor levels will be considered for highly qualified applicants, The two
areas of primary interest are: (i) Software Engineering, and (ii) Computer Systems with
emphasis on Networks, Parallel and Distributed Systems. A Ph.D. in Computer Science
or related disciplines, commitment to teaching, distinguished research experience, and
o demonstrated ability to define new and innovative research directions are required.

The Department of Computer Science at the University of Minnesota encompasses
o wide range of research areas, including software engineering, networks and distrib-
uted multimedia, databases, human-computer interaction, parallelizing compilers, com-
puter architecture, robotics and computer vision, algorithms and complexity theory,
computational geometry, parallel and scientific computing, and numerical analysis.

Faculty members in the Deportment of Computer Science have access to outstand-
ing computer facilities both within the Department and the various high performance
computing centers on campus, including the Minnesota Supercomputer Institute, the
Army High Performance Computing Research Center, and the Computational Science
and Engineering Laboratory. The Minneapolis - St. Paul area is a major center for ad-
vanced technology and computer industry, and the Department of Computer Science
enjoys strong interactions with several such local industries.

Applicants should send curriculum vitae (including publications), research sum-
mary, and the names of at least three references to: Chair, Faculty Recruiting Commit-
tee, Department of Computer Science, 4-l 92 EE/CS Building, University of Minnesota,
200 Union Street S.E., Minneapolis, MN 55455.

Applicants must be received by January 8, 1996. Interviews may take place be-
fore the closing date, but final decisions will not be made before January 8,1996.

The University of Minnesota is an equal opportunity educator and employer.
For more information about the Department of Computer Science, see the World

Wide Web home page: wwwQcs.umn.edu.

Architecture choice is crucial - it may be the difference
between a successful project and a failure (as David Garlan
describes in “Architectural Mismatch: Why Reuse Is So
Hard”). As open systems are increasingly emphasized, we
clearly need standards that will allow us to couple systems
with different internal architectures. This requires not only
well-defined connectors (plugs that fit outlets), but also
well-understood data semantics (outlets and appliances
made for the same voltage).

In this area there are still many open questions, and the
problem is only beginning to be recognized as crucial. This
will change in the next few years, and the industry may rec-
ognize that a data-centered approach has important advan-
tages after all. Even as implementations of concepts like the
Common Object Request Broker Architecture becomes
readily available, software developers still doubt their uni-
versal applicability and continue to seek other architectural
models.

The Rossak article and “Creating Architectures with
Building Blocks” by Frank van der Linden and Jiirgen
Miiller are examples of numerous attempts to formalize

, architectural models. We need a sound mathematical basis
1 explore both the potential benefits and the limitations of
roposed architectures and to ultimately prove a system’s
roperties on the basis of the properties of its individual
omponents. We still have a long way to go - research into
lese issues is of the greatest possible importance in advanc-
rg the state of the art of large-system development. +

REFERENCES
1. M. Boasson, “Exploding Complexity May Be Our Own Fault,” IEEE

&q?zxm, Mar. 1993, p. 12.
2. G. Booth, “Practical Software Engineering,” CrossTalk, July 1995, pp. 4-13.
3. M. Boasson, “Control Systems Software,” IEEE Tmm. Automatic

Control, July 1993, pp. 1094-1107.
4. N. Carriero and D. Gelernter, “Linda in Context,” Comm. ACM, Apr.

1989, pp. ‘W-458.
5. G.-C. Roman and H.C. Cunningham, “A Shared Dataspace Model of

Concurrency: Language and Programming Implications,” Pux. Int’l
Conf: Disn-ibuted Cmputing System, 1989, pp. 2 70-2 79.

6. H.R. Simpson, “Real T ime Networks in Configurable Distributed
Systems,” ht’l Wol-k&p Conjgwable Distributed Systems, IEE, London,
1992, pp. 45-59.

Maarten Boasson is head of Signal’s Applied Systems
Research Department and a member of Thomson’s
Scientific and Technical Council, where he is responsible
for research and long-term development strategy in dis-
tributed, real-time systems. His research focuses on pre-
venting unnecessary complexity in system design.
Boasson has a master’s degree in mathematics from
Gorningen University. He is a member of the IEEE
Computer Society, ACM, and the American Association
of Artificial Intelligence, and cofounder of the IEEE task

wee on computer-based systems engineering.
.ddress questions about this issue to Boasson at Hollandse Signaalapparaten
#V, PO Box 42, 7.550 GD Hengelo, The Netherlands; boassonQhgl.signaal.nl.

NOVEMBER 1995

